

MINIMIZING TOTAL COMPLETION TIME IN A TWO-MACHINE FLOW-SHOP SCHEDULING PROBLEMS WITH A SINGLE SERVER

SHI LING¹, AND CHENG XUE-GUANG^{2,*}

¹Department of Mathematics, Hubei University for Nationalities, Enshi 445000, China ²School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Abstract. We consider the problem of two-machine flow-shop scheduling with a single server and equal processing times, we show that this problem isNP -hard in the strong sense and present a busy schedule for it with worst-case bound 7/6

Keywords:flow-shop scheduling problem, total completion time worst-case, single server.

2000 AMS Subject Classification: 90B35

1. Introduction

We consider the two-machine flow-shop scheduling problem, which is described as follows. We are given n jobs J_1, J_2, \dots, J_n , and two machines M_1 and M_2 . Each job J_j consists of a chain $(O_{1,j}, O_{2,j}, \dots, O_{n,j})$ of operations, and $O_{i,j}$ is to be processed on machine M_i for $p_{i,j}$ time units. Each machine can only process one operation at a time, and each job can be processed on at most one machine at a time. No preemption is allowed, i.e., once start, any operation can not be interrupted before it is completed. Immediately before processing an operation $O_{i,j}$ the corresponding machine, which takes a setup time of $s_{i,j}$ time units.

^{*}Corresponding author

E-mail addresses: shiling59@126.com (S. Ling), chengxueguang6011@msn.com (C. Xue-guang) Received December 22, 2011

During such a setup the machine is also occupied for $s_{i,j}$ time united, i.e., No other job can be processed on it. The setup times are assumed to be separable from the processing times, i.e., a setup on a subsequent machine may be performed while the job is still processed on the preceding machine. All setups have to be done by a single server M_S , which can perform at most one setup at a time. The problem we consider is to find a schedule S which minimizes the total completion times, that is $\sum_{i=1}^{n} C_j$. Following the three-field notation schedule introduced by Lentra et al [1], we denote this problem as $F2, S1 || \sum_{i=1}^{n} C_j$. If all processing are equal to p, that is $p_{i,j} = p(i = 1, 2; j = 1, 2, \dots, n)$, we have the F2, $S1 || p_{i,j} = p | \sum_{i=1}^{n} C_j$ problem.

Complexity results for flow-shop problems obtained by Garey, et al [2], who studied twomachine flow-shop problem with minimizing total completion times, that is $F2||\sum_{i=1}^{n} C_j$. J.A.Hoogereen, et al [3] studied some special cases for two-machine flow-shop problems with minimizing total completion times, and proved that the problem with equal processing on first machine, that is F2, $S1|p_{1,j} = p|\sum_{i=1}^{n} C_j$, is NP -hard in the strong sense, and present an $O(n \log(n))$ approximation algorithm for it with worst-case bound 4/3.Complexity results for flow-shop problems with a single server was obtained by Brucher, et al [4]. The complexity of parallel dedicated machine with a single server was obtained by Glass, et al [5].

In this paper , we derive some new complexity results for special cases of two-machine problem with a single server. The remainder of the paper is organized as follows. In section 2 we show that flow-shop problem with a single server ,equal processing times ,and minimizing total completion times is NP -hard in the strong sense. In section 3 we introduce a improved algorithm, and prove that its worst case is 7/6, the bound is tight.

2. Complexity of the $F2,S1|p_{1,j} = p|\sum_{i=1}^{n} C_j$ problem

Let $C_{i,j}$ denote the completion times of job J_j on machine M_i . If there are no idle times on machine and machine, we have

$$\begin{split} C_{1,1} &= s_{1,1} + p_{1,1}, \\ C_{2,1} &= s_{1,1} + p_{1,1} + s_{2,1} + p_{2,1}, \\ C_{1,j} &= C_{1,j-1} + s_{1,j} + p_{1,j}, \end{split}$$

 $C_{2,j} = max(C_{2,j-1}, C_{1,j}) + s_{2,j} + p_{2,j}), \text{ for } j = 2, 3, \cdots, n$

Theorem 2. The problem of $F2,S1|p_{1,j} = p|\sum_{i=1}^{n} C_j$ is NP-hard in the strong sense. **Proof.** Our proof is based upon a reduction from the problem Numerical Matching with Target Sums or, in short, Target Sum, which is known to be NP -hard in the strong sense[6].

Target Sum. Given two multisets $X = x_1, x_2, \dots, x_n$ and $Y = y_1, y_2, \dots, y_n$ of positive integers and an target vector z_1, z_2, \dots, z_n , where $\sum_{i=1}^n (x_j + y_j) = \sum_{i=1}^n z_j$, is there a position of the set $X \bigcup Y$ into n disjoint set Z_1, Z_2, \dots, Z_n , each containing exactly one element from each of X and Y, such that the sum of the numbers in Z_j equal z_j , for $i = 1, 2, \dots, n$? (1)P-jobs: $s_{1,i} = b, p_{1,i} = b, s_{2,i} = b + x_i p_{2,i} = b(i = 1, 2, \dots, n)$ (2)Q-jobs: $s_{1,i} = 0, p_{1,i} = b, s_{2,i} = b + y_i, p_{2,i} = b(i = 1, 2, \dots, n)$ (3)R-jobs: $s_{1,i} = 0, p_{1,i} = b, s_{2,i} = b - z_i, p_{2,i} = b(i = 1, 2, \dots, n)$ (4)U-jobs: $s_{1,i} = 0, p_{1,i} = b, s_{2,i} = 0, p_{2,i} = b(i = 1, 2, \dots, n)$

Observe that all processing times are equal to y. To prove the theorem we show that in this constructed if the $F2,S1|p_{1,j} = p|\sum_{i=1}^{n} C_j$ problem a schedule S_0 satisfying $\sum_{i=1}^{n} C_j(S_0) \leq y = \sum_{i=1}^{n} x_j + \sum_{i=1}^{n} (x_j + y_j) + (77n^2 - 13n - 4)b/2$ exists if and only if Target Num has a solution.

Suppose that Target Num has a solution. The desired schedule S_0 exists and can be described as follows. No machine has intermediate idle time. Machine M_i process the jobs in order of the sequence σ , i.e., in the sequence

 $\sigma = (\sigma_{P_{1,1}}, \sigma_{Q_{1,1}}, \sigma_{R_{1,1}}, \sigma_{U_{1,1}}, \sigma_{V_{1,1}}, \sigma_{W_{1,1}}, \sigma_{L_{1,1}}, \cdots, \sigma_{P_{1,n}}, \sigma_{Q_{1,n}}, \sigma_{R_{1,n}}, \sigma_{U_{1,n}}, \sigma_{V_{1,n}}, \sigma_{W_{1,n}}, \sigma_{L_{1,n}})$ While machine M_2 process the jobs in the sequence

 $\tau = (\tau_{P_{2,1}}, \tau_{Q_{2,1}}, \tau_{R_{2,1}}, \tau_{U_{2,1}}, \tau_{W_{2,1}}, \tau_{L_{2,1}}, \cdots, \tau_{P_{2,n}}, \tau_{Q_{2,n}}, \tau_{R_{2,n}}, \tau_{U_{2,n}}, \tau_{V_{2,n}}, \tau_{W_{2,n}}, \tau_{L_{2,n}})$ as indicated in Figure 1.

	P _{1,1}	Q1,1	R 1,1	U _{1,1}	V1,1	W _{1,1}					L _{1,1}		
		P _{2,1}		1	Q _{2,1}		R _{2,1}	U _{2,1}	V2,1	W2,1		L _{2,1}	
				_			_				<u> </u>		
				L			<u> </u>			1	ر	<u> </u>	
9],n	Q _{1,n}	R _{1,n}	U _{I,n}	V _{1,n}	W _{1,n}		<u> </u>			L _{1,n}]	<u> </u>	

Fig.1 Gant chart for the F2, S1 $|p_{i,i} = p | \sum C_i$ problem

Then we define the sequence and shown in Figure 1. Obviously, these sequence σ and τ fulfills $C(S) = C(\sigma, \tau) \leq y$. Conversely, assume that the flow-shop scheduling problem has a solution σ and τ with $C(S) \leq y$.

Considering the path composed of machine M_1 operations of jobs $(P_{1,1}, Q_{1,1}, R_{1,1}, U_{1,1}, V_{1,1}, W_{1,1})$. Machine M_2 operations of jobs $(R_{1,1}, U_{2,1}, V_{2,1}, W_{2,1}, L_{2,1}, \cdots, R_{2,n}, U_{2,n}, V_{2,n}, W_{2,1}, L_{2,n})$, we obtain that

 $C(S) \ge 3b + x_1 + 5b + x_1 + y_1 + 7b + x_1 + y_1 - z_1 + 8b + 9b + 10b + \dots (3 + (n-1)11)b + x_n + (5 + (n-1)11)b + x_n = y_n + (7 + (n-1)11)b + \dots + (11n+1)b = \sum_{i=1}^n x_i + \sum_{i=1}^n (x_i + y_i) + (77n^2 - 13n - 4)b/2 = y, \text{ So we have } C(S) = y.$

(a) If S has a partition μ , then there is a schedule with finish times y. One such schedule is shown in Figure 1.

(b) If *S* has no partition, then all schedule must have a finish times> *y*. Since *S* has no partition, then $x_i + y_i \neq z_i (i = 1, 2, \dots, n)$. Let $\xi_i = x_i + y_i - z_i$, we have $\sum_{i=1}^{n} C_j(S) = \sum_{i=1}^{n} x_j + \sum_{i=1}^{n} (x_j + y_j) + (77n^2 - 13n - 4)b/2 + 5\sum_{i=1}^{n} \xi_i + 10\sum_{i=1}^{n-1} \xi_i + \dots + 5n\xi_1 > y.$

3. Worst-case for the $F2,S1|p_{1,j} = p|\sum_{i=1}^{n} C_j$ problem

In examining "worst" schedule, we restrict ourselves to busy schedule. A busy schedule is a schedule in which at all times from start to finish at least one server is processing a task.

Theorem 3. The problem of $F2,S1|p_{1,j} = p|\sum_{i=1}^{n} C_j$ problem, let S_0 be a busy schedule for this problem, S^* be the optimal solution for the $F2,S1|p_{1,j} = 1|\sum_{i=1}^{n} C_j$ problem ,then $\sum_{i=1}^{n} C_j(S_0) / \sum_{i=1}^{n} C_j(S^*) \le 7/6$. The bound is tight.

Proof. For a schedule S, let $I_{i,j}(S)(i = 1, 2, j = 1, 2, \dots, n)$ denote the total idle times of job J_j on machine M_i .

Considering the path composed of machine M_1 operations of jobs $1, 2, \dots, l$, machine M_2 operation of job j, we obtain that $C_j = \sum_{i=1}^{j} (s_{1,i} + p_{1,i}) + I_{1,j} + s_{2,j} + p_{2,j}$ (1)

Considering the path composed of machine M_1 operations of job 1, machine M_2 operation of jobs $1, 2, \dots, j$, we obtain that $C_j = s_{1,1} + p_{1,1} + \sum_{i=1}^{j} (s_{2,i} + p_{2,i}) + I_{2,j}$ (2) Considering the path composed of machine M_1 operations of jobs $1, 2, \dots, l$, machine M_2 operation of jobs $l, l + 1, \dots, j$, we obtain that $C_j = \sum_{i=1}^{l} (s_{1,i} + p_{1,i}) + I_{1,j} + \sum_{i=l}^{j} (s_{2,i} + p_{2,i}) + I_{2,j}$ (3)

$$6\sum_{j=1}^{n} C_{j}(S_{0}) = 2\left(\sum_{i=1}^{j} \left((s_{1,i} + p_{1,i}) + I_{1,j} + s_{2,j} + p_{2,j} \right) + 2(s_{1,1} + p_{1,1} + \sum_{i=1}^{j} (s_{2,i} + p_{2,i}) + I_{2,j}) + 2\left(\sum_{i=1}^{l} (s_{1,i} + p_{1,i}) + I_{1,j} + \sum_{i=l}^{j} (s_{2,j} + p_{2,j}) + I_{2,j} \right) \le 7\sum_{j=1}^{n} C_{j}(S^{*})$$

$$\sum_{i=1}^{n} C_{j}(S_{0}) / \sum_{i=1}^{n} C_{j}(S^{*}) \le 7/6.$$

To prove the bound is tight, introduce the following example as show in Fig.2 and Fig. 3.

$$\begin{aligned} &(1)s_{1,i} = 2b, p_{1,i} = b, s_{2,i} = 2b, p_{2,i} = b(i = 1, 2) \\ &(2)s_{1,i} = 0, p_{1,i} = b, s_{2,i} = 0, p_{2,i} = b(i = 3, 4) \\ &So \ we \ have \ \sum_{i=1}^{n} C_j(S_0) / \sum_{i=1}^{n} C_j(S^*) = 35b/30b = 7/6, \ the \ bound \ is \ tight. \end{aligned}$$

References

- E.L. Lawer, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys. Sequencing and Scheduling: Algorithms and Complexity, in: S.C. Gtaves, A.H.G. Rinnooy Kan, P.H. zipkin(Eds.), Handbooks in Operation Research and Management Science, Vol.4, Logistics of Production and Inventory, Northhollland, Amsterrdem, 1993, pp.445-522.
- [2] M.R.Garey, D.S.Johson, and R.Sethi. The complexity of flowshop and jobshop scheduling. Math. Oper.Res.m, (12):117-129,1976.
- [3] J.A. Hoogereen, T.Kaweguchi. Minimizing total completion time in a two-machine flowshop: analysis of special cases. Processing of the 5th IPCO conference,1996:374-388.
- [4] P. Brucker, S. Knust,G.Q. Wang, et al. Complexity of results for flow-shop problems with a single server. European J. Oper. Res., 2005,165(2):398-407.
- [5] C.A. Glass, Y.M.Shafrausky, V.A.Strusevich. Scheduling for parallel dedicated machines with a single server.Naval Research Logistics, 2000,,47:304-328.

[6] M.R.Garey, D.S.Johnson. Computers and Intractability: A Guide to the Theory of - Complete-ness ,Freman, San Francisco.