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1. Introduction 

 

In 1966, Y. Imai and K. Isèki introduced two classes of abstract algebras: BCK-algebras and 

BCI-algebras [10,11,16]. It is known that the class of BCK-algebras is a proper subclass of the 

class of BCI-algebras. Neggers et al [8] introduced a notions, called Q-algebras, which is a 

generalization of BCH / BCI / BCK-algebras and generalized some theorems discussed in BCI-

algebras. Moreover, Ahn and Kim [15] introduced the notions of QS-algebras which is a proper 

subclass of Q-algebras. Kondo [13] proved that, each theorem of QS-algebras is provable in the 

theory of Abelian groups and conversely each theorem of Abelian groups is provable in the 

theory of QS-algebras. Derivation is a very interesting and important area of research in the 

theory of algebraic structures in mathematics. Several authors [2,6,7,13,14] have studied 

derivations in rings and near rings. Jun and Xin [17] applied the notions of derivations in ring 

and near-ring theory to BCI-algebras, and they also introduced a new concept called a regular 
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derivations in BCI -algebras. They investigated some of its properties, defined a d -derivations 

ideal and gave conditions for an ideal to be d-derivations. Later, Abujabal and Al-Shehri [5], 

defined a left derivations in BCI-algebras and investigated a regular left derivations. Zhan and 

Liu [9] studied f-derivations in BCI-algebras and proved some results.  Muhiuddin and Al-roqi 

[3,4] introduced the notions of ),(  -derivations in a BCI-algebras and investigated related 

properties. They provided a condition for a ),(  -  derivations to be regular. They also 

introduced the concepts of a ),( d - invariant ),(  -derivations and α-ideal, and then they 

investigated their relations. Furthermore, they obtained some results on regular   ),(   - 

derivations. Moreover, they studied the notions of t-derivations on BCI-algebras [4] and obtain 

some of its related properties. Further, they characterized the notions of p-semisimple BCI-

algebras X by using the notions of t-derivations. In this paper we introduce the notions of  

),( r ( ),( r )-derivations of a QS-algebras, ),( r  ( ),( r )-t-derivations of  a QS-algebras, t- bi- 

derivations of a QS-algebras and investigate some related properties.  

 

2. Preliminaries 

 

In this section, we recall some basic definitions and results that are needed for our work. 

 

Definition 2.1[15] A QS-algebra ( X , ,0) is a non-empty set   with a constant 0 and a binary 

operation   such that for all x , y , z    satisfying the following axioms: 

(QS-1)    ( x  y ) z = ( x  z ) y . 

(QS-2)    x  0 = x .   

(QS-3)     xx = 0. 

(QS-4) yzzxyx  )()( . 

 

Definition 2.2 [15]  Let  ( X , ,0) be a QS-algebra, we can define a binary relation   on X as, 

yx   if and only if  x  y = 0, this makes X as a partially ordered set. 

 

Proposition 2.3[15] Let ( X , ,0) be a QS-algebra. Then the following hold:    x , y , z  X . 
(a) x _ y i mplies  z _ y _ z _ x,  

 (f) 0 _ ( 0 _ (0  
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1. .xzyzimpliesyx   

2. .zximplyzyandyx   

3. .yzximplieszyx   

4. .)()( yxzyzx   

5. .zyzximpliesyx   

6. .0))0(0(0 xx   

 

Lemma 2.4[12] Let ( X , ,0) be a QS-algebra. If .,,, Xzyxyzxthenzyx   

 

Lemma 2.5[12] Let ( X , ,0) be a QS-algebra. .,)(0 Xyxxyyx   

 

Corollary 2.6[12] Let ( X , ,0) be a QS-algebra. .)0(0 Xxxx   

 

Lemma 2.7 [12] Let ( X , ,0) be a QS- algebra. .,)0()0( Xyxxyyx   

 

Proposition 2.8 Let ( X , ,0) be a QS-algebra. Then the following hold:   x , y , z X . 

1. yyxx  )( . 

2.  xyxxx ))(( y . 

3. 0))((  yyxx . 

4. yxzyzx  )()( . 

5. yxyx  0)( . 

6. 000  xx . 

7. )0()0()(0 yxyx  . 

8. yxxyyx  0,0 . 

.Proof  1.   


.0)()0()(

)4(.1.2)2(.1.2

yyyxxyxx

QSDeffromQSDeffrom



  
 

2.   


.))((

1.8.2Propositionfrom

yxyxxx   

3.   


.0))((

1.8.2Pr



opositionfrom

yyyyxx  
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4.   4.3.2Pr)()( opositionfromclearyxzyzx   



      )4(.1.2.5.2

))()(()()))(0())(0(()())()(()(

QSDeffromLemmafrom

xzyzyxyzxzyxzyzxyx

).()(,0)()(

)4(.1.2

zyzxyxthenyxyx

QSDeffrom



  
 

.)()( yxzyzxHence   

5.   .0)()(

)1(.1.2

yyxxxyx

QSDeffrom




 

6.   


.0,00

)2(.1.2 



QSDeffrom

xthenxIf  

7.   


.)0()0()()()(0

)4(.1.2)4(.1.2)3(.1.2  



QSDeffromQSDeffromQSDeffrom

yxxyyxxxyx  

8.   yxthenxyxyandyxyx  ,00 . 

 

Example 2.9 [12] Let X = 2,1,0  be a set in which the operation  is defined as follows: 

 

 

 

 

Then ( X , , 0) is a QS-algebra.  

 

Definition 2.10 Let ( X , ,0) be a QS-algebra and  S be a non-empty subset of X  , then  S is 

called  subalgebra of X if Syx   Syx  , . 

 

Definition 2.11 ( X , ,0) is a QS-algebra , Xyx ,  we denote )( xyyyx  . 

 

3. Derivations of QS-algebras 

 

  0 1 2 

0 0 2 1 

1 1 0 2 

2 2 1 0 
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Definition 3.1 Let ( X , ,0) be a QS-algebra . A map d : X X  is called a left- right derivation 

(briefly ( rl, )-derivation) of X  if d( Xyxydxyxdyx  ,))(())(() . 

Similarly, a map d: X X  is called a right- left derivation (briefly ),( lr -derivation) of X  if 

d( Xyxyxdydxyx  ,))(())(() .A map d : X X  is called a derivation of X  if d 

is both a ( rl, )-derivation and a ),( lr -derivation of X . 

 

Example 3.2 Let X = 2,1,0  be a QS-algebra, in which the operation  is defined as follows: 

 

  0 1 2 

0 0 2 1 

1 1 0 2 

2 2 0 0 

 

Define a map d : X X  by 

)(xd =















22

11

00

xif

xif

xif

 

Then it is clear that d is a derivation of X . 

  

Definition 3.3 Let ( X , ,0) be a QS-algebra and d : X X  be a map of a QS-algebra X  , then 

d   is called regular if d (0)=0. 

 

Proposition 3.4 Let ( X , ,0) be a QS-algebra 

1. If d  is  a ( rl, )-derivation of X , then Xxxxdxd  )()( . 

2. If d is  a ),( lr -derivation of X , then 

 d  is regular )()( xdxxd  Xx . 

      .Proof  1.   Let d  be a ( rl, )-derivation of X .Then 

.)())(())0())((())0((

))())0((())0(())0(()())0(()0)(()0()(

4.8.2Pr)1.(1.2

xxdxdxxdxdxdx

xddxdxdxxddxxdxdxd

ofromQSDeffrom
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2.   Let d be  regular ),( lr -derivation of X . Then 

)()()0()0)(())0(()0()( xdxxdxxddxxdxd  . 

Conversely , let d be a ),( lr -derivation of X and )()( xdxxd   ,Xx  then    we get 

0)0()0()0)0(()0()0(0)0(  dddddd . Hence d  is regular . 

 

Lemma 3.5 Let ( X , ,0) be a QS-algebra and d  be a ( rl, )-derivation of X . Then the following 

hold Xyx  , . 

1. yxdyxd  )()( . 

2. xxdthenregularisdifandxxdd  )(,)()0( . 

.Proof Clear. 

 

Lemma 3.6 Let ( X , ,0) be a QS- algebra and d  be a ),( lr -derivation of X . Then                   

1. )()( ydxyxd     Xyx  , . 

2.    )(,)()0( xdxthenregularisdifandxdxd  . 

oofPr . Clear. 

 

Theorem 3.7 Let ( X , ,0) be a QS-algebra and d  be a regular ),( lr -derivation of X . Then the 

following hold: Xyx  , . 

1. xxd )( . 

2. )()( ydxyxd  .     

3. ).()()()()( ydxdydxyxdyxd   

4.  0)(:)(  xdXxdKer  is a subalgebra of  X . 

.Proof  1.   Since d is  a regular ),( lr -derivation of X ,  we have 

     xxdxxdxd

Theoremfrom

 0)0()0()(

1.6.3
. 

2.   Since  d is a regular ),( lr -derivation of X , then by Theorem 3.7.  1,we have    

xxd )( Xx . Then )()( ydxyxyxd  . 
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3.   Since  d  is a regular ),( lr -derivation of X , then by Theorem 3.7.  1, we have     

xxd )( Xx . Then yxydxdydxyxdyxd  )()()()()( . 

4.   Since d is  a regular , ,0)0( d  then 0 ),(dKer  which implies that 

)(dKer is  non-empty set .Let ),(, dKeryx   then ,0)(,0)(  ydxd   hence we have 

,000)()()(  ydxdyxyxd  therefore )()( dKeryx  and )(dKer  is a 

subalgebra of X . 

 

Lemma 3.8 Let ( X , ,0) be a QS-algebra and d  be a derivation on X . If  

)()(., ydxdThenXyxyx  . 

.Proof We have  

0 yxyx  ,


.)())(()0()(

1.8.2Pr)2(.1.2 opostionfromQSDeffrom

ydyxxdxdxdthen 


 

 

4.    t-Derivations on  QS -Algebras 

 

Definition 4.1 Let ( X , ,0) be a  QS-algebra .Then for any Xt  ,  we define a self map 

XXdt :  by  Xxtxxdt )( . 

 

 Definition 4.2 Let ( X , ,0) be a QS -algebra .Then for any Xt  , A self map XXdt : is 

called a t-( rl, )-derivation of X if it satisfies the condition  

td ( Xyxydxyxdyx tt  ,))(())(() . Similarly for any Xt  , A self map 

XXdt : is called a t ),( lr -derivation of X  if it satisfies the condition   

td ( Xyxyxdydxyx tt  ,))(())(() . And for any Xt  , A self map td : X X  is 

called a t derivation of X  if td  is both a t ( rl, )-derivation and a t ),( lr -derivation of X . 

 

Example 4.3 Let X = 2,1,0  be a QS -algebra in which the operation  is defined as follows: 
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  0 1 2 

0 0 0 0 

1 1 0 0 

2 2 0 0 

 

Define a map td : X X  by 










2,10

0
)(

tifXx

tifXxx
xd t  

Then it is clear that td  is a derivation of X . 

 

Definition 4.4 Let ( X , ,0) be a QS -algebra and td : X X  be a map of a QS -algebra X  , 

then  td  is called  t-regular if 0)0( td . 

 

Proposition 4.5 Let ( X , ,0) be a QS -algebra. 

1.   If  td  is   a  t-( rl, )-derivation of X , then Xxxxdxd tt  )()( . 

2.   If  td  is   a  t-( lr, )-derivation of X , then 

 td  is  regular  )()( xdxxd tt  Xx . 

.Proof  1.   Let td  be a t-( rl, )-derivation of X .Then 

.)())(())0())((())0((

))())0((())0(())0(()())0(()0)(()0()(

.2.2.2)1.(1.2

xxdxdxxdxdxdx

xddxdxdxxddxxdxdxd

t

Lemmafrom

t

QSDeffrom

ttt

ttttttttt





   

2.   Let td  be regular   t-( lr, )-derivation of X . Then 

)()()0()0)(())0(()0()( xdxxdxxddxxdxd tttttt  . 

Conversely, let td be a t ( lr, )-derivation of X and satisfied )()( xdxxd tt    ,Xx  

then we get 0)0()0()0)0(()0()0(0)0(  tttttt dddddd . 

 

Theorem 4.6 Let ( X , ,0) be a QS-algebra and td  be a t-( rl, )-derivation of X . Then the 

following hold : Xyx  , . 

1.   yxdyxd tt  )()(  . 
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2.    xxdd tt  )()0( . 

3.    If yx   , then     ydxd tt  . 

.Proof  1.   ))(())(()( ydxyxdyxd ttt  

            .)()))(())((())((

1.8.2Pr opositionfrom

tttt yxdyxdydxydx   

               2.    
 1.6.4

)()()0(

Theoremfrom

ttt xxdxxdd   . 

3.   Let ,yx  then     0)()()(

4.8.2Pr


 ofrom

tt yxtytxydxd .Thus      .ydxd tt   

 

Lemma 4.7 Let ( X , ,0) be a QS -algebra and td  be a t-( lr, )-derivation of X . Then 

)()( ydxyxd tt  Xyx  , . 

.Proof  Clear. 

 

Theorem 4.8 Let ( X , ,0) be a QS -algebra and td  be a regular t-( lr, )-derivation of X . Then 

the following hold Xyx  , . 

1.  xxd t )( .  

2.  )()( ydxyxd tt  . 

3.  ).()()()()( ydxdydxyxdyxd ttttt   

4.   0)(:)(  xdXxdKer tt  is a subalgebra of  X . 

.Proof  1.  Since td is  a regular t-( lr, )-derivation of X , Xyx  ,  , we have 

xxdxxdxd

Lemmafrom

ttt  0)0()0()(

.7.4
. 

2.   Since  td  is a regular t-( lr, )-derivation of ,X  then by Theorem 4.8.  1, we have     

xxd t )( Xx . Then )()( ydxyxyxd tt  . 

3.   Since td is a regular t-( lr, )-derivation of ,X  then by Theorem 4.8.  1   xxd t )( ,Xx  

hence we have yxydxdydxyxdyxd ttttt  )()()()()( . 

4.   Since td  is  a regular,  0)0( td ,  then 0 )( tdKer ,  hence we have 
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)( tdKer is a non-empty set. 

Let ),(, tdKeryx   then ,0)(,0)(  ydxd tt   hence we have  

,000)()()(  ydxdyxyxd ttt  therefore ).()( tdKeryx   

Then )( tdKer  is a subalgebra of X . 

 

Lemma 4.9 Let ( X , ,0) be a QS -algebra and td  be a derivation on X . If  

)()(., ydxdThenXyxyx tt  . 

.Proof We know  

0 yxyx  , .)())(()0()(

1.8.2Pr)2(.1.2  opostionfrom

tt

QSDeffrom

tt ydyxxdxdxdthen 



 

 

5.    Generalized t-Derivations of   QS -Algebras 

 

Definition 5.1 Let X  be a QS- algebra. A mapping XXXDt :  is called a generalized t-

),( rl derivation if there exists an t- ),( rl derivation XXdt :    such that  

XyxydxyxDyxD ttt  ,))(())(()( . Similarly a mapping XXDt :  is called a 

generalized t- ),( lr derivation if there exists an t- ),( lr derivation XXdt :  such that 

XyxyxdyDxyxD ttt  ,))(())(()( . 

Moreover if tD  is both a generalized t- ),( rl and ),( lr derivation, we say that  

tD  is a generalized  t-derivation.    

 

Example 5.2 Let X = 3,2,1,0  be a QS -algebra in which the operation  is defined as follows: 

 

  0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 
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Define a map td : X X and a map tD : XXX   by 

 txxdt )(    and   xtxDt )(           Xx       

Then it is clear that tD  is a  generalized  t-derivation of X . 

 

Definition 5.3 Let X  be a QS-algebra and tD : X X  be a map of a QS-algebra X  , then tD  is 

called t regular if tD (0)=0. 

 

Proposition 5.4 Let tD  be a self-map of  a QS-algebra X .Then 

1. if tD  is a generalized t- ),( rl derivation of X  ,then XxxxDxD tt  )()(  

2. if tD  is a generalized t- ),( lr derivation of X  ,then 

tD  is  t-regular  XxxdxxD tt  )()( . 

.Proof  1.   if tD  is a generalized t- ),( lr derivation of X , then there exists an t-derivation td  such 

that XyxydxyxDyxD ttt  ,))(())(()( .Hence, we get 

.)())(())0())((())0(())())0((())0((

))0(()())0(()0)(()0()(

4.8.2Pr)1(1.2

)2(1.2

xxDxDxxdxDxdxxDdxdx

dxxDdxxDxDxD

t

opositionfrom

t

QSDeffrom

tt

QSDeffrom

ttttt









  

  

 

2.   if tD  is a generalized t- ),( lr derivation of X , then there exists an t- ),( lr derivation td  such 

that XyxyxdyDxyxD ttt  ,))(())(()( .Hence, we get 

).()()0()0)(())0(()0()( xdxxdxxdDxxDxD tttttt   

 

Proposition 5.5 Let X  be a QS-algebra and tD  is a generalized t- ),( rl derivation of X , then the 

following hold  Xyx  , : 

1. yxdyxD tt  )()( . 

2. xxDD tt  )()0( . 

3. 0))((  xDxD tt . 

.Proof Clear.    
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Proposition 5.6 Let X  be a QS-algebra and tD  is a generalized t- ),( lr derivation of X , then the 

following hold  Xyx  , : 

1. )()( xdxD tt  . 

2. )()( ydxyxD tt  .  

3. 0))((  xxDD tt . 

.Proof  Clear.      

 

6.   On t-Bi-Derivations of QS –Algebras 

 

Definition 6.1 Let YX ,  be QS - algebras. We define an operation   on the Cartesian product 

YX   of YandX  as follows ),(),(),( 21212211 yyxxyxyx   2,1,),(  iYXyx ii . 

Then it is clear ( YX  , ,(0,0)) a  QS -algebra, and it is called the product of  YX , . 

 

Lemma 6.2 If ( )0,,X  is a QS -algebra, then ( YX  , ,0) is a  QS –algebra. 

.Proof Clear. 

 

Definition6.3 Let X  be a QS - algebra and XXdt :  be a mapping. A mapping 

XXXDt :  is defined by tyxyxDt  )(),( .  

 

Definition 6.4 Let ( )0,,X  is a QS-algebra and XXXDt :  be a mapping. If tD  satisfies 

the identity )),(()),((),( zyDxyzxDzyxD ttt   for all Xzyx ,, , then tD  is called t-

rightleft bi- derivation (briefly t- ),( rl bi- derivation). Similarly if tD  satisfies the identity 

)),(()),((),( yzxDzyDxzyxD ttt   for all Xzyx ,, , then tD  is called t- leftright bi- 

derivation (briefly t- ),( lr bi- derivation).  Moreover if tD  is both an ),( r and ),( r  t- bi- 

derivation, it is called that tD  is t- bi- derivation. 
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Example 6.5 Let X = 3,2,1,0  be a QS -algebra in which the operation  is defined as follows: 

 

 

 

 

 

 

 

 

Define a map tD : XX  X  by 

)(),( yxtyxDt          Xtzyx  ,,,  

Then it is clear that tD  is  t- bi- derivation of X . 

 

Definition 6.6 Let X  be a QS-algebra and XXXDt :  be a mapping .If   0),0( zDt , 

Xz ,  tD  is called  component wise  regular. In particular if ttt DdD ,0)0()0,0(   is called 

td regular. 

 

Proposition 6.7 Let X  be a QS-algebra and XXXDt :  be a mapping .Then 

1. If tD  is  a t- ),( rl bi- derivation, then XzxxzxDzxD tt  ,),(),(  

2. If tD  is  a t- ),( lr bi- derivation, then  

tD  is  component wise  regular  ),(),( zxDxzxD tt  Xzx  , . 

.Proof  1.  Let tD  be a t- ),( rl bi- derivation. Then Xzx  ,  

     

.),()),(()),0()),((()),0((

)),(()),0((()),0((

)),0((),(

)),0(()0),((),0(),(

4.3.2Pr)1(.1.2

)2(1.2

xzxDzxDxxzDzxDxzDx

zxDzDxzDx

zDxzxD

zDxzxDzxDzxD

t

opositionfrom

t

QSDeffrom

ttt

ttt

QSDeffrom

tt

tttt













    

  

 

 

  0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 0 1 

3 3 2 1 0 
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2.   Let tD  be component wise  regular t- ),( lr bi- derivation. 

      Then )0),(()),0((),0(),(  zxDzDxzxDzxD tttt = 

      .),()0),(()0(

)2(.1.2 



QSDeffrom

tt zxDxzxDx  

 Conversely, let tD  be a t- ),( lr bi- derivation  and .,),(),( XzxzxDxzxD tt   Then 

we get 

.0),0(),0()0),0((),0(),0(0),0(  zDzDzDzDzDzD tttttt  

 

Theorem 6.8 Let X  be a QS- algebra and XXXDt :  be a t- ),( rl bi- derivation. Then 

1. XzyxzyDxzyxD tt  ,,),(),( .  

2. XzyxzyDyzxDx tt  ,,),(),( . 

.Proof  1.  Let tD  be a t- ),( rl bi- derivation. Then Xzyx  ,,  

.),(

))),(()),((()),(()),(()),((),(

1.3.2Pr  opositionfrom

t

tttttt

zyDx

zyDxzxDyzxDyzxDyzyDxzyxD





 

2.   Let tD  be a t- ),( rl bi- derivation. Then Xzx  ,  

      




)2(.1.2

)3(.1.2

).,(0)),(()),((),((()),((

)),(()),((),(),0(









QSDeffrom

ttttt

tt

QSDeffrom

tt

zxDxzxDxzxDxzxDxzxDx

zxDxzxDxzxxDzD
 

Thus, we can write XyzyDyzxDxzD ttt  ),(),(),0( . 

 

Lemma 6.9 Let X  be a QS-algebra and XXXDt :  be a component wise  regular t-

),( rl bi- derivation   . Then XzxxzxDt  ,),( . 

.Proof   Since tD  is a component wise  regular,  then 0),0( zDt , Xz .Then 


.))),(0(()),(0()),(0(

)),(0()0()),(0()),0((),0(),(

1.8.2Pr

)2(.1.2

opositionfrom

ttt

ttt

QSDeffrom

tt

xxzxDzxDzxDx

zxDxzxDzDxzxDzxD







 

 



DERIVATIONS ON QS- ALGEBRAS                                                           15  

Proposition 6.10 Let X  be a QS-algebra and XXXDt :  be a t- ),( rl bi- derivation. If  

there exist Xa such that 0),( azxDt Xzx  , ,  then 0),(  zaxDt . 

.Proof Since  tD  is a t- ),( rl bi- derivation, we get 


.0)),(()),(()0)),((()),((

)),((0)),(()),((),(

)3(.1.2)2(.1.2 





QSDeffromQSDeffrom

tttt

tttt

zaDxzaDxzaDxzaDx

zaDxzaDxazxDzaxD

    

 

Proposition 6.11 Let X  be a QS-algebra and XXXDt :  be a t-( ),lr bi-derivation. If  

there exist Xa such that 0),(  zxDa t Xzx  , ,  then 0),(  zxaDt . 

.Proof Since  tD  is a t-( ),lr bi- derivation, we get 


.0)),(()),(()0)),((()),((

)),((0)),(()),((),(

)3(.1.2)2(.1.2 
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tttt

tttt
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7.    Conclusion 

 

Derivation is a very interesting and important area of research in the theory of algebraic 

structures in mathematics. In the present paper, The notion of ),( r     ( ),( r )-derivations of a 

QS-algebras, ),( r ( ),( r ) t-derivations of a QS-algebras, t- bi- derivations of a QS-algebras are 

introduced and investigated, also some useful properties of these types derivations in QS-

algebras. In our opinion, these definitions and main results can be similarly extended to some 

other algebraic systems such as BCH-algebras,  Hilbert algebras,  BF-algebras,  J-algebras, WS-

algebras, CI-algebras, SU-algebras, BCL-algebras, BP-algebras and BO-algebras , PU- algebras 

and so forth. The main purpose of our future work is to investigate the fuzzy derivations ideals in 

QS-algebras, which may have a lot of applications in different branches of theoretical physics 

and computer science. 
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[18] Appendix 

Algorithm for QS-algebras. 

Input ( :X set, : binary operation) 

Output (“ X is a QS-algebra or not”) 

Begin 

If X  then go to (1.); 

End If 

If X0  then go to (1.); 

End If 

Stop: =false; 

1:i ; 

While Xi   and not (Stop) do 

If 0 ii xx  ,  ii xx 0  then 

Stop: = true; 

End If 

1:j , k:=1 

While Xkj ,  and not (Stop) do 

If )   jkkj yzzy  )(x)(x ii  , jkkiji yzzxyx  )()( then  

Stop: = true; 

EndIf 

   End While 

 End While 

If Stop then  

(1.) Output (“ X is not a QS-algebra”) 

Else  

   Output (“ X is a QS-algebra”) 

     End If 

End 

 

 


