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Abstract. Let X be a Banach space, and T : [0,∞)→ L (X ,X), the bounded linear operators on X . A family

{T (t)}t≥0 ⊆ L (X ,X) is called a one-parameter semigroup if T (s+ t) = T (s)T (t), and T (0) = I, the identity

operator on X . The infinitesimal generator of the semigroup is the derivative of the semigroup at t = 0. The

object of this paper is to introduce a (conformable) fractional semigroup of operators whose generator will be the

fractional derivative of the semigroup at t = 0. The basic properties of such semigroups will be studied.
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1. Introduction and preliminaries

Let X be a Banach space, and L (X ,X) be the space of all bounded linear operators on X . A

family {T (t)}t≥0 ⊆L (X ,X) is called a one-parameter semigroup if:

(i)T (0) = I, the identity operator on X .

(ii)T (s+ t) = T (s)T (t) for all s, t ≥ 0.
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If, in addition, for each fixed x ∈ X , T (t)x −→ x as t −→ 0+, then the semigroup is called

c0−semigroup or strongly continuous semigroup.

Semigroups of operators proved to be a very fruitful tool to solve differential equations. One

of the classical vector valued differential equations is the so called the abstract Cauchy problem,

precisely,

u(t) = Au(t), t > 0,

u(0) = x,

where A : D(A) ⊆ X −→ X a linear operator of an appropriate type, x ∈ X is given and u :

[0,∞) −→ X is the unknown function. We refer to [5] and [7] for basic theory of semigroups

of operators and the abstract Cauchy problem. For the inverse form of the abstract Cauchy

problem, we refer to [9], see also [2].

Fractional semigroups are related to the problem of fractional powers of operators initiated

first by Bochner, see [4]. Balakrishnan, see [3], studied the problem of fractional powers

of closed operators and the semigroups generated by them. The fractional Cauchy problem

associated with a Feller semigroup was studied by Popescu, see [8].

In the literature, there are many definitions of fractional derivative. To mention some:

(i) Riemann - Liouville Definition. For α ∈ [n−1,n), the α derivative of f is

Dα
a ( f )(t) =

1
Γ(n−α)

dn

dtn

t∫
a

f (x)

(t− x)α−n+1 dx.

(ii) Caputo Definition. For α ∈ [n−1,n), the α derivative of f is

Dα
a ( f )(t) =

1
Γ(n−α)

t∫
a

f (n)(x)

(t− x)α−n+1 dx.

However, the following are the setbacks of one definition or the other:

(i) The Riemann-Liouville derivative does not satisfy Dα
a (1) = 0 (Dα

a (1) = 0 for the Caputo

derivative), if α is not a natural number.
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(ii) All fractional derivatives do not satisfy the known formula of the derivative of the product

of two functions:

Dα
a ( f g) = f Dα

a (g)+gDα

a ( f ).

(iii) All fractional derivatives do not satisfy the known formula of the derivative of the quotient

of two functions:

Dα
a ( f/g) =

gDα
a ( f )− f Dα

a (g)
g2 .

(iv) All fractional derivatives do not satisfy the chain rule:

Dα
a ( f ◦g)(t) = f (α)

(
g(t)

)
g(α)(t).

(v) All fractional derivatives do not satisfy: DαDβ f = Dα+β f , in general.

(vi) All fractional derivatives, specially Caputo definition, assumes that the function f is

differentiable.

In [6], the authors gave a new definition of fractional derivative which is a natural extension

to the usual first derivative as follows:

Given a function f : [0,∞)−→ R. Then for all t > 0, α ∈ (0,1), let

Tα( f )(t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

,

Tα is called the conformable fractional derivative of f of order α.

Let f (α)(t) stands for Tα( f )(t). Hence f (α)(t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

.

If f is α−differentiable in some (0,b), b > 0, and lim
t→0+

f (α)(t) exists, then let

f (α)(0) = lim
t→0+

f (α)(t).

The conformable derivative satisfies all the classical properties of derivative.

Further, according to this derivative, the following statements are true, see [6].

1. Tα(t p) = pt p−α for all p ∈ R,

2. Tα(sin 1
α

tα) = cos 1
α

tα ,
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3. Tα(cos 1
α

tα) =−sin 1
α

tα ,

4. Tα(e
1
α

tα

) = e
1
α

tα

.

The α−fractional integral of a function f starting from a≥ 0, see [6], is :

Ia
α( f )(t) = Ia

1 (t
α−1 f ) =

∫ t

a

f (x)
x1−α

dx,

where the integral is the usual Riemann improper integral, and α ∈ (0,1).

For more about higher conformable fractional integrals and derivatives in left and right senses

and other basic concepts we refer to [1].

The object of this paper is two folds: To introduce the fractional semigroups of operators

associated with the conformable fractional derivative, then as an application we study the frac-

tional abstract Cauchy problem according to the conformable fractional derivative which was

introduced in [6]. Indeed, we prove that fractional α− semigroup, is the classical solution of

fractional abstract Cauchy problem. Throughout this paper, α ∈ (0,1].

2. The basic definition

Definition 2.1. Let α ∈ (0,a] for any a > 0. For a Banach space X , A family {T (t)}t≥0 ⊆

L (X ,X) is called a fractional α−semigroup (or α−semigroup) of operators if:

(i) T (0) = I,

(ii) T (s+ t)
1
α = T (s

1
α )T (t

1
α ) for all s, t ∈ [0,∞).

Clearly, if α = 1, then 1−semigroups are just the usual semigroups.

Example 2.1. Let A be a bounded linear operator on X . Define T (t) = e2
√

tA. Then {T (t)}t≥0

is a 1
2−semigroup. Indeed:

(i) T (0) = e0A = I.

(ii) T (s+ t)2 = e2
√

(s+t)2A = e2(s+t)A = e2sAe2tA = T (s2)T (t2).

For the definition of conformable fractional exponential matrix and power series expansions

see [1].
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Example 2.2. Let X =C[0,∞), the space of real valued continuous functions on [0,∞). Define

(T (t) f )(s) = f (s+2
√

t). Then one can easily show that T is a 1
2− semigroup of operators.

Definition 2.2. An α−semigroup T (t) is called a c0−semigroup if, for each fixed x ∈ X ,

T (t)x−→ x as t −→ 0+.

The conformable α−derivative of T (t) at t = 0 is called the α− infinitesimal generator of

the fractional α−semigroup T (t), with domain equals{
x ∈ X : lim

t→0+
T (α)(t)x exists

}
.

We will write A for such generator.

Theorem 2.1. Let {T (t)}t≥0 ⊆L (X ,X) be a c0−α−semigroup with infinitesimal generator

A, 0 < α ≤ 1. If T (t) is continuously α−differentiable and x ∈ D(A), then

T α(t)x = AT (t)x = T (t)Ax.

Proof. Let us begin with

T (α)(t)x = lim
ε→0

T (t + εt1−α)x−T (t)x
ε

= lim
ε→0

T (tα +(t + εt1−α)α − tα)
1
α x−T (t)x

ε

= lim
ε→0

T (tα +((t + εt1−α)α − tα))
1
α x−T (t)x

ε
.

Since T (t) is an α−semigroup of operators, then T (a+b)
1
α = T

(
a

1
α

)
T
(

b
1
α

)
. Hence

T (α)(t)x = lim
ε→0

T (tα)
1
α T ((t + εt1−α)α − tα))

1
α x−T (t)x

ε

= lim
ε→0

T (t)[T ((t + εt1−α)α − tα))
1
α x−T (0)x]

ε
.

Now, using the Mean Value Theorem for conformable fractional derivative, see [6], we get

T (t)[T ((t + εt1−α)α − tα))
1
α x−T (0)x]

ε
= T (t)T (α)(c)x

[(t + εt1−α)α − tα ]

αε
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for some 0 < c < (t + εt1−α)α − tα .

If ε → 0, then c→ 0, and lim
ε→0

T (α)(c) = T (α)(0) = A. Consequently,

T (α)(t)x = T (t)Ax lim
ε→0

[(t + εt1−α)α − tα ]

αε
.

Using L,Hopital’s Rule, we get

lim
ε→0

[(t + εt1−α)α − tα ]

αε
= 1. Hence T (α)(t)x = T (t)Ax.

Similarly, one can show that T (t)x ∈ D(A) and T (α)(t)x = AT (t)x.

This ends the proof.

Let X =C[0,∞) be the space of continuous real-valued functions such that lim
x→∞

f (x) is finite,

with the sup norm. Define T : [0,∞)→L (X ,X), by(
T (t) f

)
(s) = f (s+

1
α

tα).

Claim: T is an α−semigroup.

Indeed: (
T (t + k)

1
α f
)
(s) = f

(
s+

1
α
[(t + k)

1
α ]α
)

= f (s+
1
α

t +
1
α

k)

=
(
T (t

1
α )T (k

1
α ) f
)
(s).

It is almost immediate that T (0) = I and T (t) f ∈ X whenever f ∈ X and that

‖T (t) f‖∞ ≤ ‖ f‖∞, t ≥ 0,

so that T (t) ∈ L (X ,X). Since the operator T (t) is a translation operator corresponding to

moving the graph of f 1
α

tα units to the left and chopping off the part to the left of the origin,

it is known from the literature that T (t) f is right-continuous at 0. So T (t) is an α−semigroup.

Theorem 2.2. The infinitesimal generator of the above semigroup is

A f (s) = f ′(s),

D(A) = { f ∈ X : f ′ exists in X}.
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Proof.

T (α)(t) f (s) = t1−αT ′(t) f (s)

= t1−α lim
ε→0

T (t + ε) f (s)−T (t) f (s)
ε

= t1−α lim
ε→0

f (s+ 1
α
(t + ε)α − f (s+ 1

α
tα)

ε

= t1−α lim
ε→0

f (s+ 1
α
(t + ε)α)− f (s+ 1

α
tα)

ε
.

f (s+ t + ε)− f (s+ t)
f (s+ t + ε)− f (s+ t)

= t1−α lim
ε→0

f (s+ 1
α
(t + ε)α)− f (s+ 1

α
tα)

f (s+ t + ε)− f (s+ t)
.

f (s+ t + ε)− f (s+ t)
ε

.

Now

lim
ε→0

f (s+ t + ε)− f (s+ t)
ε

= f ′(s+ t), lim
ε→0

f (s+ 1
α
(t + ε)α − f (s+ 1

α
tα)

f (s+ t + ε)− f (s+ t)
=

0
0

.

Use L’Hopital’s rule (with respect to ε) to get

lim
ε→0

f (s+ 1
α
(t + ε)α)− f (s+ 1

α
tα)

f (s+ t + ε)− f (s+ t)
= (t)α−1 f ′(s+

1
α
(t)α)

/
f ′(s+ t).

Thus the product gives

T (α)(t) f (s) = f ′(s+
1
α

tα).

Now take the limit as t→ 0 to get

T (α)(0) f (s) = f ′(s).

Hence A f = f ′. This completes the proof.

Let us show how our theory can be applied to obtain information about solutions of certain

problems. In particular, we want to use the fractional semigroups approach for solving the

so-called α− abstract Cauchy problem.

Definition 2.2. Let X be a Banach space, A : D(A)⊆ X −→ X a linear operator and u0 ∈ X . A

function u : [0,∞)−→ X is a solution of the α− abstract Cauchy problem

u(α)(t) = Au(t), t > 0,(1)

u(0) = u0(2)
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if:

(i) u is continuous on [0,∞),

(ii) u is continuously α−differentiable on (0,∞),

(iii) u(t) ∈ D(A) for t > 0,

(iv) u satisfies (1)-(2).

Theorem 2.3. Let X be a Banach space and A the infinitesimal generator of a c0−α−semigroup

{T (t)}t≥0 ⊆ L (X ,X). If u0 ∈ D(A), then problem (1)-(2) has one and only one solution u,

namely,

u(t) = T (t)u0.

Proof. Clearly u(t) = T (t)x is a solution of problem (1)-(2). For uniqueness, let u be a solution

of (1)-(2). Then

[T (t− s)u(s)](α) = T (t− s)u(α)(s)−AT (t− s)u(s)

= T (t− s)u(α)(s)−T (t− s)Au(s)

= T (t− s)[u(α)(s)−Au(s)]

= 0.

Applying I0
α , in s, we have

T (t− t)u(t)−T (t)u0 = 0⇒ u(t) = T (t)u0.

This completes the proof.

Remark 2.1. Let X = C[0,∞) be the space of continuous real-valued functions such that

lim
x→∞

f (x) is finite, with the sup norm. Define the operator A by

A f (s) = f ′(s),

D(A) = { f ∈ X : f ′ exists in X}.

Then A is a generator of the above α−semigroup of translation. If u0 ∈ D(A), then problem

(1)-(2) has the unique solution u(t) = T (t)u0, where T (t) is an α−semigroup generated by A.
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Now it is readily seen that if g is continuously differentiable on [0,∞), then

u(x, t) = g
(

x+
1
α

tα

)
is the unique solution of the problem

∂ αu
∂ tα

=
∂u
∂x

, x > 0, t > 0,

u(x,0) = g(x), x > 0.
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