

Available online at http://scik.org J. Semigroup Theory Appl. 2015, 2015:3 ISSN: 2051-2937

DERIVATIONS ON QS- ALGEBRAS

SAMY M. MOSTAFA^{*}, R. A. K. OMAR AND MOSTAFA A. HASSAN

Department of mathematics -Faculty of Education -Ain Shams University Roxy, Cairo, Egypt

Copyright © 2015 Mostafa, Omar and Hassan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we introduce the notions of (ℓ, r) $((r, \ell))$ -derivations of a QS-algebras, (r, ℓ) $((\ell, r))$ -tderivations of a QS-algebras, t- bi-derivations of a QS-algebras and we investigate several interesting basic properties.

Keywords: QS-algebras; $(\ell, r)((r, \ell))$ -derivations of a QS-algebras; (r, ℓ) $((\ell, r))$ -t-derivations of a QSalgebras; t- bi- derivations of a QS-algebras.

2010 AMS Subject Classification: 03G25, 06F35.

1. Introduction

In 1966, Y. Imai and K. Is ki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras [10,11,16]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Neggers et al [8] introduced a notions, called Q-algebras, which is a generalization of BCH / BCI / BCK-algebras and generalized some theorems discussed in BCI-algebras. Moreover, Ahn and Kim [15] introduced the notions of QS-algebras which is a proper subclass of Q-algebras. Kondo [13] proved that, each theorem of QS-algebras is provable in the theory of Abelian groups and conversely each theorem of Abelian groups is provable in the theory of QS-algebras. Derivation is a very interesting and important area of research in the theory of algebraic structures in mathematics. Several authors [2,6,7,13,14] have studied derivations in rings and near rings. Jun and Xin [17] applied the notions of derivations in ring and near-ring theory to *BCI*-algebras, and they also introduced a new concept called a regular

^{*}Corresponding author

Received March 5, 2015

derivations in *BCI* -algebras. They investigated some of its properties, defined a *d* -derivations ideal and gave conditions for an ideal to be *d*-derivations. Later, Abujabal and Al-Shehri [5], defined a left derivations in *BCI*-algebras and investigated a regular left derivations. Zhan and Liu [9] studied f-derivations in BCI-algebras and proved some results. Muhiuddin and Al-roqi [3,4] introduced the notions of (α, β) -derivations in a BCI-algebras and investigated related properties. They provided a condition for a (α, β) - derivations to be regular. They also introduced the concepts of a $d_{(\alpha,\beta)}$ - invariant (α,β) -derivations and α -ideal, and then they investigated their relations. Furthermore, they obtained some results on regular (α,β) - derivations. Moreover, they studied the notions of *t*-derivations on BCI-algebras [4] and obtain some of its related properties. Further, they characterized the notions of p-semisimple BCI-algebras X by using the notions of *t*-derivations. In this paper we introduce the notions of $(\ell,r)((r,\ell))$ -derivations of a QS-algebras, $(r,\ell)((\ell,r))$ -t-derivations of a QS-algebras, *t*- *bi*-derivations of a QS-algebras and investigate some related properties.

2. Preliminaries

In this section, we recall some basic definitions and results that are needed for our work.

Definition 2.1[15] A QS-algebra (X, *, 0) is a non-empty set X with a constant 0 and a binary operation * such that for all $x, y, z \in X$ satisfying the following axioms:

- (QS-1) (x * y) * z = (x * z) * y.
- $(QS-2) \quad x * 0 = x.$
- $(QS-3) \qquad x * x = 0.$
- (QS-4) (x*y)*(x*z) = z*y.

Definition 2.2 [15] Let (X, *, 0) be a QS-algebra, we can define a binary relation \leq on X as, $x \leq y$ if and only if x * y = 0, this makes X as a partially ordered set.

Proposition 2.3[15] Let (X, *, 0) be a QS-algebra. Then the following hold: $\forall x, y, z \in X$.

- 1. $x \le y$ implies $z * y \le z * x$.
- 2. $x \le y$ and $y \le z$ imply $x \le z$.
- 3. $x * y \le z$ implies $x * z \le y$.
- 4. $(x*z)*(y*z) \le x*y.$
- 5. $x \le y$ implies $x * z \le y * z$.
- 6. 0 * (0 * (0 * x)) = 0 * x.

Lemma 2.4[12] Let (X, *, 0) be a QS-algebra. If x * y = z, then $x * z = y \quad \forall x, y, z \in X$.

Lemma 2.5[12] Let (X, *, 0) be a QS-algebra. $0 * (x * y) = y * x \quad \forall x, y \in X$.

Corollary 2.6[12] Let (X, *, 0) be a QS-algebra. $0 * (0 * x) = x \quad \forall x \in X$.

Lemma 2.7 [12] Let (X, *, 0) be a QS- algebra. $x * (0 * y) = y * (0 * x) \quad \forall x, y \in X$.

Proposition 2.8 Let (X, *, 0) be a QS-algebra. Then the following hold: $\forall x, y, z \in X$.

- 1. x * (x * y) = y.
- 2. x * (x * (x * y)) = x * y.
- 3. (x*(x*y))*y=0.
- 4. (x*z)*(y*z) = x*y.
- 5. (x*y)*x=0*y.
- 6. $x * 0 = 0 \Longrightarrow x = 0$.
- 7. 0*(x*y) = (0*x)*(0*y).
- 8. $x * y = 0, y * x = 0 \Longrightarrow x = y$.

Proof. 1. $x * (x * y) = \overbrace{(x * 0) * (x * y)}^{\text{from Def 2.1. (QS-2)}} = \overbrace{y * 0}^{\text{from Def 2.1. (QS-4)}} = y.$ 2. $x * (x * (x * y)) = \overbrace{x * y}^{\text{from Proposition 2.8. 1}} .$ 3. $(x * (x * y)) * y = \overbrace{y * y}^{\text{from Proposition 2.8. 1}} = 0.$ 4. $(x*z)*(y*z) \le x*y$ clear from Proposition 2.3. 4

$$(x * y) * ((x * z) * (y * z)) = (x * y) * ((0 * (z * x))) * (0 * (z * y))) = (x * y) * ((z * y) * (z * x)) = (x * y) * ((z * y) * (z * x)) = (x * y) * ((z * y) * (z * x)) = (x * y) * ((z * y) * (z * x)) = (x * y) * (x * y) * (x * y) = 0, then x * y \le (x * z) * (y * z).$$
Hence $(x * z) * (y * z) = x * y.$
5. $(x * y) * x = (x * x) * y = 0 * y.$
6. If $x * 0 = 0$, then $x = 0$.
7. $0 * (x * y) = (x * x) * (x * y) = y = y * x = (0 * x) * (0 * y).$
8. $x * y = 0 \Rightarrow x \le y$ and $y * x = 0 \Rightarrow y \le x$, then $x = y.$

Example 2.9 [12] Let $X = \{0,1,2\}$ be a set in which the operation * is defined as follows:

*	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then (X, *, 0) is a QS-algebra.

Definition 2.10 Let (X, *, 0) be a QS-algebra and S be a non-empty subset of X, then S is called subalgebra of X if $x * y \in S$ $\forall x, y \in S$.

Definition 2.11 (X, *,0) is a QS-algebra, $x, y \in X$ we denote $x \wedge y = y * (y * x)$.

3. Derivations of QS-algebras

Definition 3.1 Let (X, *, 0) be a QS-algebra. A map $d : X \to X$ is called a left-right derivation (briefly (l, r)-derivation) of X if $d(x * y) = (d(x) * y) \land (x * d(y)) \forall x, y \in X$. Similarly, a map $d: X \to X$ is called a right- left derivation (briefly (r, l)-derivation) of X if $d(x * y) = (x * d(y)) \land (d(x) * y) \forall x, y \in X$. A map $d : X \to X$ is called a derivation of X if d is both a (l, r)-derivation and a (r, l)-derivation of X.

Example 3.2 Let $X = \{0,1,2\}$ be a QS-algebra, in which the operation * is defined as follows:

*	0	1	2
0	0	2	1
1	1	0	2
2	2	0	0

Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 0 & if \ x = 0 \\ 1 & if \ x = 1 \\ 2 & if \ x = 2 \end{cases}$$

Then it is clear that d is a derivation of X.

Definition 3.3 Let (X, *, 0) be a QS-algebra and $d: X \to X$ be a map of a QS-algebra X, then d is called regular if d(0)=0.

Proposition 3.4 Let (X, *, 0) be a QS-algebra

- 1. If d is a (l,r)-derivation of X, then $d(x) = d(x) \wedge x \quad \forall x \in X$.
- 2. If d is a (r,l)-derivation of X, then

d is regular $\Leftrightarrow d(x) = x \wedge d(x) \quad \forall x \in X$.

Proof. 1. Let d be a (l, r)-derivation of X. Then

$$d(x) = d(x * 0) = (d(x) * 0) \land (x * d(0)) = d(x) \land (x * d(0)) = (x * d(0)) * ((x * d(0)) * d(x))$$

$$= \overbrace{(x * d(0)) * ((x * d(x)) * d(0))}^{\text{from Def 2.1}(QS-1)} = \overbrace{x * (x * d(x))}^{\text{from Pro 2.8.4}} = d(x) \land x.$$

2. Let d be regular (r, l)-derivation of X. Then

 $d(x) = d(x*0) = (x*d(0)) \land (d(x)*0) = (x*0) \land d(x) = x \land d(x).$ Conversely, let *d* be a (*r*,*l*)-derivation of *X* and $d(x) = x \land d(x) \quad \forall x \in X$, then we get $d(0) = 0 \land d(0) = d(0)*(d(0)*0) = d(0)*d(0) = 0$. Hence *d* is regular.

Lemma 3.5 Let (X, *, 0) be a QS-algebra and d be a (l, r)-derivation of X. Then the following hold $\forall x, y \in X$.

- 1. d(x * y) = d(x) * y.
- 2. d(0) = d(x) * x and if d is regular, then $d(x) \le x$.

Proof.Clear.

Lemma 3.6 Let (X, *, 0) be a QS- algebra and d be a (r, l)-derivation of X. Then

- 1. $d(x*y) = x*d(y) \quad \forall x, y \in X$.
- 2. d(0) = x * d(x) and if d is regular, then $x \le d(x)$.

Proof. Clear.

Theorem 3.7 Let (X, *, 0) be a QS-algebra and d be a regular (r, l)-derivation of X. Then the following hold: $\forall x, y \in X$.

- 1. d(x) = x.
- 2. d(x) * y = x * d(y).
- 3. d(x*y) = d(x)*y = x*d(y) = d(x)*d(y).
- 4. $Ker(d) = \{x \in X : d(x) = 0\}$ is a subalgebra of X.

Proof. 1. Since d is a regular (r,l)-derivation of X, we have

$$d(x) = d(x*0) = \overbrace{x*d(0)}^{\text{from Theorem 3.6. 1}} = x*0 = x$$

2. Since d is a regular (r, l)-derivation of X, then by Theorem 3.7. 1, we have $d(x) = x \ \forall x \in X$. Then d(x) * y = x * y = x * d(y).

- 3. Since d is a regular (r,l)-derivation of X, then by Theorem 3.7. 1, we have $d(x) = x \ \forall x \in X$. Then d(x * y) = d(x) * y = x * d(y) = d(x) * d(y) = x * y.
- 4. Since d is a regular, d(0) = 0, then 0 ∈ Ker(d), which implies that
 Ker(d) is non-empty set .Let x, y ∈ Ker(d), then d(x) = 0, d(y) = 0, hence we have
 d(x*y) = x*y = d(x)*d(y) = 0*0=0, therefore (x*y) ∈ Ker(d) and Ker(d) is a subalgebra of X.

Lemma 3.8 Let (X, *, 0) be a QS-algebra and d be a derivation on X. If $x \le y \ \forall x, y \in X$. Then d(x) = d(y).

Proof.We have

 $x \le y \Leftrightarrow x * y = 0$, then $d(x) = \overbrace{d(x * 0)}^{\text{from Def 2.1. (QS-2)}} = d(x * (x * y)) = \overbrace{d(y)}^{\text{from Proposition 2.8. 1}}$

4. t-Derivations on QS -Algebras

Definition 4.1 Let (X, *, 0) be a QS-algebra .Then for any $t \in X$, we define a self map $d_t : X \to X$ by $d_t(x) = x * t \ \forall x \in X$.

Definition 4.2 Let (X, *, 0) be a QS -algebra .Then for any $t \in X$, A self map $d_t : X \to X$ is called a $t \cdot (l, r)$ -derivation of X if it satisfies the condition $d_t (x * y) = (d_t(x) * y) \land (x * d_t(y)) \forall x, y \in X$. Similarly for any $t \in X$, A self map $d_t : X \to X$ is called a t - (r, l)-derivation of X if it satisfies the condition $d_t (x * y) = (x * d_t(y)) \land (d_t(x) * y) \forall x, y \in X$. And for any $t \in X$, A self map $d_t : X \to X$ is called a t-derivation of X if d_t is both a t - (l, r)-derivation and a t - (r, l)-derivation of X.

Example 4.3 Let $X = \{0,1,2\}$ be a QS -algebra in which the operation * is defined as follows:

*	0	1	2
0	0	0	0
1	1	0	0
2	2	0	0

Define a map $d_t: X \to X$ by

 $d_t(x) = \begin{cases} x & \forall x \in X & \text{if } t = 0\\ 0 & \forall x \in X & \text{if } t = 1,2 \end{cases}$

Then it is clear that d_t is a derivation of X.

Definition 4.4 Let (X, *, 0) be a QS -algebra and $d_t: X \to X$ be a map of a QS -algebra X,

then d_t is called *t*-regular if $d_t(0) = 0$.

Proposition 4.5 Let (X, *, 0) be a QS -algebra.

1. If d_t is a t-(l,r)-derivation of X, then $d_t(x) = d_t(x) \land x \quad \forall x \in X$.

2. If d_t is a t-(r,l)-derivation of X, then

 d_t is regular $\Leftrightarrow d_t(x) = x \wedge d_t(x) \ \forall x \in X$.

Proof. 1. Let d_t be a t-(l, r)-derivation of X. Then

$$d_{t}(x) = d_{t}(x * 0) = (d_{t}(x) * 0) \land (x * d_{t}(0)) = d_{t}(x) \land (x * d_{t}(0)) = (x * d_{t}(0)) * ((x * d_{t}(0)) * d_{t}(x))$$

$$= \underbrace{(x * d_{t}(0)) * ((x * d_{t}(x)) * d_{t}(0))}_{fom Lemma 2.2.2.} = \underbrace{(x * d_{t}(0)) * (x * d_{t}(x)) * d_{t}(0)}_{fom Lemma 2.2.2.} = d_{t}(x) \land x.$$

2. Let d_t be regular t-(r, l)-derivation of X. Then

$$d_t(x) = d_t(x * 0) = (x * d_t(0)) \land (d_t(x) * 0) = (x * 0) \land d_t(x) = x \land d_t(x).$$

Conversely, let d_t be a t - (r, l)-derivation of X and satisfied $d_t(x) = x \wedge d_t(x) \quad \forall x \in X$, then we get $d_t(0) = 0 \wedge d_t(0) = d_t(0) * (d_t(0) * 0) = d_t(0) * d_t(0) = 0$.

Theorem 4.6 Let (X, *, 0) be a QS-algebra and d_t be a t-(l, r)-derivation of X. Then the following hold : $\forall x, y \in X$.

1.
$$d_t(x * y) = d_t(x) * y$$
.

- 2. $d_t(0) = d_t(x) * x$.
- 3. If $x \le y$, then $d_t(x) \le d_t(y)$.

Proof. 1. $d_t(x * y) = (d_t(x) * y) \land (x * d_t(y)) =$

$$(x * d_t(y)) * ((x * d_t(y)) * (d_t(x) * y)) = \overbrace{d_t(x) * y}^{\text{from Proposition 2.8. 1}} d_t(x) * y$$
2. $d_t(0) = d_t(x * x) = \overbrace{d_t(x) * x}^{\text{from Theorem 4.6. 1}} d_t(x) * x$

3. Let $x \le y$, then $d_t(x) * d_t(y) = (x * t) * (y * t) = \underbrace{(x * y)}_{rom roo 2.8.4} = 0$. Thus $d_t(x) \le d_t(y)$.

Lemma 4.7 Let (X, *, 0) be a QS -algebra and d_t be a *t*-(r, l)-derivation of X. Then $d_t(x * y) = x * d_t(y) \quad \forall x, y \in X$. Proof. Clear.

Theorem 4.8 Let (X, *, 0) be a QS -algebra and d_t be a regular *t*-(r, l)-derivation of X. Then the following hold $\forall x, y \in X$.

- 1. $d_t(x) = x$.
- 2. $d_t(x) * y = x * d_t(y)$.
- 3. $d_t(x * y) = d_t(x) * y = x * d_t(y) = d_t(x) * d_t(y)$.
- 4. $Ker(d_t) = \{x \in X : d_t(x) = 0\}$ is a subalgebra of X.

Proof. 1. Since d_t is a regular *t*-(*r*,*l*)-derivation of *X*, $\forall x, y \in X$, we have

$$d_t(x) = d_t(x*0) = \overbrace{x*d_t(0)}^{\text{from Lemma 4.7.}} = x*0 = x.$$

- 2. Since d_t is a regular t-(r, l)-derivation of X, then by Theorem 4.8. 1, we have $d_t(x) = x \ \forall x \in X$. Then $d_t(x) * y = x * y = x * d_t(y)$.
- 3. Since d_t is a regular t-(r, l)-derivation of X, then by Theorem 4.8. 1 $d_t(x) = x \forall x \in X$, hence we have $d_t(x * y) = d_t(x) * y = x * d_t(y) = d_t(x) * d_t(y) = x * y$.
- 4. Since d_t is a regular, $d_t(0) = 0$, then $0 \in Ker(d_t)$, hence we have

 $Ker(d_t)$ is a non-empty set.

Let $x, y \in Ker(d_t)$, then $d_t(x) = 0$, $d_t(y) = 0$, hence we have

 $d_t(x * y) = x * y = d_t(x) * d_t(y) = 0 * 0 = 0$, therefore $(x * y) \in Ker(d_t)$.

Then $Ker(d_t)$ is a subalgebra of X.

Lemma 4.9 Let (X, *, 0) be a QS -algebra and d_t be a derivation on X. If

 $x \le y \ \forall x, y \in X$. Then $d_t(x) = d_t(y)$.

Proof. We know

 $x \le y \Leftrightarrow x * y = 0 \text{, then } d_t(x) = \overbrace{d_t(x * 0)}^{\text{from Def 2.1. (QS-2)}} = d_t(x * (x * y)) = \overbrace{d_t(y)}^{\text{from Propositon 2.8. 1}} d_t(y) \text{.}$

5. Generalized t-Derivations of QS -Algebras

Definition 5.1 Let X be a QS- algebra. A mapping $D_t : X \times X \to X$ is called a generalized t-(l, r)-derivation if there exists an t-(l, r)-derivation $d_t : X \to X$ such that $D_t(x * y) = (D_t(x) * y) \wedge (x * d_t(y)) \quad \forall x, y \in X$. Similarly a mapping $D_t : X \to X$ is called a generalized t-(r, l)-derivation if there exists an t-(r, l)-derivation $d_t : X \to X$ such that $D_t(x * y) = (x * D_t(y)) \wedge (d_t(x) * y) \quad \forall x, y \in X$. Moreover if D_t is both a generalized t-(l, r)-and (r, l)-derivation, we say that

 D_t is a generalized *t*-derivation.

Example 5.2 Let $X = \{0,1,2,3\}$ be a QS -algebra in which the operation * is defined as follows:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Define a map $d_t: X \to X$ and a map $D_t: X \times X \to X$ by

 $d_t(x) = x * t$ and $D_t(x) = t * x$ $\forall x \in X$

Then it is clear that D_t is a generalized *t*-derivation of X.

Definition 5.3 Let X be a QS-algebra and $D_t: X \to X$ be a map of a QS-algebra X, then D_t is called t-regular if $D_t(0)=0$.

Proposition 5.4 Let D_t be a self-map of a QS-algebra X. Then

1. if D_t is a generalized t-(l,r)-derivation of X, then $D_t(x) = D_t(x) \land x \forall x \in X$

2. if D_t is a generalized *t*-(*r*,*l*)-derivation of X , then

 D_t is t-regular $\Leftrightarrow D_t(x) = x \wedge d_t(x) \quad \forall x \in X$.

Proof. 1. if D_t is a generalized *t*-(*r*,*l*) –derivation of *X*, then there exists an *t*-derivation d_t such that $D_t(x * y) = (D_t(x) * y) \land (x * d_t(y)) \forall x, y \in X$. Hence, we get

$$D_{t}(x) = D_{t}(x * 0) = (D_{t}(x) * 0) \land (x * d_{t}(0)) = \overbrace{D_{t}(x) \land (x * d(0))}^{\text{from } Def \ 2.1 (QS-2)} = \underbrace{D_{t}(x) \land (x * d(0))}_{\text{from } Def \ 2.1 (QS-1)} \xrightarrow{\text{from } Proposition \ 2.8. \ 4}_{\text{from } Proposition \ 2.8. \ 4} = D_{t}(x) \land x.$$

2. if D_t is a generalized t-(r,l)-derivation of X, then there exists an t-(r,l)-derivation d_t such

that
$$D_t(x * y) = (x * D_t(y)) \land (d_t(x) * y) \ \forall x, y \in X$$
. Hence, we get
 $D_t(x) = D_t(x * 0) = (x * D_t(0)) \land (d_t(x) * 0) = (x * 0) \land d_t(x) = x \land d_t(x).$

Proposition 5.5 Let *X* be a QS-algebra and D_t is a generalized *t*-(*l*, *r*)-derivation of *X*, then the following hold $\forall x, y \in X$:

- 1. $D_t(x * y) = d_t(x) * y$.
- 2. $D_t(0) = D_t(x) * x$.
- 3. $D_t(x * D_t(x)) = 0$.

Proof.Clear.

Proposition 5.6 Let X be a QS-algebra and D_t is a generalized t-(r, l)-derivation of X, then the following hold $\forall x, y \in X$:

- 1. $D_t(x) = d_t(x)$.
- 2. $D_t(x * y) = x * d_t(y)$.
- 3. $D_t(D_t(x) * x) = 0$.

Proof. Clear.

6. On t-Bi-Derivations of QS – Algebras

Definition 6.1 Let X, Y be QS - algebras. We define an operation * on the Cartesian product $X \times Y$ of X and Y as follows $(x_1, y_1) * (x_2, y_2) = (x_1 * x_2, y_1 * y_2) \quad \forall (x_i, y_i) \in X \times Y, i = 1, 2$. Then it is clear $(X \times Y, *, (0,0))$ a QS -algebra, and it is called the product of X, Y.

Lemma 6.2 If (X,*,0) is a QS -algebra, then $(X \times Y,*,0)$ is a QS –algebra. Proof.Clear.

Definition6.3 Let X be a QS - algebra and $d_t: X \to X$ be a mapping. A mapping $D_t: X \times X \to X$ is defined by $D_t(x, y) = (x * y) * t$.

Definition 6.4 Let (X,*,0) is a QS-algebra and $D_t: X \times X \to X$ be a mapping. If D_t satisfies the identity $D_t(x*y,z) = (D_t(x,z)*y) \wedge (x*D_t(y,z))$ for all $x, y, z \in X$, then D_t is called *tleft*-*rightbi*- derivation (briefly *t*-(*l*,*r*)-*bi*- derivation). Similarly if D_t satisfies the identity $D_t(x*y,z) = (x*D_t(y,z)) \wedge (D_t(x,z)*y)$ for all $x, y, z \in X$, then D_t is called *t*-*right*-*leftbi*derivation (briefly *t*-(*r*,*l*)-*bi*- derivation). Moreover if D_t is both an (r, ℓ) and (ℓ, r) t- biderivation, it is called that D_t is *t*- *bi*- derivation. **Example 6.5** Let $X = \{0,1,2,3\}$ be a QS -algebra in which the operation * is defined as follows:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Define a map $D_t: X \times X \to X$ by

 $D_t(x, y) = t * (x * y) \quad \forall x, y, z, t \in X$

Then it is clear that D_t is *t*-*bi*-derivation of X.

Definition 6.6 Let X be a QS-algebra and $D_t: X \times X \to X$ be a mapping .If $D_t(0, z) = 0$, $\forall z \in X$, D_t is called component wise regular. In particular if $D_t(0,0) = d_t(0) = 0$, D_t is called d_t – regular.

Proposition 6.7 Let X be a QS-algebra and $D_t: X \times X \to X$ be a mapping. Then

- 1. If D_t is a t-(l,r)-bi- derivation, then $D_t(x,z) = D_t(x,z) \land x \quad \forall x, z \in X$
- 2. If D_t is a *t*-(*r*,*l*)-*bi*-derivation, then
- D_t is component wise regular $\Leftrightarrow D_t(x,z) = x \wedge D_t(x,z) \ \forall x, z \in X$.

Proof. 1. Let D_t be a *t*-(*l*,*r*)-*bi*- derivation. Then $\forall x, z \in X$

$$\begin{split} D_{t}(x,z) &= D_{t}(x*0,z) = (D_{t}(x,z)*0) \wedge (x*D_{t}(0,z)) \\ &= \overbrace{D_{t}(x,z) \wedge (x*D_{t}(0,z))}^{\text{from Def 2.1 (QS-2)}} \\ &= (x*D_{t}(0,z)) * ((x*D_{t}(0,z))*(D_{t}(x,z)) \\ &= \overbrace{(x*D_{t}(0,z))*((x*D_{t}(0,z))*D_{t}(0,z))}^{\text{from Def 2.1 (QS-1)}} = \overbrace{x*(x*D_{t}(x,z))}^{\text{from Proposition 2.3. 4}} = D_{t}(x,z) \wedge x \end{split}$$

2. Let D_t be component wise regular t-(r, l)-bi- derivation.

Then $D_t(x, z) = D_t(x * 0, z) = (x * D_t(0, z)) \land (D_t(x, z) * 0) =$

$$(x*0) \wedge (D_t(x,z)*0) = \overbrace{x \wedge D_t(x,z)}^{\text{from Def } 2.1. (QS-2)}.$$

Conversely, let D_t be a *t*-(*r*,*l*)-*bi*- derivation and $D_t(x,z) = x \wedge D_t(x,z) \quad \forall x, z \in X$. Then we get

$$D_t(0,z) = 0 \land D_t(0,z) = D_t(0,z) * (D_t(0,z) * 0) = D_t(0,z) * D_t(0,z) = 0$$

Theorem 6.8 Let X be a QS- algebra and $D_t: X \times X \to X$ be a t-(l,r)-bi- derivation. Then

- 1. $D_t(x * y, z) = x * D_t(y, z) \quad \forall x, y, z \in X$.
- 2. $x * D_t(x, z) = y * D_t(y, z) \quad \forall x, y, z \in X$.

Proof. 1. Let D_t be a *t*-(*l*,*r*)-*bi*- derivation. Then $\forall x, y, z \in X$

$$D_{t}(x * y, z) = (x * D_{t}(y, z)) \land (y * D_{t}(x, z)) = (y * D_{t}(x, z)) * ((y * D_{t}(x, z)) * (x * D_{t}(y, z)))$$
from Proposition 2.3. 1
$$= \overbrace{x * D_{t}(y, z)}^{\text{from Proposition 2.3. 1}}.$$

2. Let D_t be a *t*-(*l*,*r*)-*bi*- derivation. Then $\forall x, z \in X$

$$D_{t}(0,z) = \underbrace{D_{t}(x * x, z)}_{from \ Def \ 2.1. \ (QS-3)} = (x * D_{t}(x, z)) \land (x * D_{t}(x, z))$$

$$= (x * D_{t}(x, z)) * ((x * D_{t}(x, z) * (x * D_{t}(x, z))) = (x * D_{t}(x, z)) * 0 = \underbrace{x * D_{t}(x, z)}_{x * D_{t}(x, z)}.$$
Thus, we can write $D_{t}(0, z) = x * D_{t}(x, z) = y * D_{t}(y, z) \quad \forall y \in X.$

Lemma 6.9 Let X be a QS-algebra and $D_t: X \times X \to X$ be a component wise regular *t*-(l, r) - bi-derivation . Then $D_t(x, z) = x \quad \forall x, z \in X$.

Proof. Since D_t is a component wise regular, then $D_t(0,z) = 0$, $\forall z \in X$. Then

$$D_{t}(x,z) = \underbrace{D_{t}(x * 0,z)}_{\text{from Proposition 2.8.1}}^{\text{from Def 2.1. (QS-2)}}_{\text{from Proposition 2.8.1}} = (x * D_{t}(0,z)) \land (0 * D_{t}(x,z)) = (x * 0) \land (0 * D_{t}(x,z))$$

Proposition 6.10 Let X be a QS-algebra and $D_t: X \times X \to X$ be a t-(l,r)-bi- derivation. If there exist $a \in X$ such that $D_t(x,z) * a = 0 \quad \forall x, z \in X$, then $D_t(x * a, z) = 0$. Proof.Since D_t is a t-(l,r)-bi- derivation, we get $D_t(x * a, z) = (D_t(x, z) * a) \land (x * D_t(a, z)) = 0 \land (x * D_t(a, z))$ $= (x * D_t(a, z)) * ((x * D_t(a, z)) * 0) = \overbrace{(x * D_t(a, z))}^{fom Def 2.1.(QS-2)} = \overbrace{0}^{fom Def 2.1.(QS-3)} = \overbrace{0}^{fom D$

Proposition 6.11 Let X be a QS-algebra and $D_t: X \times X \to X$ be a t-(r,l)-bi-derivation. If there exist $a \in X$ such that $a * D_t(x, z) = 0 \quad \forall x, z \in X$, then $D_t(a * x, z) = 0$. Proof. Since D_t is a t-(r,l)-bi- derivation, we get $D_t(a * x, z) = (a * D_t(x, z)) \land (D_t(a, z) * x) = 0 \land (D_t(a, z) * x)$ $= (D_t(a, z) * x) * ((D_t(a, z) * x) * 0) = \overbrace{(D_t(a, z) * x) * (D_t(a, z) * x)}^{from Def 2.1. (QS-2)} = \overbrace{0}^{from Def 2.1. (Q-3)} = \overbrace{0}^{from Def 2.1. (QS-3)} = \overbrace{0}^{from Def 2.1. (QS-3$

7. Conclusion

Derivation is a very interesting and important area of research in the theory of algebraic structures in mathematics. In the present paper, The notion of (ℓ, r) $((r, \ell))$ -derivations of a QS-algebras, $(\ell, r)((r, \ell))$ t-derivations of a QS-algebras, t- bi- derivations of a QS-algebras are introduced and investigated, also some useful properties of these types derivations in QSalgebras. In our opinion, these definitions and main results can be similarly extended to some other algebraic systems such as BCH-algebras, Hilbert algebras, BF-algebras, J-algebras, WSalgebras, CI-algebras, SU-algebras, BCL-algebras, BP-algebras and BO-algebras , PU- algebras and so forth. The main purpose of our future work is to investigate the fuzzy derivations ideals in QS-algebras, which may have a lot of applications in different branches of theoretical physics and computer science.

Conflict of Interests

The author declares that there is no conflict of interests.

REFERENCES

- [1] A. M. Kamal, "σ-derivations on prime near-rings," Tamkang Journal of Mathematics, 32(2001), no. 2, 89–93.
- [2] Hvala, "Generalized derivations in rings," Communications in Algebra, 26(1998), no. 4, 1147–1166.
- [3] G. Muhiuddin and Abdullah M. Al-Roqi On (α, β) -Derivations in BCI-Algebras. Discrete Dynamics in Nature and Society 2012(2012), Article ID 403209.
- [4] G. Muhiuddin and Abdullah M. Al-roqi, On *t*-Derivations of BCI-Algebras, Abstract and Applied Analysis 2012(2012), Article ID 872784, 12 pages.
- [5] H. A. S. Abujabal and N. O. Al-Shehri, On left derivations of BCI-algebras, Soochow Journal of Mathematics, 33(2007), no. 3, 435–444.
- [6] H. E. Bell and L.-C. Kappe, "Rings in which derivations satisfy certain algebraic conditions," Acta Mathematica Hungarica, 53(1989), no. 3-4, 339–346.
- [7] H. E. Bell and G. Mason, "On derivations in near-rings, near-rings and near-fields," North-Holland Mathematics Studies, 137(1987), 31–35.
- [8] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Int. J. Math. Math. Sci. 27(12) (2001), 749-757.
- [9] J. Zhan and Y. L. Liu, "On f-derivations of BCI-algebras," International Journal of Mathematics and Mathematical Sciences, 11(2005), 1675–1684.
- [10] K.Iseki: An algebra related with a propositional calculi, Proc. Japan Acad. Ser A Math. Sci., 42 (1966), 26-29.
- [11] K Iseki and Tanaka S: An introduction to theory of BCK-algebras, Math. Japo., 23 (1978) 1-26.
- [12] M. Kindo, On the class of QS-algebras, International Journal of Mathematics and Mathematical Sciences, 49(2004), 2630-2631.
- [13] M. Bre'sar and J. Vukman, "On left derivations and related mappings," Proceedings of the American Mathematical Society, 110(1990), no. 1, 7–16.
- [14] M. Brešar, "On the distance of the composition of two derivations to the generalized derivations," Glasgow Mathematical Journal, 33(1991), no. 1, pp. 89–93.
- [15] S.S. Ahn and H.S. Kim, "On QS-algebras," Journal of the Chungcheong Mathematical Society, 12(1999), 34-35.
- [16] Y.Imai and K.Iseki: On axiom systems of Propositional calculi, XIV, Proc. Japan Acad. Ser A, Math Sci., 42(1966),19-22.
- [17] Y. B. Jun and X. L. Xin, "On derivations of BCI-algebras," Information Sciences, 159(2004), no. 3-4, 167–176.

[18] Appendix

Algorithm for QS-algebras.

Input (X : set, *: binary operation) Output ("X is a QS-algebra or not") Begin If $X = \phi$ then go to (1.); End If If $0 \notin X$ then go to (1.); End If Stop: =false; i := 1: While $i \leq |X|$ and not (Stop) do If $x_i * x_i \neq 0$, $x_i * 0 \neq x_i$ then Stop: = true; End If $j \coloneqq 1, k \coloneqq 1$ While $j, k \leq |X|$ and not (Stop) do If) $(\mathbf{x}_i * y_j) * z_k \neq (\mathbf{x}_i * z_k) * y_j$, $(x_i * y_j) * (x_i * z_k) \neq z_k * y_j$ then Stop: = true; EndIf End While End While If Stop then (1.) Output ("X is not a QS-algebra") Else Output ("X is a QS-algebra") End If End