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1.Introduction: 

In recent years it is seen that Fuzzy Differential Equation (FDE) has been emerging 

field among the researchers. From the theoretical point of view and as well as of their 
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applications FDE is a proven important topic. For example, in HIV model [1], decay 

model [2],predator-prey model [3],population model [4],civil engineering 

[5] ,hydraulic models [6], Friction model [7],Growth model [8], Bacteria culture 

model [9]. It has been found that usage of FDE is a natural way in terms of modeling 

dynamical system under probabilistic uncertainty. First order linear FDE are 

considered to be one of the simplest FDE which may implement in many applications. 

The advent of fuzzy derivative was first introduced by S.L.Change and L.A.Zadeh in 

[10].D.Dubois and Prade in [11] discussed differentiation with every aspects of fuzzy. 

The differential of fuzzy functions were immensely contributed by M.L.Puri and 

D.A.Ralesec in [12] andR.Goetschel and W.Voxman in [13]. The fuzzy differential 

equation and initial value problems were vastly studied by O.Kaleva in [14,15] and by 

S.Seikkala in [16]. Derivatives of fuzzy function was compared by Buckley and 

Feuring [17]which have been presented in the various manuscript by comparing the 

different solutions, one may obtain to the FDE’s using these derivatives. 

In many papers initial condition of a FDE was taken as different type of fuzzy 

numbers. Buckley et al [18] used triangular fuzzy number , Duraisamy&Usha [19] 

used Trapezoidal fuzzy number, Bede et al [20] used LR type fuzzy number. 

Laplace transform is a very useful tool to solve differential equation. Laplace 

transforms give the solution of a differential equations satisfying the initial condition 

directly without use the general solution of the differential equation. Fuzzy Laplace 

Transform (FLT) was first introduced by Allahviranloo&Ahmadi [21].Here first order 

fuzzy differential equation with fuzzy initial condition is solved by FLT. 

Tolouti&Ahmadi [22] applied the FLT in 2
nd

 order FDE.  FLT also used to solve 

many areas of differential equation. Salahshour et al [23] used FLT in Fuzzy 

fractional differential equation. Salahshour&Haghi used FLT in Fuzzy Heat Equation 

[24]. Ahmad et al [25]  used FLT in Fuzzy Duffing’s Equation. 

The structure of this paper is as follows: In first two sections, we introduce some 

concepts and introductory material to deal with the FDE. Solution procedure of 1
st
 

order linear non homogeneous fuzzy ordinary differential equation (FODE) is 

discussed in section 3. In section 4 there are an application. At the end in section 5 of 

the paper we present some conclusion and topics for future research. 
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2. Preliminary concept: 

Definition 2.1: Fuzzy Set: A fuzzy set  ̃ in a universe of discourse X is defined as the 

following set of pairs  ̃  {(    ̃( ))    )}  Here   ̃: X [0,1] is a mapping 

called the membership value of x X in a fuzzy set  ̃. 

Definition 2.2: Height: The height  ( ̃), of a fuzzy set ̃  (    ̃( )    ), is the 

largest membership grade obtained by any element in that set i.e.  ( ̃)=     ̃( )  

Definition 2.3: Convex Fuzzy sets: ̃ is fuzzy convex, i.e.   x,y   and      , 

 ̃(   (   ) )      { ̃( )  ̃( )}. 

Definition 2.4: -Level or  -cut of a fuzzy set:The  -level set (or interval of 

confidence at level   or  -cut) of the fuzzy set  ̃ of X is a crisp set    that contains 

all the elements of X that have membership values in A greater than or equal to   i.e. 

 ̃  {    ̃( )          [   ]}  

Definition 2.5: Fuzzy Number:  ̃   ( ) is called a fuzzy number where R denotes 

the set of whole real numbers if 

i.  ̃is normal i.e.      exists such that   ̃(  )   . 

ii.    (   ]  is a closed interval. 

 

If  ̃ is a fuzzy number then   ̃ is a convex fuzzy set and if   ̃(  )    then   ̃( ) is 

non decreasing for      and non increasing for     . 

The membership function of a fuzzy number  ̃(           ) is defined by  

  ̃( )  {

                     [     ]   
 ( )                     

   ( )                   

 

Where L(x) denotes an increasing function and    ( )    and R(x) denotes a 

decreasing function and    ( )   . 

Definition 2.6:Generalized Fuzzy number (GFN): Generalized Fuzzy number  ̃ as 

 ̃  (           ; ),where      , and             (           ) are 

real numbers. The generalized fuzzy number  ̃ is a fuzzy subset of real line R, whose 

membership function   ̃( ) satisfies the following conditions: 

1)    ̃( ): R  [0, 1] 
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2)    ̃( )    for     

3)    ̃( ) is strictly increasing function for         

4)    ̃( )    for         

5)    ̃( ) is strictly decreasing function for         

6)   ̃( )    for      

 

Fig-2.1:-Generalized Fuzzy Number 

Definition 2.7:Generalized TFN: If    =   then  ̃ is called a GTFN as  ̃  

(        ; ) or (        ; ) with membership function 

  ̃( )  {

 
    

     
           

 
    

     
           

                        

 

Definition 2.8: TFN: If   =  ,     then  ̃ is called a TFN as  ̃  (        ) or 

 ̃  (        ) 

 

Fig-2.2:- GTFN and TFN 

 

Definition 2.9: Multiplication of two GTFN: If ̃  (        ; ) and  ̃  

(        ; ) are two GTFN then  ̃  ̃  (                 ) where       {   }. 



LAPLACE TRANSFORM                                                   1537 

Definition 2.10: Inverse GTFN:If  ̃  (        ; ) is a GTFN then its inverse 

denoted by  ̃   (
 

  
 

 

  
 

 

  
  ) 

Definition 2.11: Fuzzy ordinary differential equation (FODE):  Consider a simple 

1
st
 Order Linear non-homogeneous Ordinary Differential Equation (ODE) as follows: 

  

  
       with initial condition  (  )     

The above ODE is called FODE if any one of the following three cases holds: 

(i) Only   is a generalized fuzzy number (Type-I). 

(ii) Only k is a generalized fuzzy number (Type-II). 

(iii) Both k and   are generalized fuzzy numbers (Type-III). 

Definition 2.12: Strong and Weak solution of FODE: Consider the 1
st
 order linear 

non homogeneous fuzzy ordinary differential equation   
  

  
      with (  )     . 

Here k or (and)    be generalized fuzzy number(s). 

Let the solution of the above FODE be  ̃( )  and its  -cut be  

 (   )  [  (   )   (   )]. 

If   (   )    (   )    [   ]            then  ̃( )  is called strong 

solution otherwise  ̃( )  is called weak solution and in that case the  -cut of the 

solution is given by  

 (   )  [   {  (   )   (   )}     {  (   )   (   )}]. 

 

Definition 2.13: [26] Let   (   )    and    (   ). We say that   is strongly 

generalized differential at    (Bede-Gal differential) if there exists an element 

  (  )   , such that  

(i) for all     sufficiently small,    (    )   (  ),    (  ) 
  (    ) and 

the limits(in the metric  ) 

   
   

 (    )   (  )

 
    

   

 (  ) 
  (    )

 
   (  ) 

Or 
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(ii) for all     sufficiently small,     (  ) 
  (    ),    (    )   (  ) and 

the limits(in the metric  ) 

   
   

 (  ) 
  (    )

  
    

   

 (    )   (  )

  
   (  ) 

Or 

(iii) for all     sufficiently small,     (    )   (  ),    (    )   (  ) and 

the limits(in the metric  ) 

   
   

 (    )   (  )

 
    

   

 (    )   (  )

  
   (  ) 

Or 

(iv) for all     sufficiently small,     (  ) 
  (    ),    (  ) 

  (    ) and 

the limits(in the metric  ) 

   
   

 (  ) 
  (    )

  
    

   

 (  ) 
  (    )

 
   (  ) 

(  and   at denominators mean 
 

 
 and 

  

 
, respectively). 

Definition 2.14:  [27] Let        be a function and denote 

 ( )  ( (   )  (   )), for each   [   ]. Then (1) If   is (i)-differentiable, then 

 (   ) and  (   ) are differentiable function and   ( )  (  (   )  
 
(   )).(2) ) If   

is (ii)-differentiable, then  (   ) and  (   ) are differentiable function and   ( )  

( 
 
(   )   (   )). 

Definition 2.15: Let   [   ]    . The integral of   in [   ], ( denoted by 

∫  ( )  
[   ]

 or, ∫  ( )  
 

 
 ) is defined levelwise as the set if integrals of the (real) 

measurable selections for [ ] , for each   [   ]. We say that   is integrable over 

[   ] if ∫  ( )  
[   ]

    and we have 
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[∫  ( )  
 

 
]
 

 [∫   ( )  
 

 
 ∫  

 
( )  

 

 
] for each   [   ]. 

3. Solution Procedure of 1
st
 Order Linear Non Homogeneous FODE 

The solution procedure of 1
st
 order linear non homogeneous FODE of Type-I, Type-II 

and Type-III are described. Here fuzzy numbers are taken as GTFNs. 

3.1. Solution Procedure of 1
st
 Order Linear Non Homogeneous FODE of Type-I 

Consider the initial value problem     
  

  
                           ………….(3.1.1) 

with fuzzy initial condition(IC)   ̃( )    ̃  (          ) 

Let  ̃( )  be a solution of FODE (3.1.1) and  (   )  [  (   )   (   )] be the  -cut 

of   ̃( ). 

Hence (  ̃)  [   
    

 
    

    

 
]       [   ]        

Where    
            

       

Here we solve the given problem for      and      respecively. 

Case 3.1.1:  When      

The FODE (3.1.1) becomes 

   (   )

  
    (   )                                                                   …………..(3.1.2) 

   (   )

  
    (   )                                                                   …………..(3.1.3) 

Taking Laplace Transform both sides of (3.1.2) we get 

 {
   (   )

  
}   {   (   )}   {  }  

Or,   {  (   )}    (   )    {  (   )}  
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Or,   {  (   )}  
(   

    
 

)

   
 

  

 
(

 

   
 

 

 
) [    (   )     

    

 
] 

Taking inverse Laplace transform we get 

  (   )  (   
    

 
)    {

 

   
}  

  

 
   {

 

   
}  

  

 
   {

 

 
}  

Or,   (   )   
  

 
 {

  

 
 (   

    

 
)}                                      …………(3.1.4) 

Similarly using Laplace transform of (3.1.3) we get 

  (   )   
  

 
 {

  

 
 (   

    

 
)}                                           …………(3.1.5) 

Now     
 

  
[  (   )]  

   

 
     and

 

  
[  (   )]   

   

 
      

and   (   )   
  

 
 {

  

 
   }       (   ) 

So the solution of  (3.1.1) is a strong solution 

 The  -cut of the solution is   

( ̃( ))   
  

 
 [

  

 
    

 

 
(     ) 

  

 
    

 

 
(     )]  

   

  
  

 
 [

  

 
 (   

    

 
)  

  

 
 (   

    

 
)]     

So,  ̃( )  (     )
  

 
 (          )    

Example-3.1.1: Consider the FODE  
  

  
 

 

  
    with IC   ̃(   )  

(           ). 

The strong solution is  ̃( )    ( 
 

  
   )  (           ) 

 

  
 
 

Case 3.1.2: when     , let       where m is a positive real number. 

Then the FODE (3.1.1) becomes 
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   (   )

  
     (   )                                                                    …………(3.1.6) 

   (   )

  
     (   )                                                                    …………(3.1.7) 

Taking Laplace transform both sides of (3.6.1) we get 

 {
   (   )

  
}   {    (   )}   {  }  

Or,   {  (   )}    (   )     {  (   )}   {  } 

Or,   {  (   )}    {  (   )}  (   
    

 
)  

  

 
                           ...……….(3.1.8) 

Taking Laplace Transform both sides of (3.1.7) we get 

 {
   (   )

  
}   {    (   )    }  

Or,   {  (   )}    (   )     {  (   )}   {  } 

Or,   {  (   )}    {  (   )}  (   
    

 
)  

  

 
                           ………….(3.1.9) 

Solving (4) and (5) we get 

 {  (   )}  (   
    

 
)

 

      (   
    

 
)

 

      
  

 
{
 

 
 

 

   
}…..……..(3.1.10) 

and  

 {  (   )}  (   
    

 
)

 

     
 (   

    

 
)

 

     
 

  

 
(
 

 
 

 

   
) ………(3.1.11)    

Taking inverse Laplace Transform of (3.1.10) we get 

  (   ) 

 (   
    

 
)    {

 

     }  (   
    

 
)    {

 

     }  
  

 
   {

 

 
}  

  

 
   {

 

   
} 

 (   
    

 
)        (   

    

 
)        
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{ 

  

 
       

 

 
(   

    
)}      

 

 
(

 

 
  ) (   

    
)              

                                                                                                               …..……(3.1.12)  

  Similarly taking inverse Laplace transform of  (3.1.11) we get 

  (   )  
  

 
 

 

 
{ 

  

 
       

 

 
(   

    
)}      

 

 
(

 

 
  ) (   

    
)     

                                                                                                            ………..(3.1.13) 

Here three cases arise. 

Case1:  When left spread    
       right spread    

       

i.e.,   ̃  (          )  is a symmetric GTFN. 

 
 

  
[  (   )]  

 

  
(   

    
)       ,

 

  
[  (   )]   

 

  
(   

    
)      

and   (   )  (  
 

 
    )

  

 
    

      (   ) 

Hence,  [
  

 
 

 

 
{ 

  

 
      }      

 

 
(

 

 
  ) (   

    
)      

  

 
 

 

 
{ 

  

 
      }      

 

 
(

 

 
  ) (   

    
)   ] is the  -cut of the strong 

solution of the FODE (3.1.1). 

So,  ̃( )  (  
 

 
    )

  

 
 

     

 
       ̃ (     ) 

    where  ̃  (        ) 

be a GTFN is the solution of (3.1.1). 

Example-3.1.2: Consider the FODE 
  

  
  

 

  
    with IC  ̃(   )  

(           ) 

The strong solution is ̃( )    (  
 

 
  

 

  )      
 

      ̃ 
 

    where  ̃  

(          ) 

Case2: When   
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Then 
 

  
[  (   )]  

 

  
(   

    
)     

 

  
(   

    
)      

In this case the classical solution exists if  

 

  
[  (   )]  

 

  
(   

    
)     

 

  
(   

    
)      

i.e.,
 

  
(   

    
)     

 

  
(   

    
)      

i.e.,    
       

       

 

i.e.,  
 

  
   [

       

       

] 

Hence,  [
  

 
 

 

 
{ 

  

 
       

 

 
(   

    
)}      

 

 
(

 

 
  ) (   

    
)      

  

 
 

 

 
{ 

  

 
       

 

 
(   

    
)}      

 

 
(

 

 
  ) (   

    
)   ]  is the  -cut 

of the strong solution of the FODE (3.1.1)  if   
 

  
   [

       

       

]. 

Case3: When    
    

 

Then  
 

  
[  (   )]  

 

  
(   

    
)     

 

  
(   

    
)      

In this case the classical solution exists if  

 

  
[  (   )]  

 

  
(   

    
)     

 

  
(   

    
)      

i.e.  
 

  
   [

       

       

] 

Hence ,  [
  

 
 

 

 
{ 

  

 
       

 

 
(   

    
)}      

 

 
(

 

 
  ) (   

    
)      
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{ 

  

 
       

 

 
(   

    
)}      

 

 
(

 

 
  ) (   

    
)   ]  is the  -cut 

of the strong solution of the FODE (3.1.1)  if   
 

  
   [

       

       

].  

In both Case 2 and Case 3 the strong solution is, 

 ̃( )  (  
 

 
    )

  

 
 

 

 
 ̃     

     

 
 ̃    where  ̃  (                 ), 

 ̃  (        ) are two symmetric GTFN. 

Example-3.1.3:(   
    

)Consider the FODE 
  

  
  

 

  
    and the IC is   ̃(  

 )  (            ). 

The strong solution is  ̃( )    (  
 

 
  

 

  
 )  

 

 
 (            )  

 

  
  

  (          ) 
 

  
 
 

Example-3.1.4: (   
    

)Consider the FODE 
  

  
  

 

  
    and the IC is  ̃(  

 )  (           ) 

The strong solution is  ̃( )    (  
 

 
  

 

  
 )  

 

 
(           )  

 

  
  

    (          ) 
 

  
 
 

3.2. Solution Procedure of 1
st
 Order Linear Non Homogeneous FODE of Type-II 

Consider the initial value problem     
  

  
  ̃                               ………….(3.2.1) 

with IC  ( )     where  ̃  (          ) 

Let  ̃( ) be the solution of FODE (3.2.1) 

Let  (   )  [  (   )   (   )] be the  -cut of the solution and the  -cut of   ̃ be 

( ̃)
 

 [   
 

 
(     )    

 

 
(     )]  [   

   
 

    
   
 

]      [   ]  
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Where                     

Here we solve the given problem for  ̃    and  ̃    respecively. 

Case 3.2.1: when  ̃    

The equation (3.2.1) becomes  

   (   )

  
   ( )  (   )     for                                                     ………..(3.2.2) 

The FODE (3.2.2) becomes 

   (   )

  
 (   

   

 
)   (   )                                                          ..………..(3.2.3) 

and 
   (   )

  
 (   

   

 
)   (   )                                                    ………..(3.2.4) 

Taking Laplace transform both sides of (3.2.3) we get 

 {
   (   )

  
}   {(   

   

 
)   (   )    }  

Or,   {  (   )}    (   )  (   
   

 
)  {  (   )}   {  } 

Or, (  (   
   

 
))  {  (   )}    

  

 
 

Or,  {  (   )}  
 

  (   
   
 

)
 

  

 (  (   
   
 

))
 

 

  (   
   
 

)
 

  

(   
   
 

)
(

 

  (   
   
 

)
 

 

 
) 

Taking inverse Laplace transform we get 

  (   )      {
 

  (   
   
 

)
}     

  {
 

 (  (   
   
 

))
}  

Or,   (   )      {
 

  (   
   
 

)
}  

  

(   
   
 

)
   {

 

  (   
   
 

)
}  

  

(   
   
 

)
   {

 

 
} 

Or,   (   )    (   
   
 

)  
  

(   
   
 

)
 (   

   
 

)  
  

(   
   
 

)
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Or,   (   )   
  

(   
   
 

)
 {  

  

(   
   
 

)
}  (   

   
 

)(    )
                    …………(3.2.5) 

Similarly using Laplace transform both sides of (3.2.3) we get 

  (   )   
  

(   
   
 

)
 {  

  

(   
   
 

)
}  (   

   
 

)(    )
                        …………(3.2.6) 

Example 3.2.1:- Consider the FODE 
  

  
 (             )    with IC x(t=0) =15.  

Therefore the  -cut of the solution is ,  (   )   
 

(           )
 {   

 

(           )
}  (           )  

and   (   )   
 

(           )
 {   

 

(           )
}  (           )  

Table-5: Value of    (   ) and   (   ) for different   and t=5 

    (   )   (   ) 

0 31.9098 44.6885 

0.1 32.6714 43.6118 

0.2 33.4533 42.5635 

0.3 34.2563 41.5427 

0.4 35.0807 40.5488 

0.5 35.9273 39.5811 

0.6 36.7966 38.6387 

0.7 37.6894 37.7211 

 

From the above table we see that for this particular value of t,   (   ) is an 

increasing function,   (   )  is a decreasing function and   (     )    (     ) . 

Hence this solution is a strong solution. 

Case 3.2.2: when  ̃    

When   ̃    , let  ̃    ̃, where  ̃   (          )  is a positive GTFN. 

So ( ̃)  [  ( )   ( )]  [   
   

 
    

   

 
]       [   ]       
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where                     

   (   )

  
    ( )  (   )      (   

   

 
)   (   )          .     .……….(3.2.7)                         

and 

   (   )

  
    ( )  (   )      (   

   

 
)   (   )                 ……….(3.2.8) 

Taking Laplace transform both sides of (3.2.7) we get 

 {
   (   )

  
}   {   ( )  (   )}   {  } 

Or,   {  (   )}    (   )     ( ) {  (   )}  
  

 
 

Or,   {  (   )}    ( ) {  (   )}    
  

 
                                   ………….(3.2.9) 

Taking Laplace transform both sides of (3.2.8) we get 

 {
   (   )

  
}   {   ( )  (   )}   {  }  

Or,   {  (   )}    (   )     ( ) {  (   )}  
  

 
 

Or,   ( ) {  (   )}    {  (   )}    
  

 
                                    .………..(3.2.10) 

Solving (3.2.9) and (3.2.10) we get 

 {  (   )}  
(  

  

 
) {    ( )}

     ( )  ( )
 

  
 

     ( )  ( )
 √

  ( )

  ( )

√  ( )  ( )

     ( )  ( )
   {

 

   ( )
 

 ( 
 

  ( )
)  

     ( )  ( )
}…………(3.2.11) 

and 



1548                      SANKAR PRASAD MONDAL, AND TAPAN KUMAR ROY
 

 {  (   )}  
(  

  

 
) {    ( )}

     ( )  ( )
 

  
 

     ( )  ( )
 √

  ( )

  ( )

√  ( )  ( )

     ( )  ( )
   {

 

   ( )
 

 ( 
 

  ( )
)  

     ( )  ( )
}        

                                                                                                              ..……….(3.2.12) 

Taking inverse Laplace transform of (3.2.11) we get 

  (   )       {
 

     ( )  ( )
}  √

  ( )

  ( )
   {

√  ( )  ( )

     ( )  ( )
}  

  

  ( )
{
 

 
}  

  

  ( )
   {

 

     ( )  ( )
}  

  

√  ( )  ( )
   {

√  ( )  ( )

     ( )  ( )
} 

      √  ( )  ( )  √
  ( )

  ( )
    √  ( )  ( )  

  

  ( )
 

  

  ( )
    √  ( )  ( ) 

 
  

√  ( )  ( )
    √  ( )  ( )  

  
 

 
√

   
   

 

   
   

 
{
 

 

 (  √
   

   

 

   
   

 

)

   

(

 
 

   
   

 

 
 

√(   
   

 
)(   

   

 
)
)

 

}
 

 

 
√(   

   
 

(   
   

 
) 

 

 
 

 
√

   
   

 

   
   

 
{
 

 

 (  √
   

   

 

   
   

 

)

   

(

 
 

   
   

 

 
 

√(   
   

 
)(   

   

 
)
)

 

}
 

 

 
 √(   

   
 

)(   
   

 
) 

 
  

   
   

 

 

Taking inverse Laplace transform of (3.2.12) we get  

  (   )       {
 

     ( )  ( )
}  √

  ( )

  ( )
   {

√  ( )  ( )

     ( )  ( )
}  

  

  ( )
{
 

 
}

 
  

  ( )
   {

 

     ( )  ( )
}  

  

√  ( )  ( )
   {

√  ( )  ( )

     ( )  ( )
} 
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      √  ( )  ( )  √
  ( )

  ( )
    √  ( )  ( )  

  

  ( )
 

  

  ( )
    √  ( )  ( ) 

 
  

√  ( )  ( )
    √  ( )  ( )  

 
 

 

{
 

 

 (  √
   

   

 

   
   

 

)    

(

 
 

   
   

 

 
 

√(   
   

 
)(   
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Example 3.2.2: Consider the FODE   
  

  
  (             )    with IC x(t=0) = 

15 

Here  ̃  (             )  

Therefore the  -cut of the solution is 
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Table-6: Value of    (   ) and   (   ) for different   and t=5 

    (   )   (   ) 

0 12.5234 20.7709 

0.1 13.1902 20.2732 

0.2 13.8466 19.7602 

0.3 14.4922 19.2322 

0.4 15.1264 18.6895 

0.5 15.7489 18.1327 

0.6 16.3593 17.5619 

0.7 16.9570 16.9777 

 

From the above table we see that for this particular value of t,   (   ) is an 

increasing function,   (   )  is a decreasing function and   (     )    (     ) . 

Hence this solution is a strong solution. 

3.3.Solution Procedure of 1
st
 Order Linear Non Homogeneous FODE of Type-III 

Consider the initial value problem     
  

  
  ̃                               ………….(3.3.1) 
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With fuzzy IC  ̃( )    ̃  (          )  ,   where  ̃  (          ) 

Let  ̃( ) be the solution of FODE (3.3.1) . 

Let  (   )  [  (   )   (   )] be the  -cut of the solution. 

Also  ( ̃)
 

 [   
   

 
    

   

 
]       [   ]       

where                     

and (  ̃)  [   
    

 
    

    

 
]       [   ]       

where    
            

       

Let      (   ) 

Here we solve the given problem for  ̃    and  ̃    respecively. 

Case 3.3.1: when  ̃    

From equation (3.3.1) we get  

   (   )

  
   ( )  (   )                                                                   ..…..……(3.3.2) 

and 

   (   )

  
   ( )  (   )                                                                   ..……….(3.3.3) 

Taking Laplace transform both sides of (3.3.2) we get 
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Or,  {  (   )}  
(   

    
 

)

  (   
   
 

)
 

  

 (  (   
   
 

))

                                        ………….(3.3.4) 

Taking inverse Laplace transform of  (3.3.4) we get 
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          …………(3.3.5) 

Similarly from (3.3.3) we get 

  (   )   
  

(    
   
 

)
 {(   

    

 
)  

  

(   
   
 

)
}  

(   
   
 

) 
            …………(3.3.6)                

Example 3.3.1:Consider the FODE 
  

  
 (             )    with IC 

 ̃(t=0)=(10,12,14;0.8) 

Therefore the  -cut of the solution is 

  (   )   
 

(           )
 ( (        )  

 

(           )
)  (           ) and 

  (   )   
 

(           )
 ( (        )  

 

(           )
)  (           )  

Table-7: Value of    (   ) and   (   ) for different   and t=15 

    (   )   (   ) 

0 73.2495 168.8559 

0.1 78.6735 161.4778 

0.2 84.5860 154.4490 

0.3 91.0338 147.7529 

0.4 98.0679 141.3735 

0.5 105.7445 135.2958 

0.6 114.1252 129.5053 

0.7 123.2776 123.9885 
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From the above table we see that for this particular value of t,   (   ) is an 

increasing function,   (   )  is a decreasing function and   (     )    (     ) . 

Hence this solution is a strong solution. 

Case 3.3.2: when  ̃    

Let  ̃    ̃ 

Then equation (3.3.1) becomes  

   (   )

  
    ( )  (   )                                                              .…………(3.3.7) 

and 

   (   )

  
    ( )  (   )                                                               ..….…….(3.3.8) 

Taking Laplace transform both sides of (3.3.7) we get 
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Or,   {  (   )}    (   )     ( ) {  (   )}  
  

 
 

Or,   {  (   )}    ( ) {  (   )}    ( )  
  

 
                               .………..(3.3.9) 

Taking Laplace transform both sides of (3.3.8) we get 

 {
   (   )

  
}   {   ( )  (   )}   {  }  

Or,   {  (   )}    (   )     ( ) {  (   )}  
  

 
 

Or,   ( ) {  (   )}    {  (   )}    ( )  
  

 
                          ………….(3.3.10) 

Solving (3.3.9) and (3.3.10) we get 

 {  (   )}  
 (  ( ) 

  
 

)   ( )(  ( ) 
  
 

)

     ( )  ( )
                                         ………….(3.3.11) 
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 {  (   )}  
 (  ( ) 
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     ( )  ( )
                                          …………..(3.3.12) 

Taking inverse Laplace transform of  (3.3.11) we get 
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Similarly taking inverse Laplace transform of (3.3.12) we get 

  (   ) 
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Example 3.3.2:- Consider the FODE 
  

  
  (                  )    with IC 

x(t=0)=(9,12,14;0.9) 

Here   -cut of the solution is  
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Table-8: Value of    (   ) and   (   ) for different   and t=14 

    (   )   (   ) 

0 2.3691 36.2340 

0.1 5.4072 34.5254 

0.2 8.3910 32.7160 

0.3 11.3123 30.8105 

0.4 14.1636 28.8139 

0.5 16.9371 26.7315 

0.6 19.6256 24.5687 

0.7 22.2221 22.3314 

 

From the above table we see that for this particular value of t=14,   (   ) is 

an increasing function,   (   ) is a decreasing function and   (     )    (     ). 

Hence this solution is a strong solution. 

4.Application:A tank initially contains    liters of brine (salt solution) with a salt 

concentration of    grams per liter. At some instant brine with a salt concentration 
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of .4 grams per liter begins to flow into the tank at a rate of 3 liters per minute, while 

the well-stirred mixture flows out at the same rate. Solve the problem when 

(i)   ̃  (         ) gr/lit and        

(ii)   ̃  (               ),    = 5 gr/lit 

(iii)   ̃  (               ),   ̃  (         ) gr/lit 

 

Solution: Let V (t) be the volume (lit) of brine in the tank at time t minutes. Let S(t) 

be the mass (gr) of salt in the tank at time t minutes. Because the mixture is assumed 

to be well-stirred, the salt concentration of the brine in the tank at time t is C(t) = 

S(t)/V (t). In particular, this will be the concentration of the brine that flows out of the 

tank. 

(i): when   ̃  (         ) gr/lit and        

Therefore 
  

  
       

 

  
             where        

With initial condition  ̃( )      ̃     (         ) 

i.e., 
  

  
             with  ̃( )  (                 )                  …………(4.1) 

The   -cut of the solution is 

  (   )     (            )          (           )         

and 

  (   )     (            )          (           )        

Table 9: Value of    (   ) and   (   ) for different  and t=30 min 

    (   )   (   ) 

0 285.3922 1226.3795 

0.1 343.4968 1150.0578 

0.2 401.6015 1073.7361 

0.3 459.7061 997.4145 

0.4 517.8107 921.0928 

0.5 575.9154 844.7711 

0.6 634.0200 768.4495 

0.7 692.1246 692.1278 
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                    From the above table we see that for this particular value of t,   (   ) is 

an increasing function,   (   ) is a decreasing function and   (     )    (     ). 

Hence this solution is a strong solution. 

(ii):when   ̃  (               ),    = 5 gr/lit 

Therefore 

  

  
       

 

  ̃

       
 

(               )
       

 

(               )
   

      (
 

   
 

 

   
 

 

   
    )       (                     )   

With initial condition  ̃( )    ̃    (               )  (                 ) 

i.e., 
  

  
     (                     )   with  ̃( )  (                 )       

                                                                                                                ..….…….(4.2) 

The   -cut of the solution is 
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and 
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Table 10: Value of    (   ) and   (   ) for different   and t=30 

    (   )   (   ) 

0 471.2537 802.4400 

0.1 496.1751 785.8472 

0.2 520.9560 769.1426 

0.3 545.5951 752.3272 

0.4 570.0911 735.4017 

0.5 594.4427 718.3672 

0.6 618.6485 701.2245 

0.7 642.7074 683.9744 

0.8 666.6179 666.6179 

 

                From the above table we see that for this particular value of t,   (   ) is an 

increasing function,   (   ) is a decreasing function and   (     )    (     ). 

Hence this solution is a strong solution. 

Case 3: when   ̃  (               ),   ̃  (         ) gr/lit 
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With initial condition 

  ̃( )    ̃  ̃  (               )  (         )  (                 ) 

The   -cut of the solution is 
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Table 11: Value of    (   ) and   (   ) for different  and t=30 min 

    (   )   (   ) 

0 12.3754 1238.4965 

0.1 106.3941 1159.4057 

0.2 200.2341 1079.4423 

0.3 293.8915 998.6086 

0.4 387.3620 916.9072 

0.5 480.6418 834.3406 

0.6 573.7266 750.9113 

0.7 666.6126 666.6220 

 

                 From the above table we see that for this particular value of t,   (   ) is an 

increasing function,   (   ) is a decreasing function and   (     )    (     ). 

Hence this solution is a strong solution. 

5. Conclusion: In this paper, we have used Laplace transform to obtain the solution of 

first order linear non homogeneous ordinary differential equation in fuzzy 

environment. Here all fuzzy numbers are taken as GTFNs. The method is discussed 
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with several examples. Further research is in progress to apply and extend the Laplace 

transform to solve n
th

 order FDEs as well as a system of FDEs. This process can be 

applied for any economical or bio-mathematical model and problems in engineering 

and physical sciences. 
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