Available online at http://scik.org
J. Semigroup Theory Appl. 2015, 2015:2

ISSN: 2051-2937

REGULAR PROPER *-SEMIGROUP EMBEDDINGS AND INVOLUTIONSTITLE

ADEL A. ABDELKARIM

Department of Mathematics, Faculty of Science, Jerash University, Jerash, Jordan

Abstract

It is proved that if $(S, *)$ is a proper *-semigroup and if D is 0 -characteristic integral domain then $(D[S], *)$ is nil-semisimple provided that S is finite or $i \in D$.Let $(S, *)$ be a finite proper *-semigroup and F be a finite field of characteristic p such that $(F[S], *)$ is a proper *-ring. Then $F[S]$ is a direct product of fields and 2×2 matrix rings over fields. Furthermore, $p \neq 2, p \neq 1 \bmod 4$.

Keywords: proper *; maximal proper *; symmetric, alpha inner.
2010 AMS Subject Classification: 20M17, 20M19.

1. Introduction

A semigroup with involution $(S, *)$ is called a *-semigroup. It is called a $p *$-semigroup if the involution * is proper. Thus $\forall a, b \in S, a a^{*}=a b^{*}=b b^{*} \Rightarrow a=b$. A ring with involution $(R, *)$ is called a *-ring. It is called a $p *$-ring if the involution $*$ is proper. Thus $a a^{*}=0 \Rightarrow a=0$ for all $a \in R$. Let $(S, *),(T, *)$ be two ${ }^{*}$-semigroups. An injective mapping $f:(S, *)-->(R, *)$ from a *-semigroup $(S, *)$ into a $*$-ring $(R, *)$ such that for all $a, b \in(S, *), f(a b)=f(a) f(b), f\left(a^{*}\right)=$ $(f(a))^{*}$ is called a *-embedding. Let $(S, *)$ be a *-semigroup and consider the semigroup ring $Z[S]$ of S over Z. If $(S, *)$ is a ${ }^{*}$-semigroup then $(Z[S], *)$ need not be a p*-ring as in ([6]). Let $(S, *)$ be a ${ }^{*}$-semigroup. The involution $*$ is called a maximal proper involution if for every distinct elements $s_{1}, \ldots, s_{n} \in S$, there exists an element s_{i} such that $s_{i} s_{i}^{*} \neq s_{i} s_{j}^{*}, j \neq i$, and
$s_{i} s_{i}^{*}=s_{k} s_{l}^{*} \Rightarrow s_{i}^{*} s_{k}=s_{i}^{*} s_{l} ; k, l=1, \ldots, n$. Such a ${ }^{*}$-semigroup is called an mp-semigroup. For example any inverse semigroup is an mp-semigroup under its inverse involution as in ([6]). If $(S, *)$ is an mp-semigroup then $(Z[S], *)$ is a p^{*}-ring and $(S, *)$ is *-embeddable in $(Z[S], *)$, ([6]). Let $(R, *)$ be a $*$-ring and let n be a fixed positive integer. If for every distinct elements $r_{1}, \ldots, r_{n} \in R$ it holds that $\sum r_{i} r_{i}^{*}=0$ implies that $r_{i}=0, i=1, \ldots, n$ then we say that $(R, *)$ is n formally complex. Let F be a field, let α be an automorphism of order 1 or 2 and let $D \in M_{n}(F)$ be a diagonal matrix. Then F is $D(\alpha)$-formally complex if and only if $\sum d_{i} a_{i} \alpha\left(a_{i}\right)=0$ implies all $a_{i}=0$. If D is the identity matrix we say that F is n-formally complex and if this true for all n we say that F is formally-complex. On the other hand, if α is the identity then we say that F is $D(\alpha)$ - real and if D is the identity we say that F is n-formally real and if this is the case for all n we say that F is formally real. If $(S, *)$ is an mp-semigroup and $(R, *)$ is formally complex *-ring then $(R[S], *)$ is a p^{*}-ring and $(S, *)$ is *-embeddable in $(R[S], *)$, as in [6]) where it is shown there is a finite p^{*}-semigroup that cannot be *-embedded in any p^{*}-ring. Let $(R, *)$ be a *-ring. An ideal I in R is called a ${ }^{*}$-ideal if $I^{*}=I$. In this case the ring R / I is a $*$-ring under the involution $(r+I)^{*}=r^{*}+I$.

Let F be a field and let α be an automorphism on F of order 1 or 2 . Let $R=M_{n}(R)$ and let $A \in R$. If we apply to every entry in A the automorphism α we get A^{α}. An involution * on R is called α-inner if there is an invertible matrix P such that for all A in R we have $A^{*}=P^{-1} A^{\alpha t} P$ and if α is the identity mapping then * is called inner.

Let F be a field and let α be an automorphism on F and let two matrices $A, B \in M_{n}(F)$. We say that the matrices A, B are α-congruent if there is a matrix C such that $A=C B C^{\alpha t}$. Also we say that a matrix $A \in M_{n}(F)$ is α-symmetric if $A=A^{\alpha t}$ and it is called α-antisymmetric if $A^{\alpha t}=-A$. Here A^{α} is got from the matrix A by applying α to its entries. It is known that if A is a symmetric matrix in $M_{n}(F), F$ is a field then it is congruent to a diagonal matrix and if A is anti-symmetric invertible matrix then A is congruent to a direct sum of 2 by 2 matrices each of which is of the form $\alpha\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \alpha \in F$. See [3] pp. 365-372.

Let $(S, *)$ be a proper $*$-semigroup of order 5 or less. It was noticed (through a computer program) that once the involution $*$ in the $*$-semigroup ring $(Z[S], *)$ is not proper then the
p^{*}-semigroup $(S, *)$ is not ${ }^{*}$-embeddable in any ring p^{*}-ring. Up to now there is no proof or disproof for this claim.

In the first part of this note we find a necessary and sufficient condition for a certain class of involutions on $R=M_{n}(F), F$ is a field, to be proper involutions. In the second part we give a plan to decide if a given proper *-semigroup is *-embeddable in a p^{*}-ring and if so we seek to find a p ${ }^{*}$-algebra of matrices that *-embeds $(S, *)$ and we look for all involutions *' on S that makes $\left(S, *^{\prime}\right) *$-isomorphic with $(S, *)$. Incase $(S, *)$ is not *-embeddable in a p ${ }^{*}$-ring we locate the $*$-subsemigroup $(T, *)$ such that $(S / T, *)$ is $*$-embeddable in a $\mathrm{p} *$-ring.

2. Preliminaries

We cite the following known facts.
Theorem 1. (A) Let $(S, *)$ be an mp semigroup and let $(R, *)$ be a formally complex ring. Then $(R[S], *)$ is a proper ${ }^{*}$-ring and hence it has a zero nil radical, ([6]).

We cite the following version of Wedderburn Theorem from [2] p. 435
Theorem 2. (B) If R is a non zero left Artinean nil-semisimple ring then it isomorphic with a finite direct sum of finite matrix rings over a division ring.

We Also cite the following from [5], p. 63.
Theorem 3. (B): If A is a left Noetherian ring, then every nil ideal is nilpotent.
We also cite the following version of Skolem-Noether theorem; see[2], p.460.
Theorem 4. (C): Let R be a simple left-Artinian ring and let K be the center of R (so that R is a K-algebra). Let A and B be finite dimensional simple K-algebras of R that contain K. If $\alpha: A \rightarrow B$ is a K-algebra isomorphism that leaves K fixed elementwise, then α extends to an inner automorphism of R.

We cite the following theorem from [1], p136.
Theorem 5. (D): Let $(R, *)$ be a semi-simple $*$-ring with involution $*$ such that $\forall x \in R, \exists n(x),(x+$ $\left.x^{*}\right)^{n(x)}=x+x^{*}$. Then R is a subdirect product of fields and 2×2 matrix rings over fields.

Proposition 6. Let F be a field and let $P \in M_{n}(F)$ be a symmetric matrix then there is a diagonal matrix D congruent to P; i.e.,
$\exists C \in M_{n}(F), C P C^{t}=D$, see [4], for example. If P is antisymmetric then P is congruent to a direct sum of matrices of the form $\alpha\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and 0 -matrices where $\alpha \in F$.

As a generalization we state a similar proposition whose proof is similar to that of proposition [6] and its proof is omitted.

Proposition 7. Let F be a field and let α be an automorphism of order 2 on F. Let $P \in M_{n}(F)$ be an inverteble matrix such that $P^{\alpha t}=P$. Then there is a matrix C and a diagonal matrix D such that $C P C^{\alpha t}=D$.

3. Main results

Given a semigroup S we can ask how to find all proper involutions on S.For example if S is an inverse semigroup then the inverse operator is one of the proper involutions on S. Similarly given a ring R there is a problem of finding all proper involutions on R. For example if we take a field F and its corresponding matrix ring $R=M_{n}(F)$ the problem is to find all proper involutions on R. The transpose operator is an involution which need not be proper unless F is n-real. For example the transpose involution is not proper on $R=M_{2}\left(Z_{2}\right)$.

Let F be a field and let $R=M_{n}(F)$ be the matrix ring over F and let $Z(R)=\{c I: c \in F\}$ be the center of R. Let * be an involution on R. Let $A \in Z(R)$. Then for all $X \in R, A X=X A$ implies that $A^{*} X^{*}=X^{*} A^{*}$ and so $A^{*} \in Z$. Thus for all $c \in F,(c I)^{*}=c^{*} I$ and so $*$ induces an automorphism (called the corresponding automorphism) of order at most 2 on F. Conversely we will show that any automorphism α of order at most 2 on F induces an involution $*$ on $R=M_{n}(F)$ given by $A^{*}=P^{-1} A^{\alpha t} P$ for all $A \in R$ as shown in the following proposition.

Proposition 8. (1) Let $*$ be an involution on $R=M_{n}(F)$ whose corresponding automorphism is the identity on F. Then there is an invertible matrix P such that $A^{*}=P^{-1} A^{t} P$ for every matrix A in $M_{n}(F)$.
(2) Let $*$ be an involution on $M_{n}(F)$ whose corresponding automorphism α on F has order 2. Then there is an invertible matrix P such that $A^{*}=P^{-1} A^{\alpha t} P$ for every matrix $A \in M_{n}(F)$.

Proof. (1) The operator $h: A-->A^{* t}$ is an automorphism that fixes the center of $M_{n}(F)$ elementwise. From Noether-Skolem Theorem it follows that there is an invertible matrix P such that for all $A \in R, h(A)=A^{* t}=P A P^{-1}$. Thus $A^{*}=Q^{-1} A^{t} Q, Q=P^{t}$ for every $A \in M_{n}(F)$.
(2)The operator $k: A-->A^{* \alpha t}$ is an automorphism on $M_{n}(F)$ that fixes the center $Z(R)=$ $\{c I: c \in F\}$ elementwise. From Noether-Skolem Theorem there is an invertible matrix P such that for every matrix A we have $k(A)=A^{* \alpha t}=P^{-1} A P$. Thus for every matrix $A \in R$ we have $A^{*}=P^{\alpha t} A^{\alpha t} P^{-1 \alpha t}=Q^{-1} A^{\alpha t} Q, Q=P^{-1 \alpha t}$.

Corollary 9. Let $*$ be an involution on $R=M_{n}(F)$ whose corresponding automorphism α is of order 1 or 2 on F. Then there is an inverteble matrix P such that $A^{*}=P^{-1} A^{\alpha t} P$ for every matrix A in $M_{n}(F)$.

We can generalize the preceding propositions to division rings. The proof of the following proposition is similar to the proof of proposition 8 and it is omitted.

Proposition 10. Let $R=M_{n}(D)$ be a matrix ring on a division ring D. Let $*$ be an involution on R. Let $Z(R)$ be the center of D. Then there is an automorphism α on the ring $Z(R)$ of order 1 or 2 and there is an invertible matrix P such that for all $A \in R, A^{*}=P^{-1} A^{\alpha t} P$.

We prove the following.

Proposition 11. Let α be an automorphism of order 1 or 2 on the field F. Let $P \in R$ be an invertible matrix on F. Define $*$ on R as $A^{*}=P^{-1} A^{\alpha t} P$ for all $A \in R$. Then $*$ is an involution if and only if $P^{\alpha t}=c I, c= \pm 1, c^{n}=1$.

Proof. We have for all $A, B \in R,(A+B)^{*}=A^{*}+B^{*},(A B)^{*}=B^{*} A^{*}$. To make $*$ as an involution we need $A^{* *}=A$ to hold on R.Thus $P^{-1} P^{\alpha t} A P^{-1 \alpha t} P=A$ for all $A \in R$. Thus $P^{-1} P^{\alpha t}=c I$ or $P^{\alpha t}=c P$ for some nonzero scalar c..Also we notice that $P^{* *}=P$ and from $P^{*}=P^{-1} P^{\alpha t} P=$ $P^{-1} c P P=c P$ we get $P=P^{* *}=(c P)^{*}=c^{2} P$ and so $c^{2}=1$ and so $c= \pm 1$. From $P^{t}=c P$ and upon taking determinants we get we get $c^{n}=1$. If n is odd we must have $c=1$ and if n is even we still have $c= \pm 1$.

Remark 1. If one of the diagonal elements of P in proposition (11) is nonzero then $c=1$ and $P^{t}=P$. Otherwise and if all diagonal elements are 0 we have only the condition $c= \pm 1$ and n is even.

Next we discuss conditions on P that guarantees that the involution * is proper

Proposition 12. Let F be a field and let let $R=M_{n}(F)$.
(1) L Let $*$ be an involution on R defined by $A^{*}=P^{-1} A^{t} P$ for all $A \in R$. Let $P^{t}=P$. If $P^{-1}=Q Q^{t}$ for some matrix Q and if F is formally real then $*$ is a proper involution.
(2) Let $*$ be an involution on R defined by $A^{*}=P^{-1} A^{\alpha t} P$ for all $A \in R$ with $P^{t}=P$ and let the corresponding automorphism α on F be of order 2. If $P^{-1}=Q Q^{\alpha t}$ for some matrix Q and if F is formally α-complex then is a proper involution.

Proof. (1) For * to be proper we need the condition $A A^{*}=0$ to hold if and only if $A=0$ for all $A \in R$. This is equivalent to require that $A P^{-1} A^{t} P=0$ implies that $A=0$. Or $A P^{-1} A^{t}=0$ implies that $A=0$. Or, $A Q Q^{t} A^{t}=0$ implies that $A=0$. If F is formally real this is equivalent to $A Q=0$ implies that $A=0$ which is the case since Q is invertible.
(2) For * to be proper we need the condition $A A^{*}=0$ to hold if and only if $A=0$ for all $A \in R$. This is equivalent to $A P^{-1} A^{\alpha t} P=0$ if and only if $A=0$. Or $A P^{-1} A^{\alpha t}=0$ if and only if $A=0$. But $P^{-1}=Q Q^{\alpha t}$ and so $A P^{-1} A^{\alpha t}=A Q Q^{\alpha t} A^{\alpha t}=0$ implies that $A Q$ and hence $A=0$ since F is α-formally complex.

Proposition 13. Let $R=M_{n}(F), F$ being a field. Let $*$ be an involution on R with a corresponding automorphism α and a corresponding matrix $P, P^{\alpha t}=P$. Let D be the corresponding diagonal matrix that is congruent to P as was mentioned in proposition 7. If α is the identity mapping then $*$ is proper if and only if F is D-real. If α is of order 2 then $*$ is proper if and only if F is D-complex.

Proof. We need to show, for * to be proper, that $A P^{-1} A^{\alpha t}=0$ if and only if $A=0$. Since $P^{-1}=C D C^{\alpha t}$, we see that we need
$A C D C^{\alpha t} A^{\alpha t}=0$ if and only if $A=0$ if and only If $A C=0$ if and only if $A=0$.It is clear that we need F to be $D(\alpha)$-complex.

Proposition 14. Let F be p-characteristic field and let $*$ be a proper involution on $R=M_{n}(F)$ such that its corresponding automorphism is the identity. Let P be the corresponding matrix for the involution * as in the proof of proposition (11) and let D be a diagonal matrix congruent to P with diagonal entries set $D=\left\{d_{1}, \ldots, d_{n}\right\}$.Then $p \neq 2, P^{*}=P^{t}=P$, and F is D-real. Conversely if F is D-real then the involution is proper.

Proof. We have seen in the proof of proposition (11) that $P^{t}= \pm P$. Assume, to get a contradiction, that $P^{*}=-P$. Let $Q=P^{t}$. Define $f: F^{n} \times F^{n} \rightarrow F^{n}$ by $f(u, v)=u^{t} Q v$. Then f is a bilinear form on F^{n}. In fact, f is alternating because $f(u, v)=(f(u, v))^{t} \Rightarrow u^{t} Q v=v^{t} Q^{t} u=-v^{t} Q u=$ $-f(v, u), \forall u, v \in F^{n}$. Thus $\forall v \neq 0, f(v, v)=0$. Let us pick one such v and let us form the matrix A whose first row is v^{t} and whose all other rows are zero rows. Straightforward calculations show that $A^{t} Q A=0$. Thus $A^{t} P A=0$. Thus $A \neq 0, A^{*} A=P^{-1} A^{t} P A=0$, a contradiction with properness of * on R. It follows that $p \neq 2$,for otherwise $P=-P$ and we saw that this contradicts properness of *. To complete the proof let C be an invertible matrix such that $C P^{-1} C^{t}=D$, a diagonal invertible matrix. Now $\forall A \in R, \exists B \in R, A=B C, A A^{*}=0 \Leftrightarrow B C\left(P^{-1} C^{t} B^{t} P\right)=B D B^{t} P=$ $0 \Longleftrightarrow B D B^{t}=0$. Thus * is proper if and only if the only solution in $B \in M_{n}(F)$ for the equation $B D B^{t}=0$ is $B=0$. If we take for B a matrix which is every where 0 except possibly on its first row $\left\{x_{1}, \ldots, x_{n}\right\}$ we see that the condition implies the equation $\sum d_{i} x_{i}^{2}=0$ has only the trivial solution. Thus F is D-real.

Let * be an involution on $R=M_{n}(F), n$ is even, with a corresponding matrix P with $P^{t}=$ $-P$.We give an example that $*$ is not proper.

Example 1. Let F be any field and let $R=M_{2}(F)$ and we take the invertible anti-symmetric matrix matrix $P=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Let α be an automorphism on F of degree 1 or 2 . We define an involution * on R defined by $A^{*}=P^{-1} A^{\alpha t} P$ for all $A \in R$. This involution is not proper for if we take $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ then a simple calculation reveals that $A A^{*}=0$-matrix although A is not zero.

Proposition 15. Let F be a field and let * be a proper involution on $M_{n}(F)$ with a corresponding matrix P. Then $P^{t}=P$ and $\operatorname{ch}(F) \neq 2$.

Proof. If $P^{t}=-P$ then from the fact in the introduction and from the preceding example * is not proper. If the characteristic of the field is 2 then $P^{t}=-P$ and again the involution is not proper.

Proposition 16. Let $(S, *)$ be a finite proper *-semigroup and F be a finite field of characteristic $p \neq 0$ such that $(R, *)=(F[S], *)$ is a proper $*^{*}$ ring. Then R is a direct product of fields and 2×2 matrix rings over fields. Furthermore, $p \neq 2, p \neq 1 \bmod 4$. The converse is also true.

Proof. $x \in R, y=x+x^{*}$. Then not all positive powers of y are distinct owing to the finiteness of R. Let $m>1$ be a positive power of y such that $\exists n>m, y^{m}=y^{n}$ such that $m=2 k, n=2 l$. Then, since $y=y^{*}, y^{m}=\left(y y^{*}\right)^{k}=y^{n}=\left(y y^{*}\right)^{l}$. Using *-cancellation, we get $y^{k}=y, k>1$. Thus $\forall x \in R, \exists n(x),\left(x+x^{*}\right)^{n(x)}=x+x^{*}$ and Theorem D applies. The last part follows from the fact that any involution on $M_{2}\left(Z_{p}\right)$ is transpose-inner and the transpose involution is proper if and only if $p \neq 2, p \neq 1 \bmod 4$.

Proposition 17. Let $(R, *)=\left(M_{m}\left(Z_{n}\right), *\right)$ be a proper ${ }^{*}$-ring. Then $m=2, \quad n=p_{1} \ldots p_{k}, \quad p_{i} \neq$ $p_{j}(i \neq j), \quad p_{i} \neq 2, p_{i} \neq 1 \bmod 4, \forall i=1, \ldots, k$.

Proof. That $m=2$ follows from Theorem D. That $p_{i} \neq p_{j}(i \neq j)$ follows from * being proper: $p_{1}=p_{2} \Rightarrow \frac{n}{p_{1}}\left(\frac{n}{p_{1}}\right)^{*}=0 \neq \frac{n}{p_{1}}$. The proof of the other parts is similar to the proof in proposition 16 .

Proposition 18. Let $(R, *)=\left(M_{2}\left(Z_{p}\right), *\right)$ be a proper $*$-ring. Then $*$ is inner.
Proof. Let $C=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), D=\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right) ., G=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. Then C, D generate the ring R. This is easily seen. Let $C^{*}=A, D^{*}=B$. We are looking for a matrix $u=\left(\begin{array}{ll}x & y \\ z & t\end{array}\right)$ such that $C^{*}=A=u^{-1} C u=u^{-1} C^{t} u=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \quad D^{*}=B=u^{-1} D u=u^{-1} D^{t} u=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$. Thus $u A=C u, u B=D u \Rightarrow u A=C D^{-1} u B=G u B \Rightarrow\left(\begin{array}{cc}z & t \\ -x & -y\end{array}\right) . A=B$. The last matrix equation gives rise to solutions in x, y, z and t since A and B are invertible. Furthermore the resulting
matrix $\left(\begin{array}{ll}z & t \\ -x & -y\end{array}\right)$, which has the same determinant as that of u, is invertible since A and B are. Thus u is invertible. Thus * is inner at least for the matrices C and D. But C and D generate the whole matrix ring and, for example, $(C D)^{*}=D^{*} C^{*}=u^{-1} D^{t} u u^{-1} C^{t} u=u^{-1}(C D)^{*} u$. Thus * is inner in general.
3.1. *-Semigroup Embedding in a Proper *-Ring. We start this subsection with the following remarks:

Although the following remarks are almost routine we present them here for the sake of completeness.

Remark 2. Let $(R, *)$ be an m-characteristic proper $*$-ring without 1 . Then either $m=0$ or m is square-free. Also $(R, *)$ can be ${ }^{*}$-embedded in an m-characteristic proper $*$-ring $\left(R_{1}, *\right)$ with 1.

Illustration 1. Let r be a nonzero element of R such that there is a smallest positive integer m with $m r=0$ and $m=k p^{2}, k$ is not a unit and p is a prime. then $k p$ is not zero. But then $(k p r)(k p r)^{*}=0$. From properness of $*$ it follows that $k p r=0$ which is a contradiction with kpr not zero. To prove the other part we have two cases to consider.

Illustration 2.

Case 1. : $m=0$. In this case we take the Cartesian product $Z \otimes R$ and define addition and multiplication as follows. $(m, r)+\left(m^{\prime}, r^{\prime}\right)=\left(m+m^{\prime}, r+r^{\prime}\right),(m, r) .\left(m^{\prime}, r^{\prime}\right)=\left(m m^{\prime}, m r^{\prime}+m^{\prime} r+\right.$ $r r^{\prime}$) for every $m, m^{\prime} \in Z, r, r^{\prime} \in R$. This makes of $Z \otimes R$ a ring R_{1}. We define an operator $*$ on R^{\prime} by $(m, r)^{*}=\left(m, r^{*}\right)$. Then it is straightforward to see that $*$ is an involution. In fact, it is proper. For, $(m, r)(m, r)^{*}=(0,0)=\left(m^{2}, m r+m r^{*}+r r^{*}\right) \Rightarrow m=0, r r^{*}=0 \Rightarrow r=0,(m, r)=(0,0)$.

Illustration 3.

Case 2. $m \neq 0$. In this case m is square-free. For if $m=p^{2} k, p$ is prime, then there exists $0 \neq r \in R, m r=0, n r \neq 0$,for all positive integers $n<m$. But then $0 \neq p k r,(p k r)(p k r)^{*}=0, a$ contradiction with the properness of the involution *. Now we form $Z_{m} \otimes R$. We define addition and multiplication as in Case 1. It is straightforward to see that these operations are welldefined making of $Z_{m} \otimes R$. a ring denoted by R_{2}. We define $*$ on R_{1} as in Case 1. Then $*$ is an
involution and it is proper. For, $(0,0)=(k, r)(k, r)^{*}=\left(k^{2}, k r^{*}+k r+r r^{*}\right) \Rightarrow k^{2}=0 \Rightarrow k=0$ for all $k \in Z_{m}, r \in R$. The last implication follows since m is square-free forcing Z_{m} to have a 0 -radical. It follows that $r r^{*}=0$ and so $r=0,(m, r)=(0,0)$.

Remark 3. Let $(R, *)$ be an 0 -characteristic proper $*$-ring. Then $(R, *)$ can be $*$-embedded in a 0 -characteristic proper *-algebra $\left(R_{1}, *\right)$ over Q.

Illustration 4. : We may assume that R contains 1 . Then R contains a copy of Z. Now we localize R at the multiplicatively closed set $Z \backslash\{0\}$.(See [2] for definition of localization). The
 $[(r, m)][(r, m)]^{*}=[(0,1)]$ then $r r^{*}=0$ and so $r=0,[(r, m)]=[(0,0)]$.

Now we prove the following.

Proposition 19. Let $(R, *)$ be $a{ }^{*}$-ring. Let I_{1} be the ideal generated by all A in $(R, *)$ such that $A A^{*}$ or $A^{*} A$ is 0 and, for $k>1$, let I_{k} be the ideal generated by all $A \in(R, *)$ such that $A A^{*}$ or $A^{*} A$ is in I_{k-1}. Then I_{k} is a ${ }^{*}$-ideal , $I_{k} \subseteq I_{k+1}$, and if I is the union of all $I_{k}, k>0$, then I is a *-ideal and $(R / I, *)$ is a p^{*}-ring.

Proof. That I_{k} is a $*$-ideal and that $I_{k} \subseteq I_{k+1}$ are trivial to verify. Also I is a ${ }^{*}$-ideal. If $A A^{*}$ is in I then it is in some I_{k} and so A is in I_{k+1} and hence A is in I. Thus (R / I) is a p^{*}-ring.

Corollary 20. Let $(S, *)$ be a *-semigroup, not necessarily a p^{*}-semigroup, and let $(Z[S], *)$ be the corresponding *-semigroup ring of $(S, *)$ over Z.Let $I_{k}, k>0$, and I be the ideals as in the preceding proposition. Then $(Z[S] / I, *)$ is a p^{*}-ring. If $(S, *)$ is a finite p^{*}-semigroup then it is ${ }^{*}$-embeddable in a p^{*}-ring if and only if there are no distinct elements s, t in S such that $s-t$ in any I_{k}.In this case if S is commutative then $(S, *)$ is *-embeddable in a subdirect product of fields. Also in this case if $Z[S] / I$ is finite then $(S, *)$ is *-embeddable in a finite direct product of matrix rings each over a finite field.

Proof. The proof is a direct consequence of the proposition (19), remarks 3 and 2 and Wedderburn's Theorem since $(S, *)$ in case of S is finite and hence the corresponding algebra is Artinean. For then $(S, *)$ is a finite p^{*}-semigroup such that $(R, *)=(Z[S] / I, *)$ is infinite and
there are no distinct elements s, t in S such that $s-t$ is in any I_{k}. Then $(Q[S] / I, *)$ is isomorphic to a finite direct product of matrices over division ring and hence $(S, *)$ is represented as a p^{*}-semigroup of matrices over a division ring.

Proposition 21. :Let $(S, *)$ be an mp semigroup and let $(D, *)$ be a 0 -characteristic integral domain with proper involution *. If S is finite, or if $i \in D$ then $D[S]$ is nil-semisimple while $(D[S], *)$ need not be a proper *ring and the extended involution need not be a proper ring involution.

Proof. : We can assume that D is contained in the complex number field C. Assume first that $i \in D$. Then D is closed under complex conjugation which is a proper involution. Since $(S, *)$ is an mp-semigroup it follows from Theorem A that $(D[S], *)$ is proper * and nil-semisimple. Now assume that $i \notin D$ and assume that S is finite. Let J be a nil ideal in $D[S]$. Since S is finite and the D-module $D[S]$ is isomorphic to the direct sum of $|S|$ copies of the Noetherian left D-modules (each is isomorphic to D), then $D[S]$ is a Noetherian left D-module. Hence it is also a Noetherian left $D[S]$-module and thus it is a left-Noetherian ring. By theorem B, J is nilpotent and there is a positive integer n such that $J^{n}=0$. Then $I=J+i J$ is a nilpotent ideal in $D[i][S]$ which is nil-semisimple. Thus I is 0 and hence J is a 0 ideal.

Proposition 22. Let $(S, *)$ be a finite mp-semigroup and let F be a 0 -chacteristic field. Then $F[S]$ is a finite direct product of matrices over a skew field and $(S, *)$ is *-embeddablle in the *-ring $(F[S], *)$ where $*$ is the natural involution inherited from the involution $*$ in $(S, *)$. If the field F has a non zero characteristic then $F[S]$ is a finite direct product of matrices over a field.

Proof. We can assume without loss of generality that S has an identity element 1 (This easy to prove). Since $F[S]$ is a nil- semisimple ring by proposition 21 and since it is a finite dimensional F-vector space, it follows that it is a finite direct product of matrix rings over a skew field. Let $(S, *)$ be a finite mp-semigroup and let F be a field of 0 -characteristic. Then the involution on S gets extended to an involution on $F[S]$ in a natural way: $\left(\sum a_{i} s_{i}\right)^{*}=\sum a_{i} s_{i}^{*}$. (But there is no guarantee that this involution is proper on $R[S]$, unless R is formally complex). If $\operatorname{ch}(F) \neq 0$ the prime field is Z_{p} and the subring generated by Z_{p} and S is finite and has a proper involution and so it is a finite direct sum of matrix rings over a finite skew field (a field then).

Proposition 23. Let $(R, *)$ be a finite proper *-ring. Then $(R, *)$ is *-isomorphic with a finite direct product of matrix rings over a field.

Proof. We show that R has a 0 -radical I. For let A be in I. Then $A A^{*}$ is in I. But then there is a natural number n such that $\left(A A^{*}\right)^{n}=0$. By properness of $*$ it follows that $A A^{*}=0$ and hence $A=0$. Thus I is the zero ideal. From Wedderburn Theorem it follows that R is isomorphic with a finite direct product of matrix rings over a skew field. Since R is finite the skew fields are fields.

Proposition 24. : Let $(S, *)$ be a proper ${ }^{*}$-semigroup ${ }^{*}$-embeddable in a proper ${ }^{*}$-ring $(R, *)$. Then
(1) There is a *-ideal I in $(Z[S], *)$ such that $(Z[S] / I, *)$ is a $p *$-ring which ${ }^{*}$-embeds $(S, *)$.
(2) If $\operatorname{ch}(R)=0$ and S is finite then $(S, *)$ is *-embeddable in a finite direct sum of matrix rings over a division ring with proper involution.
(3) If $\operatorname{ch}(R)=m \neq 0$ and S is finite then $(S, *)$ is *-embeddable in a finite direct sum of matrix rings over a finite prime- characteristic field with proper involution.

Proof. (1) There is a natural *-mapping $f:(Z[S], *)->(R, *)$ given by $f\left(\sum m_{i} s_{i}\right)=\sum m_{i} g\left(s_{i}\right)$, where g is the $*$-embedding of $(S, *)$ into $(R, *)$. If $(Z[S], *)$ is p^{*} then we can take $I=0$. If there is A not 0 in $Z[S]$ such that $A A^{*}$ or $A^{*} A=0$ then we take the ideal I_{1} generated by all such A and we consider the $*$-ring $Z\left[S / I_{1}\right.$. We notice that there can be no two different elements s, t in S such that $s-t$ is in I_{1} lest $s-t=0$ in R which would imply non *-embeddability of $(S, *)$ in $(R, *)$. If this *-ring is p^{*} then we are done with getting the required p^{*}-ring $Z[S] / I$. Otherwise there is A not in I_{1} such that $A A^{*}$ is in I_{1}. We take all such A and all B such that $B^{*} B$ is in I_{1} and form the ideal I_{2}. These are 0 in R of course. Now we form the $*$-ring R / I_{2}. There can be no two different elements s, t in S such that $s-t$ is in I_{2} lest that would contradict *- embeddability of $(S, *)$ into $(R, *)$. If this ${ }^{*}$ - ring is p^{*} then we are finished by getting a $p^{*}-\operatorname{ring} R / I_{2}$ which *-embeds $(S, *)$. We continue this way. The union of these *-ideals is clearly a *-ideal I and $(R / I, *)$ is a $p^{*}-$ ring which $*$-embeds $(S, *)$.
(2) If $\operatorname{ch}(R)=0$ and S is finite we can assume that R contains a copy of Q. Let $R^{\prime}=\langle Q, S\rangle$ be the set of all rational linear combinations of elements of S in R. Then R^{\prime} is a proper *-ring which
*-embeds $(S, *)$. Being a homomorphic image of the Artinian ring $Q[S], R^{\prime}$ is Artinian. Since a proper *-ring has 0 nil-radical, by Wedderburn's Theorem R^{\prime} is isomorphic to a finite direct sum R_{2} of matrix rings over a skew field. We define an involution * on R^{\prime} as follows. Let f be the isomorphism of R^{\prime} onto R_{2}. Take b in R^{\prime}. Then $b=f(a)$ for a unique element $a \in R^{\prime}$. Define $b^{*}=f\left(a^{*}\right)$. We show that $*$ is a proper involution. Let $b, c \in R_{2}$ and let $b=f\left(a_{1}\right), c=f\left(a_{2}\right)$. Then $(b+c)^{*}=\left(f\left(a_{1}\right)+f\left(a_{2}\right)\right)^{*}=\left(f\left(a_{1}+a_{2}\right)\right)^{*}=f\left(a_{1}^{*}+a_{2}^{*}\right)=f\left(a_{1}^{*}\right)+f\left(a_{2}^{*}\right)=\left(f\left(a_{1}\right)\right)^{*}+$ $\left(f\left(a_{2}\right)\right)^{*}=b^{*}+c^{*},(b c)^{*}=\left(f\left(a_{1} a_{2}\right)\right)^{*}=f\left(a_{2}^{*}\right) f\left(a_{1}^{*}\right)$
$=\left(f\left(a_{2}\right)\right)^{*}\left(f\left(a_{1}\right)\right)^{*}=c^{*} b^{*}, b^{* *}=\left(f\left(a_{1}^{*}\right)\right)^{*}=f\left(a_{1}^{* *}\right)=f\left(a_{1}\right)=b$. And if $b b^{*}=0$ then $f\left(a_{1}\right)\left(f\left(a_{1}^{*}\right)=\right.$ $f\left(a_{1} a_{1}^{*}\right)=0$ and so $a_{1} a_{1}^{*}=0$ which implies that a_{1} and hence $b=0$.
(3) If $\operatorname{ch}(R)=m \neq 0$ and S is finite we can argue similarly that there is a copy of Z_{m} in R and $R^{\prime \prime}=\left\langle Z_{m}, S\right\rangle$ is proper *. Since $R^{\prime \prime}$ is finite it is isomorphic to a finite direct sum of matrix rings over a prime characteristic finite field. This is because a finite skew field is a field. The same argument as above applies to show that the involution inherited from S on the finite sum of matrix rings is proper. This completes the proof.

Proposition 25. Let $(S, *)$ be a simple *-semigroup. Then it is a p-semigroup and it is *embeddable in a p^{*}-ring.

Proof. There is a natural *-homomorphism $f:(S, *)->(Z[S] / I, *)$ of $(S, *)$ into the proper *-ring $(Z[S] / I, *)$. Now the kernel of f gives rise to a *-ideal in $(S, *)$ which is $*$-simple. This ideal must be zero and so f is a $*$-embedding and $(S, *)$ is a p^{*}-semigroup which is $*$-embedded in a p^{*}-ring.

Strategy 1. Assume we have a finite proper *-semigroup $(S, *)$ with 1 and assume that we would like to know if $(S, *)$ is ${ }^{*}$-embeddable in a proper ${ }^{*}$-ring $(R, *)$ of matrices of characteristic 0. Then we form the algebra $(R, *)=(Q[S], *)$ where $*$ is the natural involution. If $(R, *)$ is p^{*} then we are done. If not then we form the ideal I_{1} generated by all $A \in R$ such that $A A^{*}$ or $A^{*} A=0$.Then I_{1} is closed under the involution $*$ and so $\left(R_{1}, *\right)=(R / I, *)$ is an algebra with involution and with dimension $n_{1}<n=|S|$. If there are elements $s \neq t$ in S such that $s-t \in I$ then $(S, *)$ is not ${ }^{*}$-embeddable in a p^{*}-ring of characteristic 0 . If there is no such pair we check if $\left(R_{1}, *\right)$ is p^{*}. If it is p^{*} then we are done and If not then we look for all $A \in R$ such
that $A \notin I_{1}$ such that $A A^{*}$ or $A^{*} A \notin I_{1}$ and we form the ideal I_{2} generated by all such A and its involution A^{*}.This ideal I_{2} is closed under involution. Then we form $\left(R_{2}, *\right)=\left(R / I_{2}, *\right)$ and with dimension $n_{2}<n_{1}$.If there are distinct $s, t \in S$ such that $s-t \in I_{2}$ then $(S, *)$ is not $*$-embeddable in a p^{*}-ring of characteristic 0 . If there is no such pair we check is $\left(R_{2}, *\right)$ is p^{*}. If so then we are done and If not we look for all $A \neq 0$ in R such that $A A^{*}$ or $A^{*} A$ is in I_{2} and form the ideal I_{3} generated by these A. This is closed under taking * and we form $\left(R_{3}, *\right)=\left(R / I_{3}, *\right)$. This has dimension $n_{3}<n_{2}<n_{1}<n$. etc. In a finite number of steps either we come up with a p^{*}-algebra of 0 -characteristic which *-embeds $(S, *)$ or we conclude that there is no such p^{*} ring. The same procedure we can use to check if there is a p^{*-} ring of any prescribed nonzero characteristic or not.

Strategy 2. Assume we have a finite proper *-semigroup $(S, *)$ with 1 which is not ${ }^{*}$-embeddable in a p^{*}-ring with characteristic 0 . It is desired to reform $\left(S,{ }^{*}\right)$ to a p^{*}-semigroup that is *embeddable in a p^{*}-ring of characteristic 0 . We form as before the p^{*}-ring $(Q[S] / I, *)$. Then there is a p^{*}-image $(T, *)$ of $(S, *)$ in $(Q[S] / I, *)$. Then there is $a *$-congruence \sim in S such that the p^{*}-semigroup $(S / \sim, *)$ is isomorphic with the $(T, *)$ inside the $p *$-ring $(Q[S] / I, *)$..

Conflict of Interests

The author declares that there is no conflict of interests.

REFERENCES

[1] I. Herstein, Rings with Involution, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago and London, 1976.
[2] T. Hungerford, Algebra, Holt, Rinhart and Winston, Inc., New York, 1974.
[3] S. Lang, Algebra, Addison-Wesley Publishing Company, 1971.
[4] S. Lipschutz, Linear Algebra, Schaum's Outline Series, McGraw-Hill Book Company, 1968.
[5] P. Ribenboim, Rings and Modules, Interscience Publishers, New York, 1969.
[6] A. Shehadah, Semisimplicity of Some Semigroup Rings, Math. Japonica 38 (1993), 991-993.

