EPIMORPHICALLY PRESERVED SEMIGROUP IDENTITIES

WAJIH ASHRAF
Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

Copyright © 2017 W. Ashraf. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, it is shown that a particular classes of heterotypical identities whose both sides contain repeated variables and are preserved under epis in conjunction with all seminormal identities.

Keywords: Epimorphism, saturated semigroup, saturated variety, closed under epis, preserved under epis, heterotypical identity, semicommutative and seminormal identities.

2010 AMS Subject Classification: 20M05, 20M07

1. Introduction

An identity of the form

$$
\begin{equation*}
x_{1} x_{2} \cdots x_{n}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}(n \geq 2) \tag{1}
\end{equation*}
$$

is called a permutation identity, where i is any permutation of the set $\{1,2,3, \ldots, n\}$ and $i_{k}(1 \leq$ $k \leq n)$ is the image of k under the permutation i. A permutation identity of the form (1) is said to be nontrivial if the permutation i is different from the identity permutation. Further a nontrivial permutation identity $x_{1} x_{2} \cdots x_{n}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$ is called left semicommutative if $i_{1} \neq 1$, right semicommutative if $i_{n} \neq n$ and seminormal if $i_{1}=1$ and $i_{n}=n$. Clearly, every nontrivial permutation identity is either left semicommutative, right semicommutative, or seminormal. A
semigroup S satisfying a nontrivial permutation identity is said to be permutative, and a variety \mathscr{V} of semigroups is said to be permutative if it admits a nontrivial permutation identity. Commutativity $[x y=y x]$, left normality $\left[x_{1} x_{2} x_{3}=x_{1} x_{3} x_{2}\right]$, right normality $\left[x_{1} x_{2} x_{3}=x_{2} x_{1} x_{3}\right]$, and normality $\left[x_{1} x_{2} x_{3} x_{4}=x_{1} x_{3} x_{2} x_{4}\right]$ are some of the well known permutation identities.

For any word u, the content of u (necessarily finite) is the set of all variables appearing in u and is denoted by $C(u)$. An identity $u=v$ is said to be heterotypical if $C(u) \neq C(v)$; otherwise homotypical. A variety \mathscr{V} of semigroups is said to be heterotypical if it admits a heterotypical identity.

Let U and S be any semigroups with U a subsemigroup of S. Following Isbell [8], we say that U dominates an element d of S if for every semigroup T and for all homomorphisms $\alpha, \beta: S \rightarrow T, u \alpha=u \beta$ for all $u \in U$ implies $d \alpha=d \beta$. The set of all elements of S dominated by U is called the dominion of U in S, and we denote it by $\operatorname{Dom}(U, S)$. It may easily be seen that $\operatorname{Dom}(U, S)$ is a subsemigroup of S containing U. A semigroup U is said to be saturated if $\operatorname{Dom}(U, S) \neq S$ for every properly containing semigroup S, and epimorphically embedded or dense in S if $\operatorname{Dom}(U, S)=S$.

A morphism $\alpha: S \rightarrow T$ in the category of all semigroups is called an epimorphism (epi for short) if for all morphisms $\beta, \gamma, \alpha \beta=\alpha \gamma$ implies $\beta=\gamma$. Every onto morphism is epi, but the converse is not true in general. It may easily be checked that $\alpha: S \rightarrow T$ is epi if and only if the inclusion map $i: S \alpha \rightarrow T$ is epi and the inclusion map $i: U \rightarrow S$ is epi if and only if $\operatorname{Dom}(U, S)=S$. A variety \mathscr{V} of semigroups is said to be saturated if all its members are saturated and epimorphically closed or closed under epis if whenever $S \in \mathscr{V}$ and $\varphi: S \rightarrow T$ is epi in the category of all semigroups, then $T \in \mathscr{V}$ or equivalently whenever $U \in \mathscr{V}$ and $\operatorname{Dom}(U, S)=S$, then $S \in \mathscr{V}$. An identity μ is said to be preserved under epis in conjunction with an identity τ if whenever S satisfies τ and μ, and $\varphi: S \rightarrow T$ is an epimorphism in the category of all semigroups, then T also satisfies τ and μ; or equivalently, whenever U satisfies τ and μ and $\operatorname{Dom}(U, S)=S$, then S also satisfies τ and μ.

In [10], Khan had shown that all identities are preserved under epis in conjunction with commutativity. In [11], Khan gave a sufficient condition for a heterotypical variety to be saturated. He showed that if a semigroup variety \mathscr{V} admits a heterotypical identity of which atleast one
side has no repeated variable, then \mathscr{V} is saturated, and, hence, all heterotypical identities whose atleast one side has no repeated variable are preserved under epis in conjunction with all nontrivial permutation identities. Khan [13] had further shown that all identities are preserved under epis in conjunction with left [right] semicommutativity. However Higgins [5] had shown that the identity $x y x=y x y$ is not preserved under epis in conjunction with the normality identity $x_{1} x_{2} x_{3} x_{4}=x_{1} x_{3} x_{2} x_{4}$.

Therefore, it is natural to find those semigroup identities whose both sides contain repeated variables and preserved under epis in conjunction with any seminormal identity.

In the present paper, we obtain a result about heterotypical identity (Theorem 3.6) towards this goal, by establishing some sufficient conditions for such identities to lie in this class and thus, extending [1, Theorem 3.4]. However, a full determination of all such identities to be preserved under epis in conjunction with all seminormal permutation identities still remains an open problem.

2. Preliminaries

Now we state some results to be used in the rest of the paper. Our notation will be standard and, for any unexplained symbols and terminology, we refer the reader to Cliford and Preston [4] and Howie [7]. Further in whatever follows, we will often speak of a semigroup satisfying (1) to mean that the semigroup in question satisfies an identity of that type.

Result 2.1 [13, Theorem 3.1]. All permutation identities are preserved under epis. A most useful characterization of semigroup dominions is provided by Isbell's Zigzag Theorem.

Result 2.2 ([9, Theorem 2.3]).Let U be a subsemigroup of a semigroup S and let $d \in S$. Then $d \in \operatorname{Dom}(U, S)$ if and only if $d \in U$ or there exists a series of factorizations of d as follows: $\quad d=a_{0} t_{1}=y_{1} a_{1} t_{1}=y_{1} a_{2} t_{2}=y_{2} a_{3} t_{2}=\cdots=y_{m} a_{2 m-1} t_{m}=y_{m} a_{2 m}$
where $m \geq 1, a_{i} \in U(i=0,1, \ldots, 2 m), y_{i}, t_{i} \in S(i=1,2, \ldots, m)$, and
$a_{0}=y_{1} a_{1}, a_{2 m-1} t_{m}=a_{2 m}, a_{2 i-1} t_{i}=a_{2 i} t_{i+1}, y_{i} a_{2 i}=y_{i+1} a_{2 i+1}(1 \leq i \leq m-1)$.
Such a series of factorization is called a zigzag in S over U with value d, length m and spine
$a_{0}, a_{1}, \ldots, a_{2 m}$. We refer to the equations in Result 2.2 as the zigzag equations.
Result 2.3 [12, Result 3].Let U be any subsemigroup of a semigroup S and let d in
$\operatorname{Dom}(U, S) \backslash U$. If (2) is a zigzag of minimal length m over U with value d, then $y_{j}, t_{j} \in S \backslash U$ for all $j=1,2, \ldots, m$.

In the following results, let U and S be any semigroups with U dense in S.
Result 2.4 [12, Result 4].For any $d \in S \backslash U$ and k any positive integer, if (2) is a zigzag of minimal length over U with value d, then there exist $b_{1}, b_{2}, \ldots, b_{k} \in U$ and $d_{k} \in S \backslash U$ such that $d=b_{1} b_{2} \cdots b_{k} d_{k}$.
Result 2.5 [12, Corollary 4.2].If U be permutative, then $s x_{1} x_{2} \cdots x_{k} t=s x_{j_{1}} x_{j_{2}} \cdots x_{j_{k}} t$, for all $x_{1}, x_{2}, \ldots, x_{k} \in S, s, t \in S \backslash U$ and any permutation j of the set $\{1,2, \ldots, k\}$.

The symmetrical statement in the following result is in addition to the original statement.
Result 2.6 [13, Proposition 4.6].Assume that U is permutative. If $d \in S \backslash U$ and (2) be a zigzag of length m over U with value d such that $y_{1} \in S \backslash U$, then $d^{k}=a_{0}^{k} t_{1}^{k}$ for each positive integer k; in particular, the conclusion holds if (2) is of minimal length. Symmetrically, if $d \in S \backslash U$ and (2) be a zigzag of length m over U with value d such that $t_{m} \in S \backslash U$, then $d^{k}=y_{m}^{k} a_{2 m}^{k}$ for each positive integer k; in particular, the conclusion holds if (2) is of minimal length.

3. Main results

Proposition 3.1:Let U be a permutative semigroup satisfying a seminormal permutation identity of a semigroup S such that $\operatorname{Dom}(U, S)=S$. If U satisfies the semigroup identity

$$
\begin{equation*}
x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}=w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{n}^{t_{n}} \tag{3}
\end{equation*}
$$

then (3) also holds for all $x_{1}, x_{2}, \ldots, x_{r} \in S$ and $y_{1}, y_{2}, \ldots, y_{s}, w_{1}, w_{2}, \ldots, w_{n}$ in U, where $p_{1}, p_{2}, \ldots, p_{r}, q_{1}, q_{2}, \ldots, q_{s}, t_{1}, t_{2}, \ldots, t_{n}$ are any non negative integers such that: $(r, s, n \geq$ $1) ; p_{1} \leq p_{2} \leq \cdots \leq p_{r-1} \leq p_{r} ; q_{s} \leq q_{s-1} \cdots \leq q_{2} \leq q_{1}$ and $t_{1} \leq t_{2} \leq \cdots \leq t_{n}$.
Proof. Assume that U satisfies the identity (3). Therefore

$$
u_{1}^{p_{1}} u_{2}^{p_{2}} \cdots u_{r}^{p_{r}} v_{1}^{q_{1}} v_{2}^{q_{2}} \cdots v_{s}^{q_{s}}=a_{1}^{t_{1}} a_{2}^{t_{2}} \cdots a_{n}^{t_{n}}
$$

for all $u_{1}, u_{2}, \ldots, u_{r}, v_{1}, v_{2}, \ldots, v_{s}, a_{1}, a_{2}, \ldots, a_{n} \in U$.
We show that (3) is true for all $x_{1}, \ldots, x_{r} \in S$ and $y_{1}, \ldots, y_{s}, w_{1}, \ldots, w_{n} \in U$. For $k=1,2,3, \ldots, r$; consider the word $x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{k}^{p_{k}}$ of length $p_{1}+p_{2}+\cdots p_{k}$. We shall show that (3) is satisfied by induction on k, assuming that the remaining elements $x_{k+1}, x_{k+2}, \ldots, x_{r} \in U$. First for $k=0$, the equation (3) is vacuously satisfied. So assume next that (3) is true for all $x_{1}, x_{2}, \ldots, x_{k-1} \in S$ and all $x_{k}, x_{k+1}, \ldots, x_{r} \in U$. Then we shall show that (3) is true for all $x_{1}, x_{2}, \ldots, x_{k-1}, x_{k} \in S$ and all x_{k+1}, \ldots, x_{r} in U. If $x_{k} \in U$, then (3) is satisfied by inductive hypothesis. So assume that $x_{k} \in S \backslash U$. As $x_{k} \in S \backslash U$ and $\operatorname{Dom}(U, S)=S$, by Result 2.2, let (2) be a zigzag of minimal length m over U with value x_{k}. So assume that $1 \leq k<r$.

$$
\begin{aligned}
& x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \quad=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{k-1}^{p_{k-1}} y_{m}^{p_{k}} a_{2 m}^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
\end{aligned}
$$

(by zigzag equations and Result 2.6)

$$
=z y_{m}^{(m)^{p_{k}}} b_{1}^{(m)}{ }^{p_{k}} \cdots b_{k-1}^{(m)}{ }^{p_{k}} a_{2 m}^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

(by Results 2.4 and 2.5 for some $\mathrm{b}_{1}^{(m)}, \ldots, b_{k-1}^{(m)} \in U$
and $y_{m}^{(m)} \in S \backslash U$ as $y_{m} \in S \backslash U$ and $a_{2 m}=a_{2 m-1} t_{m}$
with $t_{m} \in S \backslash U$ and where $\left.z=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{k-1}^{p_{k-1}}\right)$

$$
=z y_{m}^{(m)}{ }^{p_{k}} v^{(m)} b_{1}^{(m)^{p_{1}}} \cdots b_{k-1}^{(m)}{ }^{p_{k-1}} a_{2 m}^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

(by Result 2.5 as $y_{m}^{(m)}, t_{m} \in S \backslash U$ and where
$v^{(m)}=b_{1}^{\left.(m)^{p_{k}-p_{1}} \cdots b_{k-1}^{(m)} p_{k}^{p_{k}-p_{k-1}}\right)}$
$=z y_{m}^{(m)^{p_{k}}} \nu^{(m)} b_{1}^{(m)^{p_{1}}} \cdots b_{k-1}^{(m)}{ }^{p_{k-1}}\left(a_{2 m-1}^{2} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}$ (as $a_{2 m-1}^{2} t_{m}=a_{2 m-1} a_{2 m-1} t_{m}=a_{2 m-1} a_{2 m} \in U, y_{m}^{(m)}, t_{m} \in S \backslash U$ and U satisfies (3))

$$
=z y_{m}^{(m)^{p_{k}}} v^{(m)} b_{1}^{(m)^{p_{1}}} \cdots b_{k-1}^{(m)}{ }^{p_{k-1}} a_{2 m-1}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

$$
\text { (by Result } 2.5 \text { as } y_{m}^{(m)}, t_{m} \in S \backslash U \text {) }
$$

$$
\begin{aligned}
= & \left.z y_{m}^{(m)}\right)^{p_{k}} b_{1}^{(m)^{p_{k}} \cdots b_{k-1}^{(m)} p_{k}} a_{2 m-1}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \left(\text { by Result } 2.5 \text { as } y_{m}^{(m)}, t_{m} \in S \backslash U \text { and as } v^{(m)}=b_{1}^{(m) p_{k}-p_{1}} \cdots b_{k-1}^{(m)}{ }^{p_{k}-p_{k-1}}\right) \\
= & z y_{m}^{p_{k}} a_{2 m-1}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\left(\text { by Result } 2.5 \text { as } y_{m}^{(m)}, t_{m} \in S \backslash U\right) \\
= & z\left(y_{m} a_{2 m-1}\right)^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{\left.p_{k+1} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \text { (by Result } 2.5 \text { as } y_{m}, t_{m} \in S \backslash U\right)} \\
= & z\left(y_{m-1} a_{2 m-2}\right)^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \text { (by zigzag equations) } \\
= & z y_{m-1}^{p_{k}} a_{2 m-2}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\left(\text { by Result } 2.5 \text { as } y_{m-1}, t_{m} \in S \backslash U\right)}
\end{aligned}
$$

$$
=z y_{m-1}^{(m-1) p_{k}} b_{1}^{(m-1)^{p_{k}}} \cdots b_{k-1}^{(m-1)}{ }^{p_{k}} a_{2 m-2}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \text { (by Results }
$$

$$
\left.2.4 \text { and } 2.5 \text { for some } b_{1}^{(m-1)}, \ldots, b_{k-1}^{(m-1)} \in U \text { and } y_{m-1}^{(m-1)} \in S \backslash U \text { as } y_{m-1}, t_{m} \in S \backslash U\right)
$$

$$
=z y_{m-1}^{(m-1)} \nu^{p_{k}} v^{(m-1)} b_{1}^{(m-1)^{p_{1}}} \cdots b_{k-1}^{(m-1)^{p_{k-1}}}\left(a_{2 m-2} a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}(\text { by }
$$

Result 2.5 as $y_{m-1}^{(m-1)}, t_{m} \in S \backslash U$ and where $\left.\nu^{(m-1)}=b_{1}^{(m-1)^{p_{k}-p_{1}} \cdots b_{k-1}^{(m-1)} p_{k}-p_{k-1}}\right)$
$=z y_{m-1}^{(m-1)^{p_{k}}} v^{(m-1)} b_{1}^{(m-1)^{p_{1}}} \cdots b_{k-1}^{(m-1)^{p_{k-1}}}\left(a_{2 m-3} a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
(as $a_{2 m-3} a_{2 m-1} t_{m}=a_{2 m-3} a_{2 m} \in U$ and U satisfies (3))
$=z y_{m-1}^{(m-1)^{p_{k}}} v^{(m-1)} b_{1}^{(m-1)^{p_{1}}} \cdots b_{k-1}^{(m-1)^{p_{k-1}}} a_{2 m-3}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
(by Result 2.5 as $y_{m-1}^{(m-1)}, t_{m} \in S \backslash U$)
$=z y_{m-1}^{(m-1)^{p_{k}}} b_{1}^{(m-1)^{p_{k}}} \cdots b_{k-1}^{(m-1) p^{p_{k}}} a_{2 m-3}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$

$=z y_{m-1}^{p_{k}} a_{2 m-3}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
(by Result 2.5 as $y_{m-1}^{(m-1)}, t_{m} \in S \backslash U$)

$$
\begin{aligned}
= & z\left(y_{m-1} a_{2 m-3}\right)^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \left(\text { by Result } 2.5 \text { as } y_{m-1}, t_{m} \in S \backslash U\right) \\
= & z\left(y_{m-2} a_{2 m-4}\right)^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \text { (by zigzag equations) } \\
= & z y_{m-2}^{p_{k}} a_{2 m-4}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
\end{aligned}
$$

(by Result 2.5 as $y_{m-2}, t_{m} \in S \backslash U$)
\vdots
$=z y_{2}^{p_{k}} a_{4}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
$=z y_{2}^{(2)^{p_{k}}} b_{1}^{(2){ }^{p_{k}}} \cdots b_{k-1}^{(2)}{ }^{p_{k}} a_{4}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$ (by Results
2.4 and 2.5 for some $b_{1}^{(2)}, \ldots, b_{k-1}^{(2)} \in U$ and $y_{2}^{(2)} \in S \backslash U$ as $\left.y_{2}, t_{m} \in S \backslash U\right)$
$=z y_{2}^{(2)^{p_{k}}} v^{(2)} b_{1}^{(2)^{p_{1}}} \cdots b_{k-1}^{(2)}{ }^{p_{k-1}} a_{4}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}(\mathrm{by}$
Result 2.5 as $y_{2}^{(2)}, t_{m} \in S \backslash U$ and where $v^{(2)}=b_{1}^{\left.(2)^{p_{k}-p_{1}} \cdots b_{k-1}^{(2)}{ }^{p_{k}-p_{k-1}}\right) ~}$
$=z y_{2}^{(2)^{p_{k}}} v^{(2)} b_{1}^{(2)^{p_{1}}} \cdots b_{k-1}^{(2)}{ }^{p_{k-1}}\left(a_{4} a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
(by Result 2.5 as $y_{2}^{(2)}, t_{m} \in S \backslash U$)
$=z y_{2}^{(2)}{ }^{p_{k}} v^{(2)} b_{1}^{(2) p^{p_{1}}} \cdots b_{k-1}^{(2)}{ }^{p_{k-1}}\left(a_{3} a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
(as $a_{3} a_{2 m-1} t_{m}=a_{3} a_{2 m} \in U$ and U satisfies (3))
$=z y_{2}^{(2)^{p_{k}}} v^{(2)} b_{1}^{(2)^{p_{1}}} \cdots b_{k-1}^{(2)}{ }^{p_{k-1}} a_{3}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
(by Result 2.5 as $y_{2}^{(2)}, t_{m} \in S \backslash U$)
$=z y_{2}^{(2) p_{k}} b_{1}^{(2)^{p_{k}}} \cdots b_{k-1}^{(2)}{ }^{p_{k}} a_{3}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$ (by Result 2.5 as $y_{2}^{(2)}, t_{m} \in S \backslash U$ and $v^{(2)}=b_{1}^{(2)^{p_{k}-p_{1}} \cdots b_{k-1}^{(2)} p_{k}-p_{k-1}}$)
$=z y_{2}^{p_{k}} a_{3}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\left(\right.$ by Result 2.5 as $\left.y_{2}^{(2)}, t_{m} \in S \backslash U\right)$

$$
\begin{aligned}
& =z\left(y_{2} a_{3}\right)^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\left(\text { by Result } 2.5 \text { as } y_{2}, t_{m} \in S \backslash U\right) \\
& =z\left(y_{1} a_{2}\right)^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}(\text { by zigzag equations }) \\
& =z y_{1}^{p_{k}} a_{2}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\left(\text { by Result } 2.5 \text { as } y_{1}, t_{m} \in S \backslash U\right) \\
& =z y_{1}^{(1)^{p_{k}}} b_{1}^{(1) p_{k}} \cdots b_{k-1}^{(1)}{ }^{p_{k}} a_{2}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}(\text { by Results } 2.4 \text { and }
\end{aligned}
$$ 2.5 for some $b_{1}^{(1)}, \ldots, b_{k-1}^{(1)} \in U$ and $y_{1}^{(1)} \in S \backslash U$ as $\left.y_{1}, t_{m} \in S \backslash U\right)$

$$
=z y_{1}^{(1)^{p_{k}}} v^{(1)} b_{1}^{(1)^{p_{1}}} \cdots b_{k-1}^{(1)}{ }^{p_{k-1}} a_{2}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

$$
\text { (by Result } 2.5 \text { as } y_{1}^{(1)}, t_{m} \in S \backslash U \text { and where } v^{(1)}=b_{1}^{\left.(1)^{p_{k}-p_{1}} \cdots b_{k-1}^{(1)} p_{k}^{p_{k}-p_{k-1}}\right) ~}
$$

$$
=z y_{1}^{(1)^{p_{k}}} v^{(1)} b_{1}^{(1)^{p_{1}}} \cdots b_{k-1}^{(1)^{p_{k-1}}}\left(a_{2} a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

(by Result 2.5 as $y_{1}^{(1)}, t_{m} \in S \backslash U$)
$=z y_{1}^{(1) p_{k}} v^{(1)} b_{1}^{(1)^{p_{1}}} \cdots b_{k-1}^{(1)}{ }^{p_{k-1}}\left(a_{1} a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$ (as $a_{2} a_{2 m-1} t_{m}=a_{2} a_{2 m} \in U$ and U satisfies (3))

$$
=z y_{1}^{(1)^{p_{k}}} v^{(1)} b_{1}^{(1)^{p_{1}}} \cdots b_{k-1}^{(1)}{ }^{p_{k-1}} a_{1}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

(by Result 2.5 as $y_{1}^{(1)}, t_{m} \in S \backslash U$)
$=z y_{1}^{(1) p_{k}} b_{1}^{(1) p_{k}} \cdots b_{k-1}^{(1) p_{k}} a_{1}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$

$=z y_{1}^{p_{k}} a_{1}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\left(\right.$ by Result 2.5 as $\left.y_{1}^{(1)}, t_{m} \in S \backslash U\right)$
$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{k-1}^{p_{k-1}} y_{1}^{p_{k}} a_{1}^{p_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\left(\right.$ as $\left.z=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{k-1}^{p_{k-1}}\right)$
$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{k-1}^{p_{k-1}}\left(y_{1} a_{1} a_{2 m-1} t_{m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
(by Result 2.5 as y_{1}, t_{m} in $S \backslash U$)

$$
\begin{aligned}
= & x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{k-1}^{p_{k-1}}\left(a_{0} a_{2 m}\right)^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \text { (by the zigzag equations) } \\
= & w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{n}^{t_{n}} \\
& \left(\text { by inductive hypothesis as } a_{0} a_{2 m} \in U\right)
\end{aligned}
$$

as required.

Proposition 3.2:Let U be a permutative semigroup satisfying a seminormal permutation identity of a semigroup S such that $\operatorname{Dom}(U, S)=S$. If U satisfies the semigroup identity (3), then (3) also holds for all $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s} \in S$ and w_{1}, \ldots, w_{n} in U, where $p_{1}, p_{2}, \ldots, p_{r} ; q_{1}, q_{2}, \ldots, q_{s}$, $t_{1}, t_{2}, \ldots, t_{n}$, are any non negative integers such that: $(r, s, n \geq 1) ; p_{1} \leq p_{2} \leq \cdots \leq p_{r-1} \leq p_{r}$, $q_{s} \leq q_{s-1} \cdots \leq q_{2} \leq q_{1}$ and $t_{1} \leq t_{2} \leq \cdots \leq t_{n}$.
Proof: We show that (3) is true for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s} \in S$ and $w_{1}, w_{2}, \ldots, w_{n} \in U$. For $k=1,2,3, \ldots, s$; consider the word $y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{k}^{q_{k}}$ of length $q_{1}+q_{2}+\cdots+q_{k}$. We shall show that (3) is satisfied by induction on k assuming that the remaining elements $y_{k+1}, y_{k+2}, \ldots, y_{s}$ in U. For $k=0$, (3) trivially holds. So assume that (3) is true for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{k-1} \in S$ and for all $y_{k}, y_{k+1}, \ldots, y_{s} \in U$. Then we shall show that (3) is true for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{k} \in$ S and $y_{k+1}, \ldots, y_{s} \in U$. If $y_{k} \in U$, then (3) holds by inductive hypothesis. So assume that $y_{k} \in S \backslash U$. As $y_{k} \in S \backslash U$ and $\operatorname{Dom}(U, S)=S$, by Result 2.2, let (2) be a zigzag of minimal length m over U with value y_{k}. So assume that $1 \leq k<r$. As the equalities (4) and (5) follow by Results 2.4 and 2.5 for some $b_{k+1}^{(1)}, \ldots, b_{r}^{(1)} \in U$ and $t_{1}^{(1)}$ in $S \backslash U$ as $y_{1}, t_{1} \in S \backslash U$ and where $z=y_{k+1}^{q_{k+1}} \cdots y_{s}^{q_{s}}$ and $w^{(1)}=b_{k+1}^{(1) q_{k}-q_{k+1}} \cdots b_{r}^{(1) q_{k}-q_{s}}$, we have

$$
\begin{align*}
& x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \quad=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}} a_{0}^{q_{k}} t_{1}^{q_{k}} y_{k+1}^{q_{k+1}} \cdots y_{s}^{q_{s}} \text { (by zigzag equations and Result 2.6) } \\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}} a_{0}^{q_{k}} b_{k+1}^{(1)} q_{k} \cdots b_{s}^{(1) q_{k}} t_{1}^{(1) q_{k}} y_{k+1}^{q_{k}} \cdots y_{s}^{q_{s}} \tag{4}\\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}} a_{0}^{q_{k}} b_{k+1}^{(1) q_{k+1}} \cdots b_{s}^{(1) q_{s}} w^{(1)} t_{1}^{(1) q_{k}} z \tag{5}
\end{align*}
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}^{2}\right)^{q_{k}} b_{k+1}^{(1) q_{k+1}} \cdots b_{s}^{(1)^{q_{s}}} w^{(1)} t_{1}^{(1)^{q_{k}}} z
$$

$$
\text { (by inductive hypothesis as } \left.y_{1} a_{1}^{2}=y_{1} a_{1} a_{1}=a_{0} a_{1} \in U\right)
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}} a_{1}^{q_{k}} b_{k+1}^{(1) q_{k+1}} \cdots b_{s}^{(1) q_{s}} w^{(1)} t_{1}^{(1) q_{k}} z
$$

$$
\text { (by Result } 2.5 \text { as } y_{1}, t_{1}^{(1)} \in S \backslash U \text {) }
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}} a_{1}^{q_{k}} b_{k+1}^{(1) q_{k}} \cdots b_{s}^{(1)^{q_{k}}} t_{1}^{(1) q_{k}} z
$$

$$
\text { (by Result } \left.2.5 \text { and definition of } w^{(1)}\right)
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}} a_{1}^{q_{k}} t_{1}^{q_{k}} z
$$

$$
\text { (by Result } \left.2.5 \text { as } b_{k+1}^{(1) q_{k}} \cdots b_{s}^{(1)^{q_{k}}} t_{1}^{(1)^{q_{k}}}=t_{1}^{q_{k}}\right)
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}}\left(a_{1} t_{1}\right)^{q_{k}} z\left(\text { by Result } 2.5 \text { as } y_{1}, t_{1} \in S \backslash U\right)
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}}\left(a_{2} t_{2}\right)^{q_{k}} z \text { (by zigzag equations) }
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}} a_{2}^{q_{k}} t_{2}^{q_{k}} z\left(\text { by Result } 2.5 \text { as } y_{1}, t_{2} \in S \backslash U\right)
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1} a_{2}\right)^{q_{k}} t_{2}^{q_{k}} z\left(\text { by Result } 2.5 \text { as } y_{1}, t_{2} \in S \backslash U\right)
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1} a_{2}\right)^{q_{k}} b_{k+1}^{(2)}{ }^{q_{k}} \cdots b_{s}^{(2)^{q_{k}}} t_{2}^{(2)^{q_{k}}} z
$$

where the last equality follows by Results 2.4 and 2.5 for some $b_{k+1}^{(1)}, \ldots, b_{s}^{(1)}$ in $U, t_{2}^{(2)}$ in $S \backslash U$ as $y_{1}, t_{2} \in S \backslash U$.
As the equalities (6), (7) and (8) follow by letting $w^{(2)}=b_{k+1}^{(2) q_{k}-q_{k+1}} \cdots b_{s}^{(2) q_{k}-q_{s}}$ and by Result 2.5 as $y_{1}, t_{2}^{(2)} \in S \backslash U$; by Result 2.5 as $y_{1}, t_{2}^{(2)} \in S \backslash U$; and by Result 2.5 and the definition of $w^{(2)}$ respectively, we have

$$
\begin{aligned}
& x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \quad=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1} a_{2}\right)^{q_{k}} b_{k+1}^{(2) q_{k}} \cdots b_{s}^{(2)^{q_{k}}} t_{2}^{(2)^{q_{k}}} z
\end{aligned}
$$

$$
\begin{align*}
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1} a_{2}\right)^{q_{k}} b_{k+1}^{(2)}{ }^{q_{k+1}} \cdots b_{s}^{(2) q_{s}} w^{(2)} t_{2}^{(2)^{q_{s}}} z \\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1} a_{3}\right)^{q_{k}} b_{k+1}^{(2)}{ }^{q_{k+1}} \cdots b_{s}^{(2)^{q_{s}}} w^{(2)} t_{2}^{(2)^{q_{k}}} z \\
& \text { (by inductive hypothesis as } y_{1} a_{1} a_{3}=a_{0} a_{3} \in U \text {) } \\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}} a_{3}^{q_{k}} b_{k+1}^{(2){ }^{q_{k+1}}} \cdots b_{s}^{(2) q_{s}} w^{(2)} t_{2}^{(2) q_{k}} z \tag{7}\\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}} a_{3}^{q_{k}} b_{k+1}^{(2)}{ }^{q_{k}} \cdots b_{s}^{(2)^{q_{k}}} t_{2}^{(2)^{q_{k}}} z \tag{8}\\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}} a_{3}^{q_{k}} t_{2}^{q_{k}} z\left(\text { by Result } 2.5 \text { as } b_{k+1}^{(2)}{ }^{q_{k}} \cdots b_{s}^{(2) q_{k}} t_{2}^{(2)^{q_{k}}}=t_{2}^{q_{k}}\right) \\
& \vdots \\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}} a_{2 m-3}^{q_{k}} t_{m-1}^{q_{k}} z \\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}}\left(a_{2 m-3} t_{m-1}\right)^{q_{k}} z\left(\text { by Result } 2.5 \text { as } y_{1}, t_{m-1} \text { in } S \backslash U\right) \\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}}\left(a_{2 m-1} t_{m}\right)^{q_{k}} z \text { (by zigzag equations) } ‘ \\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1}\right)^{q_{k}} a_{2 m-2}^{q_{k}} t_{m}^{q_{k}} z\left(\text { by Result } 2.5 \text { as } y_{1}, t_{m} \in S \backslash U\right) \\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1} a_{2 m-2}\right)^{q_{k}} t_{m}^{q_{k}} z\left(\text { by Result } 2.5 \text { as } y_{1}, t_{m} \in S \backslash U\right) \\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1} a_{2 m-2}\right)^{q_{k}} b_{k+1}^{(m)}{ }^{q_{k}} \cdots b_{s}^{(m)^{q_{k}}} t_{m}^{(m)^{q_{k}}} z
\end{align*}
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1} a_{2 m-1}\right)^{q_{k}} b_{k+1}^{(m)}{ }^{q_{k+1}} \cdots b_{s}^{(m)^{q_{s}}} w^{(m)} t_{m}^{(m)^{q_{k}}} z
$$ (by inductive hypothesis as $y_{1} a_{1} a_{2 m-1}=a_{0} a_{2 m-1} \in U$)

$$
\begin{equation*}
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1} a_{2 m-1}\right)^{q_{k}} b_{k+1}^{(m)}{ }^{q_{k}} \cdots b_{s}^{(m)^{q_{k}}} t_{m}^{(m)^{q_{k}}} z \tag{10}
\end{equation*}
$$

$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1} a_{2 m-1}\right)^{q_{k}} t_{m}^{q_{k}} z$
(by Result 2.5 as $b_{k+1}^{(m)}{ }^{q_{k}} \cdots b_{s}^{(m)^{q_{k}}} t_{m}^{(m)}{ }^{q_{k}}=t_{m}^{q_{k}}$)
$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(y_{1} a_{1} a_{2 m-1} t_{m}\right)^{q_{k}} y_{k+1}{ }^{q_{k+1}} \cdots y_{s}^{q_{s}}$
(by Result 2.5 and the definition of z)
$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}}\left(a_{0} a_{2 m}\right)^{q_{k}} y_{k+1}{ }^{q_{k+1}} \cdots y_{s}^{q_{s}}$ (by zigzag equations)
$=w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{n}^{t_{n}}$ (by inductive hypothesis as $a_{0} a_{2 m} \in U$),
where equality (10) follows by Result 2.5 as $y_{1}, t_{m}^{(m)} \in S \backslash U$ and the definition of $w^{(m)}$.
Therefore

$$
x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}=w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{n}^{t_{n}}
$$

holds for all $x_{1}, x_{2}, \ldots x_{r}, y_{1}, y_{2}, \ldots, y_{s} \in S$ and $w_{1}, w_{2}, \ldots, w_{n} \in U$.

Proposition 3.3:Let U be a permutative semigroup satisfying a seminormal permutation identity of a semigroup S such that $\operatorname{Dom}(U, S)=S$. If U satisfies the semigroup identity (3), then (3) also holds for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s} \in U$ and w_{1}, \ldots, w_{n}
in S, where $p_{1}, p_{2}, \ldots, p_{r}, q_{1}, q_{2}, \ldots, q_{s}, t_{1}, t_{2}, \ldots, t_{n}$ are any non negative integers
$(r, s, n \geq 1) ; p_{1} \leq p_{2} \leq \cdots \leq p_{r-1} \leq p_{r}, q_{s} \leq q_{s-1} \cdots \leq q_{2} \leq q_{1}$ and $t_{1} \leq t_{2} \leq \cdots \leq t_{n}$.
Proof: We show that (3) is true for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s} \in U$ and $w_{1}, w_{2}, \ldots, w_{n} \in S$. For $k=1,2,3, \ldots, r$; consider the word $w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{k}^{t_{k}}$ of length $t_{1}+t_{2}+\cdots+t_{k}$. We shall show that (3) holds for all $w_{1}, w_{2}, \ldots, w_{n} \in S$ and $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}$ in U by induction on k assuming that the remaining elements $w_{k+1}, w_{k+2}, \ldots, w_{r}$ in U. For $k=0$, (3) trivially holds. So assume that (3) is true for all $w_{1}, w_{2}, \ldots, w_{k-1} \in S$ and for all $w_{k}, w_{k+1}, \ldots, w_{n} \in U$. Then we shall show
that (3) is true for all $w_{1}, w_{2}, \ldots, w_{k} \in S$ and $w_{k+1}, \ldots, w_{n} \in U$. If $w_{k} \in U$, then (3) holds by inductive hypothesis. So assume that $w_{k} \in S \backslash U$. As $w_{k} \in S \backslash U$ and $\operatorname{Dom}(U, S)=S$, by Result 2.2, let (2) be a zigzag of minimal length m over U with value w_{k}. Now for $1 \leq k<r$

$$
\begin{aligned}
& w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{n}^{t_{n}} \\
& \quad=w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{k-1}^{t_{k-1}} y_{m}^{t_{k}} a_{2 m}^{a} t_{k} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}} \text { (by zigzag }
\end{aligned}
$$ equations and Result 2.6)

$=z y_{m}^{(m)^{t_{k}}} b_{1}^{(m)^{t_{k}}} \cdots b_{k-1}^{(m)^{t_{k}}} a_{2 m}^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$
(by Results 2.4 and 2.5 for some $b_{1}^{(m)}, \ldots \ldots, b_{k-1}^{(m)} \in U$
and $y_{m}^{(m)} \in S \backslash U$ as $y_{m} \in S \backslash U$ and $a_{2 m}=a_{2 m-1} t_{m}$
with $t_{m} \in S \backslash U$ and where $\left.z=w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{k-1}^{t_{k-1}}\right)$
$=z y_{m}^{(m)^{t_{k}}} v^{(m)} b_{1}^{(m)^{t_{1}}} \cdots b_{k-1}^{(m)}{ }^{t_{k-1}} a_{2 m}^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$
(by Result 2.5 as $y_{m}^{(m)}, t_{m} \in S \backslash U$ and where $v^{(m)}=b_{1}^{(m)^{t_{k}-t_{1}}} \cdots b_{k-1}^{\left.(m)^{t_{k}-t_{k-1}}\right)}$
$=z y_{m}^{(m)^{t_{k}}} v^{(m)} b_{1}^{(m)^{t_{1}}} \cdots b_{k-1}^{(m)^{t_{k-1}}}\left(a_{2 m-1}^{2} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$ (as $a_{2 m-1}^{2} t_{m}=a_{2 m-1} a_{2 m-1} t_{m}=a_{2 m-1} a_{2 m} \in U$, $y_{m}^{(m)}, t_{m} \in S \backslash U$ and U satisfies (3))
$=z y_{m}^{(m)^{t_{k}}} v^{(m)} b_{1}^{(m)^{t_{1}}} \cdots b_{k-1}^{(m)}{ }^{t_{k-1}} a_{2 m-1}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$
(by Result 2.5 as $y_{m}^{(m)}, t_{m} \in S \backslash U$)
$=z y_{m}^{(m)^{t_{k}}} b_{1}^{(m)^{t_{k}}} \cdots b_{k-1}^{(m)}{ }^{t_{k}} a_{2 m-1}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$
(by Result 2.5 as $y_{m}^{(m)}, t_{m} \in S \backslash U$ and as $v^{(m)}=b_{1}^{\left.(m)^{t_{k}-t_{1}} \cdots b_{k-1}^{(m)^{t_{k}-t_{k-1}}}\right), ~\left({ }^{2}\right)}$

$$
=z y_{m}^{t_{k}} a_{2 m-1}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}
$$

(by Result 2.5 as $y_{m}^{(m)}, t_{m} \in S \backslash U$ and as $y_{m}^{(m)^{t_{k}}} b_{1}^{(m)^{t_{k}}} \cdots b_{k-1}^{(m)}=y_{m}^{t_{k}}$)
$=z\left(y_{m} a_{2 m-1}\right)^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$
(by Result 2.5 as $y_{m}, t_{m} \in S \backslash U$)
$=z\left(y_{m-1} a_{2 m-2}\right)^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$ (by zigzag equations)
$=z y_{m-1}^{t_{k}} a_{2 m-2}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$
(by Result2.5 as $y_{m-1}, t_{m} \in S \backslash U$)

$$
=z y_{m-1}^{(m-1)^{t_{k}}} b_{1}^{(m-1)^{t_{k}}} \cdots b_{k-1}^{(m-1)^{t_{k}}} a_{2 m-2}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} x_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}
$$

(by Results 2.4 and 2.5 for some $b_{1}^{(m-1)}, \ldots, b_{k-1}^{(m-1)} \in U$ and $y_{m-1}^{(m-1)} \in S \backslash U$ as $\left.y_{m-1}, t_{m} \in S \backslash U\right)$
$=z y_{m-1}^{(m-1)^{t_{k}}} v^{(m-1)} b_{1}^{(m-1)^{t_{1}}} \cdots b_{k-1}^{(m-1)^{t_{k-1}}}\left(a_{2 m-2} a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$
(by Result 2.5 as $y_{m-1}, t_{m} \in S \backslash U$ and where

$$
\left.v^{(m-1)}=b_{1}^{(m-1)^{t_{k}-t_{1}}} \cdots b_{k-1}^{(m-1)^{t_{k}-t_{k-1}}}\right)
$$

$$
=z y_{m-1}^{(m-1)^{t_{k}}} v^{(m-1)} b_{1}^{(m-1)^{t_{1}}} \cdots b_{k-1}^{(m-1)^{t_{k-1}}}\left(a_{2 m-3} a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}
$$

$$
\left(\text { as } a_{2 m-3} a_{2 m-1} t_{m}=a_{2 m-3} a_{2 m} \in U \text { and } U\right. \text { satisfies (3)) }
$$

$=z y_{m-1}^{(m-1) t_{k}} v^{(m-1)} b_{1}^{(m-1)^{t_{1}}} \cdots b_{k-1}^{(m-1)^{t_{k-1}}} a_{2 m-3}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$ (by Result 2.5 as $y_{m-1}^{(m-1)}, t_{m} \in S \backslash U$)
$=z y_{m-1}^{(m-1)^{t_{k}}} b_{1}^{(m-1)^{t_{k}}} \cdots b_{k-1}^{(m-1)^{t_{k}}} a_{2 m-3}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$ (by Result 2.5 as $v^{(m-1)}=b_{1}^{(m-1)^{t_{k}-t_{1}}} \cdots b_{k-1}^{(m-1)^{t_{k}-t_{k-1}}}$ and $\left.y_{m-1}^{(m-1)}, t_{m} \in S \backslash U\right)$

$$
\begin{aligned}
= & z y_{m-1}^{t_{k}} a_{2 m-3}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}} \text { (by Result } 2.5 \text { as } \\
& \left.y_{m-1}^{(m-1)}, t_{m} \in S \backslash U \text { and } y_{m-1}^{(m-1)^{t_{k}}} b_{1}^{(m-1)^{t_{k}}} \cdots b_{k-1}^{(m-1)^{t_{k}}}=y_{m-1}^{t_{k}}\right) \\
= & z\left(y_{m-1} a_{2 m-3}\right)^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}} \text { (by Result } 2.5 \text { as } \\
& \left.y_{m-1}, t_{m} \in S \backslash U\right) \\
= & z\left(y_{m-2} a_{2 m-4}\right)^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}} \text { (by zigzag equations) } \\
= & z y_{m-2}^{t_{k}} a_{2 m-4}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}
\end{aligned}
$$

$$
\text { (by Result } 2.5 \text { as } y_{m-2}, t_{m} \in S \backslash U \text {) }
$$

$$
\vdots
$$

$$
=z y_{2}^{t_{k}} a_{4}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}
$$

$$
=z y_{2}^{(2)^{t_{k}}} b_{1}^{(2)^{t_{k}}} \cdots b_{k-1}^{(2)}{ }^{t_{k}} a_{4}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}} \text { (by Results } 2.4
$$

$$
\text { and } \left.2.5 \text { for some } b_{1}^{(2)}, \ldots, b_{k-1}^{(2)} \in U \text { and } y_{2}^{(2)} \in S \backslash U \text { as } y_{2}, t_{m} \in S \backslash U\right)
$$

$$
=z y_{2}^{(2)^{t_{k}}} v^{(2)} b_{1}^{(2)^{t_{1}}} \cdots b_{k-1}^{(2)}{ }^{t_{k-1}} a_{4}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}} \text { (by Result }
$$

$$
\left.2.5 \text { as } y_{2}^{(2)}, t_{m} \in S \backslash U \text { and where } v^{(2)}=b_{1}^{(2)^{t_{k}-t_{1}}} \cdots b_{k-1}^{(2)} t_{k}-t_{k-1}\right)
$$

$$
=z y_{2}^{(2)^{t_{k}}} v^{(2)} b_{1}^{(2)^{t_{1}}} \cdots b_{k-1}^{(2)}{ }^{t_{k-1}}\left(a_{4} a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}
$$

(by Result 2.5 as $y_{2}^{(2)}, t_{m} \in S \backslash U$)
$=z y_{2}^{(2)^{t_{k}}} v^{(2)} b_{1}^{(2)^{t_{1}}} \cdots b_{k-1}^{(2)}{ }^{t_{k-1}}\left(a_{3} a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$
(as $a_{3} a_{2 m-1} t_{m}=a_{3} a_{2 m} \in U$ and U satisfies (3))
$=z y_{2}^{(2)^{t_{k}}} v^{(2)} b_{1}^{(2)^{t_{1}}} \cdots b_{k-1}^{(2)}{ }^{t_{k-1}} a_{3}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$
(by Result 2.5 as $y_{2}^{(2)}, t_{m} \in S \backslash U$)
$=z y_{2}^{(2)^{t_{k}}} b_{1}^{(2)^{t_{k}}} \cdots b_{k-1}^{(2)}{ }^{t_{k}} a_{3}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}$
(by Result 2.5 as $y_{2}^{(2)}, t_{m} \in S \backslash U$ and $v^{(2)}=b_{1}^{(2)^{t_{k}-t_{1}}} \cdots b_{k-1}^{(2)^{t_{k}-t_{k-1}}}$)

$$
\begin{aligned}
= & z y_{2}^{t_{k}} a_{3}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}} \\
& \left(\text { by Result } 2.5 \text { as } y_{2}^{(2)}, t_{m} \in S \backslash U \text { and } y_{2}^{(2) t_{k}} b_{1}^{(2) t_{k}} \cdots b_{k-1}^{(2) t_{k}}=y_{2}^{t_{k}}\right) \\
= & z\left(y_{2} a_{3}\right)^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}\left(\text { by Result } 2.5 \text { as } y_{2}, t_{m} \in S \backslash U\right) \\
= & z\left(y_{1} a_{2}\right)^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{p_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}(\text { by zigzag equations }) \\
= & z y_{1}^{t_{k}} a_{2}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}\left(\text { by Result } 2.5 \text { as } y_{1}, t_{m} \in S \backslash U\right) \\
= & z y_{1}^{(1)^{t_{k}}} b_{1}^{(1)^{t_{k}}} \cdots b_{k-1}^{(1)}{ }^{t_{k}} a_{2}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}(\text { by Results } 2.4 \text { and } \\
& \left.2.5 \text { for some } b_{1}^{(1)}, \ldots, b_{k-1}^{(1)} \in U \text { and } y_{1}^{(1)} \in S \backslash U \text { as } y_{1}, t_{m} \in S \backslash U\right) \\
= & z y_{1}^{(1)^{t_{k}}} v^{(1)} b_{1}^{(1)^{t_{1}}} \cdots b_{k-1}^{(1)} t_{k-1}^{t_{k}} a_{2}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}
\end{aligned}
$$

$$
\text { (by Result } 2.5 \text { as } y_{1}^{(1)}, t_{m} \in S \backslash U \text { and where }
$$

$$
\left.v^{(1)}=b_{1}^{(1)^{t_{k}-t_{1}}} \cdots b_{k-1}^{(1)^{t_{k}-t_{k-1}}}\right)
$$

$$
=z y_{1}^{(1)^{t_{k}}} v^{(1)} b_{1}^{(1)^{t_{1}}} \cdots b_{k-1}^{(1)^{t_{k-1}}}\left(a_{2} a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}
$$

$$
\text { (by Result } \left.2.5 \text { as } y_{1}^{(1)}, t_{m} \in S \backslash U\right)
$$

$$
=z y_{1}^{(1)^{t_{k}}} v^{(1)} b_{1}^{(1)^{t_{1}}} \cdots b_{k-1}^{(1)^{t_{k-1}}}\left(a_{1} a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}
$$

$$
\left(\text { as } a_{2} a_{2 m-1} t_{m}=a_{2} a_{2 m} \in U \text { and } U \text { satisfies }(3)\right)
$$

$$
=z y_{1}^{(1)^{t_{k}}} v^{(1)} b_{1}^{(1)^{t_{1}}} \cdots b_{k-1}^{(1) t_{k-1}} a_{1}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}
$$

$$
\text { (by Result } \left.2.5 \text { as } y_{1}^{(1)}, t_{m} \in S \backslash U\right)
$$

$$
=z y_{1}^{(1)^{t_{k}}} b_{1}^{(1)^{t_{k}}} \cdots b_{k-1}^{(1)}{ }^{t_{k}} a_{1}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}
$$

$$
\text { (by Result } \left.2.5 \text { as } y_{1}^{(1)}, t_{m} \in S \backslash U \text { and } v^{(1)}=b_{1}^{(1)^{t_{k}-t_{1}}} \cdots b_{k-1}^{(1) t_{k}-t_{k-1}}\right)
$$

$$
=z y_{1}^{t_{k}} a_{1}^{t_{k}}\left(a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}
$$

$$
\text { (by Result } 2.5 \text { as } y_{1}^{(1)}, t_{m} \in S \backslash U \text { and } y_{1}^{(1) t_{k}} b_{1}^{(1) t_{k}} \cdots b_{k-1}^{(1) t_{k}}=y_{1}^{t_{k}} \text {) }
$$

$$
\begin{aligned}
= & w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{k-1}^{t_{k-1}}\left(y_{1} a_{1} a_{2 m-1} t_{m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}} \text { (by Result } 2.5 \text { as } y_{1}, t_{m} \\
& \text { in } S \backslash U) \\
= & w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{k-1}^{t_{k-1}}\left(a_{0} a_{2 m}\right)^{t_{k}} w_{k+1}^{t_{k+1}} \cdots w_{n}^{t_{n}}(\text { by the zigzag equations }) \\
= & x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\left(\text { by inductive hypothesis as } a_{0} a_{2 m} \in U\right) .
\end{aligned}
$$

Therefore

$$
w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{n}^{t_{n}}=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} .
$$

Now using Propositions 3.2, 3.3 and 3.4, we have the following:
Theorem 3.4:All semigroup identities of the form

$$
x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}=w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{n}^{t_{n}}
$$

are preserved under epis in conjunction with all seminormal permutation identities for all non negative integers $p_{1}, p_{2}, \ldots, p_{r}, q_{1}, q_{2}, \ldots, q_{s}, t_{1}, t_{2}, \ldots, t_{n}$ $(r, s, n \geq 1) ; p_{1} \leq p_{2} \leq \cdots \leq p_{r-1} \leq p_{r}, q_{s} \leq q_{s-1} \cdots \leq q_{2} \leq q_{1}, t_{1} \leq t_{2} \leq \cdots \leq t_{n}$.

Proof: Take any $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}, w_{1}, \ldots, w_{n} \in S$. Then by proposition 3.2 , for any $u_{1}, u_{2}, \ldots, u_{n} \in$ U, we have
$x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}=u_{1}^{t_{1}} u_{2}^{t_{2}} \cdots u_{n}^{t_{n}}$
Again, by proposition 3.3, for any $v_{1}, v_{2}, \ldots, v_{r+s} \in U$, we have
$w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{n}^{t_{n}}=v_{1}^{p_{1}} v_{2}^{p_{2}} \cdots v_{r}^{p_{r}} v_{r+1}^{q_{1}} \cdots v_{r+s}^{q_{s}}$
Now,

$$
\begin{aligned}
& x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \quad=u_{1}^{t_{1}} u_{2}^{t_{2}} \cdots u_{n}^{t_{n}}(\text { by equality (11)) } \\
& \quad=v_{1}^{p_{1}} v_{2}^{p_{2}} \cdots v_{r}^{p_{r}} v_{r+1}^{q_{1}} \cdots v_{r+s}^{q_{s}}((\text { as U satisfies }(3)) \\
& \quad=w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{n}^{t_{n}}(\text { by equality }(12))
\end{aligned}
$$

as required.

Similarly, we can prove the following theorem:
Theorem 3.5:All semigroup identities of the form

$$
x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}}=w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{n}^{t_{n}} z_{1}^{l_{1}} z_{2}^{l_{2}} \cdots z_{m}^{l_{m}}
$$

are preserved under epis in conjunction with all seminormal permutation identities for all non negative integers $p_{1}, p_{2}, \ldots, p_{r}, t_{1}, t_{2}, \ldots, t_{n}, l_{1}, l_{2}, \ldots, l_{m}(r, n, m \geq 1) ; p_{1} \leq$ $p_{2} \leq \cdots \leq p_{r-1} \leq p_{r}, t_{1} \leq t_{2} \leq \cdots \leq t_{n}$ and $l_{m} \leq l_{m-1} \cdots \leq l_{2} \leq l_{1}$.

Now using Theorems 3.4 and 3.5, Finally, we have the following main theorem which is the extension of [1, Theorem 3.4]:

Theorem 3.6:All semigroup identities of the form

$$
x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}=w_{1}^{t_{1}} w_{2}^{t_{2}} \cdots w_{n}^{t_{n}} z_{1}^{l_{1}} z_{2}^{l_{2}} \cdots z_{m}^{l_{m}}
$$

are preserved under epis in conjunction with all seminormal permutation identities for all non negative integers $p_{1}, p_{2}, \ldots, p_{r}, q_{1}, q_{2}, \ldots, q_{s}, t_{1}, t_{2}, \ldots, t_{n}, l_{1}, l_{2}, \ldots, l_{m}$ $(r, s, n, m \geq 1) ; p_{1} \leq p_{2} \leq \cdots \leq p_{r-1} \leq p_{r}, q_{s} \leq q_{s-1} \cdots \leq q_{2} \leq q_{1}, t_{1} \leq t_{2} \leq \cdots \leq t_{n}$ and $l_{m} \leq l_{m-1} \cdots \leq l_{2} \leq l_{1}$.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgement

The author is thankful to U.G.C., INDIA for START-UP-GRANT (No.F.30-90/2015, BSR).

References

[1] Ashraf, W., Khan, N,M.: Epimorphism and heterotypical identities-II, J. Semigroup Theory Appl. Vol. 1 (2012), No. 1, 1-28.
[2] Ashraf, W., Khan, N,M.: On Epimorphisms and Seminormal identities, J. Semigroup Theory Appl. 2013 (2013), Article ID 1.
[3] Ashraf, W., Khan, N,M.: On Epimorphisms and Semigroup identities, Algebra Letters 2013 (2013), Article ID 2.
[4] Clifford, A. H., Preston, G. B.: The Algebraic Theory of Semigroups, Math. Surveys No.7, Amer. Math. Soc., Providence, R. I., (vol. I, 361), (vol. II, 367).
[5] Higgins, P. M.: Saturated and epimorphically closed varieties of semigroups, J. Austral. Math. Soc. (Ser. A) 36 (384), 33-35.
[6] Higgins, P. M.: Epimorphisms, permutation identities and finite semigroups, Semigroup Forum 29(384), 87-97.
[7] Howie, J. M.: An introduction to semigroup theory, London Math. Soc. Monographs vol.7, Academic Press, 376.
[8] Howie, J. M., Isbell, J.R.: Epimorphisms and dominions II, J. Algebra 6(367), 7-21.
[9] Isbell, J. R.: Epimorphisms and dominions, Proceedings of the conference on Categorical Algebra, La Jolla, 365, 232-246, Lange and Springer, Berlin 366.
[10] Khan, N. M.: Epimorphisms, dominions and varieties of semigroups, Semigroup Forum 25(382), 331-337.
[11] Khan, N. M.: Some saturated varieties of semigroups, Bull. Austral. Math. Soc. 27(383), 43-425.
[12] Khan, N. M.: On saturated permutative varieties and consequences of permutation identities, J. Austral. Math. Soc. (ser. A) 38(385), 186-37.
[13] Khan, N. M.: Epimorphically closed permutative varieties, Trans. Amer. Math. Soc. 287(385), 507-528.
[14] Khan, N. M., Shah, A.H., Alam, N., Ashraf, W.: Epimorphism and heterotypical identities, Algebra and its applications, 111-126, (2010)(Proceedings of the conference on Algebra and its Applications, Aligarh, India).

