

Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 3, 435-440

ISSN: 1927-5307

MINIMIZING TOTAL COMPLETION TIME IN A TWO-MACHINE FLOW-SHOP SCHEDULING PROBLEMS WITH A SINGLE SERVER

SHI LING ${ }^{1}$, AND CHENG XUE-GUANG ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Hubei University for Nationalities, Enshi 445000, China
${ }^{2}$ School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Abstract

We consider the problem of two-machine flow-shop scheduling with a single server and equal processing times, we show that this problem is $N P$-hard in the strong sense and present a busy schedule for it with worst-case bound $7 / 6$

Keywords:flow-shop scheduling problem, total completion time worst-case, single server.
2000 AMS Subject Classification: 90B35

1. Introduction

We consider the two-machine flow-shop scheduling problem, which is described as follows. We are given n jobs $J_{1}, J_{2}, \cdots, J_{n}$, and two machines M_{1} and M_{2}. Each job J_{j} consists of a chain $\left(O_{1, j}, O_{2, j}, \cdots, O_{n, j}\right)$ of operations, and $O_{i, j}$ is to be processed on machine M_{i} for $p_{i, j}$ time units. Each machine can only process one operation at a time, and each job can be processed on at most one machine at a time. No preemption is allowed, i.e., once start, any operation can not be interrupted before it is completed. Immediately before processing an operation $O_{i, j}$ the corresponding machine,which takes a setup time of $s_{i, j}$ time units.

[^0]During such a setup the machine is also occupied for $s_{i, j}$ time united, i.e., No other job can be processed on it.The setup times are assumed to be separable from the processing times, i.e., a setup on a subsequent machine may be performed while the job is still processed on the preceding machine. All setups have to be done by a single server M_{S}, which can perform at most one setup at a time. The problem we consider is to find a schedule S which minimizes the total completion times, that is $\sum_{i=1}^{n} C_{j}$. Following the three-field notation schedule introduced by Lentra et al [1], we denote this problem as $F 2, S 1 \| \sum_{i=1}^{n} C_{j}$. If all processing are equal to p, that is $p_{i, j}=p(i=1,2 ; j=1,2, \cdots, n)$, we have the $F 2$, $S 1\left|p_{i, j}=p\right| \sum_{i=1}^{n} C_{j}$ problem.
Complexity results for flow-shop problems obtained by Garey, et al [2], who studied twomachine flow-shop problem with minimizing total completion times, that is $F 2 \| \sum_{i=1}^{n} C_{j}$. J.A.Hoogereen, et al [3] studied some special cases for two-machine flow-shop problems with minimizing total completion times, and proved that the problem with equal processing on first machine, that is $F 2, S 1\left|p_{1, j}=p\right| \sum_{i=1}^{n} C_{j}$, is $N P$-hard in the strong sense, and present an $O(n \log (n))$ approximation algorithm for it with worst-case bound $4 / 3$. Complexity results for flow-shop problems with a single server was obtained by Brucher, et al [4]. The complexity of parallel dedicated machine with a single server was obtained by Glass, et al [5].

In this paper, we derive some new complexity results for special cases of two-machine problem with a single server. The remainder of the paper is organized as follows. In section 2 we show that flow-shop problem with a single server, equal processing times ,and minimizing total completion times is $N P$-hard in the strong sense. In section 3 we introduce a improved algorithm, and prove that its worst case is $7 / 6$, the bound is tight.

2. Complexity of the $F 2, S 1\left|p_{1, j}=p\right| \sum_{i=1}^{n} C_{j}$ problem

Let $C_{i, j}$ denote the completion times of job J_{j} on machine M_{i}. If there are no idle times on machine and machine, we have
$C_{1,1}=s_{1,1}+p_{1,1}, C_{2,1}=s_{1,1}+p_{1,1}+s_{2,1}+p_{2,1}$,
$C_{1, j}=C_{1, j-1}+s_{1, j}+p_{1, j}$,
$\left.C_{2, j}=\max \left(C_{2, j-1}, C_{1, j}\right)+s_{2, j}+p_{2, j}\right)$, for $j=2,3, \cdots, n$
Theorem 2. The problem of $F 2, S 1\left|p_{1, j}=p\right| \sum_{i=1}^{n} C_{j}$ is NP-hard in the strong sense. Proof. Our proof is based upon a reduction from the problem Numerical Matching with Target Sums or, in short, Target Sum, which is known to be $N P$-hard in the strong sense[6].

Target Sum. Given two multisets $X=x_{1}, x_{2}, \cdots, x_{n}$ and $Y=y_{1}, y_{2}, \cdots, y_{n}$ of positive integers and an target vector $z_{1}, z_{2}, \cdots, z_{n}$, where $\sum_{i=1}^{n}\left(x_{j}+y_{j}\right)=\sum_{i=1}^{n} z_{j}$, is there a position of the set $X \bigcup Y$ into n disjoint set $Z_{1}, Z_{2}, \cdots, Z_{n}$, each containing exactly one element from each of X and Y,such that the sum of the numbers in Z_{j} equal z_{j},for $i=1,2, \cdots, n$?
(1) P-jobs: $s_{1, i}=b, p_{1, i}=b, s_{2, i}=b+x_{i} p_{2, i}=b(i=1,2, \cdots, n)$
(2) Q-jobs: $s_{1, i}=0, p_{1, i}=b, s_{2, i}=b+y_{i}, p_{2, i}=b(i=1,2, \cdots, n)$
(3) R-jobs: $s_{1, i}=0, p_{1, i}=b, s_{2, i}=b-z_{i}, p_{2, i}=b(i=1,2, \cdots, n)$
(4) U-jobs: $s_{1, i}=0, p_{1, i}=b, s_{2, i}=0, p_{2, i}=b(i=1,2, \cdots, n)$
(5) L-jobs: $s_{1, i}=4 b, p_{1, i}=b, s_{2, i}=b, p_{2, i}=b(i=1,2, \cdots, n)$

Observe that all processing times are equal to y.To prove the theorem we show that in this constructed if the $F 2, S 1\left|p_{1, j}=p\right| \sum_{i=1}^{n} C_{j}$ problem a schedule S_{0} satisfying $\sum_{i=1}^{n} C_{j}\left(S_{0}\right) \leq y=\sum_{i=1}^{n} x_{j}+\sum_{i=1}^{n}\left(x_{j}+y_{j}\right)+\left(77 n^{2}-13 n-4\right) b / 2$ exists if and only if Target Num has a solution.

Suppose that Target Num has a solution. The desired schedule S_{0} exists and can be described as follows. No machine has intermediate idle time. Machine M_{i} process the jobs in order of the sequence σ, i.e., in the sequence
$\sigma=\left(\sigma_{P_{1,1}}, \sigma_{Q_{1,1}}, \sigma_{R_{1,1}}, \sigma_{U_{1,1}}, \sigma_{V_{1,1}}, \sigma_{W_{1,1}}, \sigma_{L_{1,1}}, \cdots, \sigma_{P_{1, n}}, \sigma_{Q_{1, n}}, \sigma_{R_{1, n}}, \sigma_{U_{1, n}}, \sigma_{V_{1, n}}, \sigma_{W_{1, n}}, \sigma_{L_{1, n}}\right)$
While machine M_{2} process the jobs in the sequence

$$
\tau=\left(\tau_{P_{2,1}}, \tau_{Q_{2,1}}, \tau_{R_{2,1}}, \tau_{U_{2,1}}, \tau_{V_{2,1}}, \tau_{W_{2,1}}, \tau_{L_{2,1}}, \cdots, \tau_{P_{2, n}}, \tau_{Q_{2, n}}, \tau_{R_{2, n}}, \tau_{U_{2, n}}, \tau_{V_{2, n}}, \tau_{W_{2, n}}, \tau_{L_{2, n}}\right)
$$

as indicated in Figure 1.

Fig. 1 Gant chart for the $F 2, S 1\left|p_{i j}=p\right| \sum C_{j}$ problem

Then we define the sequence and shown in Figure 1. Obviously, these sequence σ and τ fulfills $C(S)=C(\sigma, \tau) \leq y$. Conversely, assume that the flow-shop scheduling problem has a solution σ and τ with $C(S) \leq y$.
Considering the path composed of machine M_{1} operations of jobs ($P_{1,1}, Q_{1,1}, R_{1,1}, U_{1,1}, V_{1,1}, W_{1,1}$). Machine M_{2} operations of jobs ($\left.R_{1,1}, U_{2,1}, V_{2,1}, W_{2,1}, L_{2,1}, \cdots, R_{2, n}, U_{2, n}, V_{2, n}, W_{2,1}, L_{2, n}\right)$, we obtain that
$C(S) \geq 3 b+x_{1}+5 b+x_{1}+y_{1}+7 b+x_{1}+y_{1}-z_{1}+8 b+9 b+10 b+\cdots(3+(n-1) 11) b+x_{n}+$ $(5+(n-1) 11) b+x_{n}=y_{n}+(7+(n-1) 11) b+\cdots+(11 n+1) b=\sum_{i=1}^{n} x_{j}+\sum_{i=1}^{n}\left(x_{j}+y_{j}\right)$ $+\left(77 n^{2}-13 n-4\right) b / 2=y$, So we have $C(S)=y$.
(a) If S has a partition μ, then there is a schedule with finish times y. One such schedule is shown in Figure 1.
(b) If S has no partition, then all schedule must have a finish times> y. Since S has no partition, then $x_{i}+y_{i} \neq z_{i}(i=1,2, \cdots, n)$. Let $\xi_{i}=x_{i}+y_{i}-z_{i}$, we have $\sum_{i=1}^{n} C_{j}(S)=\sum_{i=1}^{n} x_{j}+\sum_{i=1}^{n}\left(x_{j}+y_{j}\right)+\left(77 n^{2}-13 n-4\right) b / 2+5 \sum_{i=1}^{n} \xi_{i}+10 \sum_{i=1}^{n-1} \xi_{i}+$ $\cdots+5 n \xi_{1}>y$.

3. Worst-case for the $F 2, S 1\left|p_{1, j}=p\right| \sum_{i=1}^{n} C_{j}$ problem

In examining "worst" schedule, we restrict ourselves to busy schedule. A busy schedule is a schedule in which at all times from start to finish at least one server is processing a task.

Theorem 3. The problem of $F 2, S 1\left|p_{1, j}=p\right| \sum_{i=1}^{n} C_{j}$ problem, let S_{0} be a busy schedule for this problem, S^{*} be the optimal solution for the $F 2, S 1\left|p_{1, j}=1\right| \sum_{i=1}^{n} C_{j}$ problem, then $\sum_{i=1}^{n} C_{j}\left(S_{0}\right) / \sum_{i=1}^{n} C_{j}\left(S^{*}\right) \leq 7 / 6$. The bound is tight.

Proof. For a schedule S, let $I_{i, j}(S)(i=1,2, j=1,2, \cdots, n)$ denote the total idle times of job J_{j} on machine M_{i}.
Considering the path composed of machine M_{1} operations of jobs $1,2, \cdots, l$, machine M_{2} operation of j ob j, we obtain that $C_{j}=\sum_{i=1}^{j}\left(s_{1, i}+p_{1, i}\right)+I_{1, j}+s_{2, j}+p_{2, j}$ (1)
Considering the path composed of machine M_{1} operations of job 1 , machine M_{2} operation of jobs $1,2, \cdots, j$, we obtain that $C_{j}=s_{1,1}+p_{1,1}+\sum_{i=1}^{j}\left(s_{2, i}+p_{2, i}\right)+I_{2, j}$

Considering the path composed of machine M_{1} operations of jobs $1,2, \cdots, l$, machine M_{2} operation of jobs $l, l+1, \cdots, j$, we obtain that $C_{j}=\sum_{i=1}^{l}\left(s_{1, i}+p_{1, i}\right)+I_{1, j}+\sum_{i=l}^{j}\left(s_{2, i}+\right.$ $\left.p_{2, i}\right)+I_{2, j}$ (3)
So we have
$6 \sum_{j=1}^{n} C_{j}\left(S_{0}\right)=2\left(\sum_{i=1}^{j}\left(\left(s_{1, i}+p_{1, i}\right)+I_{1, j}+s_{2, j}+p_{2, j}\right)+2\left(s_{1,1}+p_{1,1}+\sum_{i=1}^{j}\left(s_{2, i}+p_{2, i}\right)+I_{2, j}\right)\right.$ $+2\left(\sum_{i=1}^{l}\left(s_{1, i}+p_{1, i}\right)+I_{1, j}+\sum_{i=l}^{j}\left(s_{2, j}+p_{2, j}\right)+I_{2, j}\right) \leq 7 \sum_{j=1}^{n} C_{j}\left(S^{*}\right)$
$\sum_{i=1}^{n} C_{j}\left(S_{0}\right) / \sum_{i=1}^{n} C_{j}\left(S^{*}\right) \leq 7 / 6$.
To prove the bound is tight, introduce the following example as show in Fig. 2 and Fig. 3.

(1) $s_{1, i}=2 b, p_{1, i}=b, s_{2, i}=2 b, p_{2, i}=b(i=1,2)$
(2) $s_{1, i}=0, p_{1, i}=b, s_{2, i}=0, p_{2, i}=b(i=3,4)$

So we have $\sum_{i=1}^{n} C_{j}\left(S_{0}\right) / \sum_{i=1}^{n} C_{j}\left(S^{*}\right)=35 b / 30 b=7 / 6$, the bound is tight.

References

[1] E.L. Lawer, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys. Sequencing and Scheduling: Algorithms and Complexity, in: S.C. Gtaves, A.H.G. Rinnooy Kan,P.H. zipkin(Eds.), Handbooks in Operation Research and Management Science, Vol.4, Logistics of Production and Inventory, Northhollland, Amsterrdem, 1993,pp.445-522.
[2] M.R.Garey, D.S.Johson, and R.Sethi. The complexity of flowshop and jobshop scheduling. Math. Oper.Res.m, (12):117-129,1976.
[3] J.A. Hoogereen, T.Kaweguchi. Minimizing total completion time in a two-machine flowshop: analysis of special cases. Processing of the 5th IPCO conference,1996:374-388.
[4] P. Brucker, S. Knust,G.Q. Wang,et al. Complexity of results for flow-shop problems with a single server. European J. Oper. Res., 2005,165(2):398-407.
[5] C.A. Glass, Y.M.Shafrausky, V.A.Strusevich. Scheduling for parallel dedicated machines with a single server.Naval Research Logistics, 2000,,47:304-328.
[6] M.R.Garey,D.S.Johnson.Computers and Intractability: A Guide to the Theory of - Complete-ness ,Freman,San Francisco.

[^0]: *Corresponding author
 E-mail addresses: shiling59@126.com (S. Ling), chengxueguang6011@msn.com (C. Xue-guang)
 Received December 22, 2011

