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1. Introduction

An identity of the form

x1x2 · · ·xn = xi1xi2 · · ·xin (n≥ 2) (1)

is called a permutation identity, where i is any permutation of the set {1,2,3, . . . ,n} and ik (1≤

k ≤ n) is the image of k under the permutation i. A permutation identity of the form (1) is

said to be nontrivial if the permutation i is different from the identity permutation. Further a

nontrivial permutation identity x1x2 · · ·xn = xi1xi2 · · ·xin is called left semicommutative if i1 6= 1,

right semicommutative if in 6= n and seminormal if i1 = 1 and in = n. Clearly, every nontrivial

permutation identity is either left semicommutative, right semicommutative, or seminormal. A
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semigroup S satisfying a nontrivial permutation identity is said to be permutative, and a va-

riety V of semigroups is said to be permutative if it admits a nontrivial permutation identity.

Commutativity [xy = yx], left normality [x1x2x3 = x1x3x2], right normality [x1x2x3 = x2x1x3],

and normality [x1x2x3x4 = x1x3x2x4] are some of the well known permutation identities.

For any word u, the content of u (necessarily finite) is the set of all variables appearing in u

and is denoted by C(u). An identity u = v is said to be heterotypical if C(u) 6=C(v); otherwise

homotypical. A variety V of semigroups is said to be heterotypical if it admits a heterotypical

identity.

Let U and S be any semigroups with U a subsemigroup of S. Following Isbell [8], we say

that U dominates an element d of S if for every semigroup T and for all homomorphisms

α,β : S→ T , uα = uβ for all u ∈U implies dα = dβ . The set of all elements of S dominated

by U is called the dominion of U in S, and we denote it by Dom(U,S). It may easily be seen

that Dom(U,S) is a subsemigroup of S containing U . A semigroup U is said to be saturated

if Dom(U,S) 6= S for every properly containing semigroup S, and epimorphically embedded or

dense in S if Dom(U,S) = S.

A morphism α : S→ T in the category of all semigroups is called an epimorphism (epi for short)

if for all morphisms β ,γ , αβ = αγ implies β = γ . Every onto morphism is epi, but the converse

is not true in general. It may easily be checked that α : S→ T is epi if and only if the inclusion

map i : Sα → T is epi and the inclusion map i : U → S is epi if and only if Dom(U,S) = S. A

variety V of semigroups is said to be saturated if all its members are saturated and epimorphi-

cally closed or closed under epis if whenever S ∈ V and ϕ : S→ T is epi in the category of all

semigroups, then T ∈ V or equivalently whenever U ∈ V and Dom(U,S) = S, then S ∈ V .

An identity µ is said to be preserved under epis in conjunction with an identity τ if whenever

S satisfies τ and µ , and ϕ : S→ T is an epimorphism in the category of all semigroups, then T

also satisfies τ and µ; or equivalently, whenever U satisfies τ and µ and Dom(U,S) = S, then S

also satisfies τ and µ .

In [10], Khan had shown that all identities are preserved under epis in conjunction with com-

mutativity. In [11], Khan gave a sufficient condition for a heterotypical variety to be saturated.

He showed that if a semigroup variety V admits a heterotypical identity of which atleast one
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side has no repeated variable, then V is saturated, and, hence, all heterotypical identities whose

atleast one side has no repeated variable are preserved under epis in conjunction with all non-

trivial permutation identities. Khan [13] had further shown that all identities are preserved under

epis in conjunction with left [right] semicommutativity. However Higgins [5] had shown that

the identity xyx = yxy is not preserved under epis in conjunction with the normality identity

x1x2x3x4 = x1x3x2x4.

Therefore, it is natural to find those semigroup identities whose both sides contain repeated

variables and preserved under epis in conjunction with any seminormal identity.

In the present paper, we obtain a result about heterotypical identity (Theorem 3.6) towards this

goal, by establishing some sufficient conditions for such identities to lie in this class and thus,

extending [1, Theorem 3.4]. However, a full determination of all such identities to be preserved

under epis in conjunction with all seminormal permutation identities still remains an open prob-

lem.

2. Preliminaries
Now we state some results to be used in the rest of the paper. Our notation will be standard

and, for any unexplained symbols and terminology, we refer the reader to Cliford and Preston

[4] and Howie [7]. Further in whatever follows, we will often speak of a semigroup satisfying

(1) to mean that the semigroup in question satisfies an identity of that type.

Result 2.1 [13, Theorem 3.1]. All permutation identities are preserved under epis.

A most useful characterization of semigroup dominions is provided by Isbell’s Zigzag Theo-

rem.

Result 2.2 ([9, Theorem 2.3]).Let U be a subsemigroup of a semigroup S and let d ∈ S. Then

d ∈ Dom(U,S) if and only if d ∈ U or there exists a series of factorizations of d as fol-

lows: d = a0t1 = y1a1t1 = y1a2t2 = y2a3t2 = · · ·= yma2m−1tm = yma2m (2)

where m≥ 1, ai ∈U (i = 0,1, . . . ,2m), yi, ti ∈ S (i = 1,2, . . . ,m), and

a0 = y1a1, a2m−1tm = a2m, a2i−1ti = a2iti+1, yia2i = yi+1a2i+1 (1≤ i≤ m−1).

Such a series of factorization is called a zigzag in S over U with value d, length m and spine
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a0,a1, . . . ,a2m. We refer to the equations in Result 2.2 as the zigzag equations.

Result 2.3 [12, Result 3].Let U be any subsemigroup of a semigroup S and let d in

Dom(U,S) \U. If (2) is a zigzag of minimal length m over U with value d, then y j, t j ∈ S \U

for all j = 1,2, . . . ,m.

In the following results, let U and S be any semigroups with U dense in S.

Result 2.4 [12, Result 4].For any d ∈ S \U and k any positive integer, if (2) is a zigzag of

minimal length over U with value d, then there exist b1,b2, . . . ,bk ∈U and dk ∈ S\U such that

d = b1b2 · · ·bkdk.

Result 2.5 [12, Corollary 4.2].If U be permutative, then sx1x2 · · ·xkt = sx j1x j2 · · ·x jkt, for all

x1,x2, . . . ,xk ∈ S, s, t ∈ S\U and any permutation j of the set {1,2, . . . ,k}.

The symmetrical statement in the following result is in addition to the original statement.

Result 2.6 [13, Proposition 4.6].Assume that U is permutative. If d ∈ S\U and (2) be a zigzag

of length m over U with value d such that y1 ∈ S\U, then dk = ak
0tk

1 for each positive integer k;

in particular, the conclusion holds if (2) is of minimal length. Symmetrically, if d ∈ S \U and

(2) be a zigzag of length m over U with value d such that tm ∈ S\U, then dk = yk
mak

2m for each

positive integer k; in particular, the conclusion holds if (2) is of minimal length.

3. Main results

Proposition 3.1:Let U be a permutative semigroup satisfying a seminormal permutation iden-

tity of a semigroup S such that Dom(U,S) = S. If U satisfies the semigroup identity

xp1
1 xp2

2 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s = wt1

1 wt2
2 · · ·w

tn
n (3)

then (3) also holds for all x1,x2, . . . ,xr ∈ S and y1,y2, . . . ,ys,w1,w2, . . . ,wn in U,

where p1, p2, . . . , pr,q1,q2, . . . ,qs, t1, t2, . . . , tn are any non negative integers such that: (r,s,n≥

1); p1 ≤ p2 ≤ ·· · ≤ pr−1 ≤ pr; qs ≤ qs−1 · · · ≤ q2 ≤ q1 and t1 ≤ t2 ≤ ·· · ≤ tn.

Proof. Assume that U satisfies the identity (3). Therefore

up1
1 up2

2 · · ·u
pr
r vq1

1 vq2
2 · · ·v

qs
s = at1

1 at2
2 · · ·a

tn
n
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for all u1,u2, . . . ,ur,v1,v2, . . . ,vs,a1,a2, . . . ,an ∈U .

We show that (3) is true for all x1, . . . ,xr ∈ S and y1, . . . ,ys,w1, . . . ,wn ∈U . For k = 1,2,3, . . . ,r;

consider the word xp1
1 xp2

2 · · ·x
pk
k of length p1 + p2 + · · · pk. We shall show that (3) is satisfied

by induction on k, assuming that the remaining elements xk+1,xk+2, . . . ,xr ∈U . First for k = 0,

the equation (3) is vacuously satisfied. So assume next that (3) is true for all x1,x2, . . . ,xk−1 ∈ S

and all xk,xk+1, . . . ,xr ∈U . Then we shall show that (3) is true for all x1,x2, . . . ,xk−1,xk ∈ S

and all xk+1, . . . ,xr in U . If xk ∈U , then (3) is satisfied by inductive hypothesis. So assume

that xk ∈ S\U . As xk ∈ S\U and Dom(U,S) = S, by Result 2.2, let (2) be a zigzag of minimal

length m over U with value xk. So assume that 1≤ k < r.

xp1
1 xp2

2 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

= xp1
1 xp2

2 · · ·x
pk−1
k−1 ypk

m apk
2mxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

( by zigzag equations and Result 2.6)

= zy(m)
m

pk
b(m)

1
pk · · ·b(m)

k−1

pk
apk

2mxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Results 2.4 and 2.5 for some b(m)
1 , . . . ,b(m)

k−1 ∈U

and y(m)
m ∈ S\U as ym ∈ S\U and a2m = a2m−1tm

with tm ∈ S\U and where z = xp1
1 xp2

2 · · ·x
pk−1
k−1 )

= zy(m)
m

pk
v(m)b(m)

1
p1 · · ·b(m)

k−1

pk−1
apk

2mxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y(m)
m , tm ∈ S\U and where

v(m) = b(m)
1

pk−p1 · · ·b(m)
k−1

pk−pk−1
)

= zy(m)
m

pk
v(m)b(m)

1
p1 · · ·b(m)

k−1

pk−1
(a2

2m−1tm)
pkxpk+1

k+1 · · ·x
pr
r yq1

1 · · ·y
qs
s

(as a2
2m−1tm = a2m−1a2m−1tm = a2m−1a2m ∈U,y(m)

m , tm ∈ S\U and U satisfies (3))

= zy(m)
m

pk
v(m)b(m)

1
p1 · · ·b(m)

k−1

pk−1
apk

2m−1(a2m−1tm)
pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y(m)
m , tm ∈ S\U)



6 WAJIH ASHRAF

= zy(m)
m

pk
b(m)

1
pk · · ·b(m)

k−1

pk
apk

2m−1(a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y(m)
m , tm ∈ S\U and as v(m) = b(m)

1
pk−p1 · · ·b(m)

k−1

pk−pk−1
)

= zypk
m apk

2m−1(a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s (by Result 2.5 as y(m)

m , tm ∈ S\U)

= z(yma2m−1)
pk(a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s (by Result 2.5 as ym, tm ∈ S\U)

= z(ym−1a2m−2)
pk(a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s (by zigzag equations)

= zypk
m−1apk

2m−2(a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s (by Result2.5 as ym−1, tm ∈ S\U)

= zy(m−1)
m−1

pk
b(m−1)

1
pk · · ·b(m−1)

k−1

pk
apk

2m−2(a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s (by Results

2.4 and 2.5 for some b(m−1)
1 , . . . ,b(m−1)

k−1 ∈U and y(m−1)
m−1 ∈ S\U as ym−1, tm ∈ S\U)

= zy(m−1)
m−1

pk
v(m−1)b(m−1)

1
p1 · · ·b(m−1)

k−1

pk−1
(a2m−2a2m−1tm)

pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s (by

Result 2.5 as y(m−1)
m−1 , tm ∈ S\U and where v(m−1) = b(m−1)

1
pk−p1 · · ·b(m−1)

k−1

pk−pk−1
)

= zy(m−1)
m−1

pk
v(m−1)b(m−1)

1
p1 · · ·b(m−1)

k−1

pk−1
(a2m−3a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

(as a2m−3a2m−1tm = a2m−3a2m ∈U and U satisfies (3))

= zy(m−1)
m−1

pk
v(m−1)b(m−1)

1
p1 · · ·b(m−1)

k−1

pk−1
apk

2m−3(a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y(m−1)
m−1 , tm ∈ S\U)

= zy(m−1)
m−1

pk
b(m−1)

1
pk · · ·b(m−1)

k−1

pk
apk

2m−3(a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as v(m−1) = b(m−1)
1

pk−p1 · · ·b(m−1)
k−1

pk−pk−1
and y(m−1)

m−1 , tm ∈ S\U)

= zypk
m−1apk

2m−3(a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y(m−1)
m−1 , tm ∈ S\U)
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= z(ym−1a2m−3)
pk(a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as ym−1, tm ∈ S\U)

= z(ym−2a2m−4)
pk(a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s (by zigzag equations)

= zypk
m−2apk

2m−4(a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as ym−2, tm ∈ S\U)
...

= zypk
2 apk

4 (a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

= zy(2)2
pk

b(2)1
pk · · ·b(2)k−1

pk
apk

4 (a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s (by Results

2.4 and 2.5 for some b(2)1 , . . . ,b(2)k−1 ∈U and y(2)2 ∈ S\U as y2, tm ∈ S\U)

= zy(2)2
pk

v(2)b(2)1
p1 · · ·b(2)k−1

pk−1
apk

4 (a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s (by

Result 2.5 as y(2)2 , tm ∈ S\U and where v(2) = b(2)1
pk−p1 · · ·b(2)k−1

pk−pk−1
)

= zy(2)2
pk

v(2)b(2)1
p1 · · ·b(2)k−1

pk−1
(a4a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y(2)2 , tm ∈ S\U)

= zy(2)2
pk

v(2)b(2)1
p1 · · ·b(2)k−1

pk−1
(a3a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

(as a3a2m−1tm = a3a2m ∈U and U satisfies (3))

= zy(2)2
pk

v(2)b(2)1
p1 · · ·b(2)k−1

pk−1
apk

3 (a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y(2)2 , tm ∈ S\U)

= zy(2)2
pk

b(2)1
pk · · ·b(2)k−1

pk
apk

3 (a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y(2)2 , tm ∈ S\U and v(2) = b(2)1
pk−p1 · · ·b(2)k−1

pk−pk−1
)

= zypk
2 apk

3 (a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s (by Result 2.5 as y(2)2 , tm ∈ S\U)
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= z(y2a3)
pk(a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s (by Result 2.5 as y2, tm ∈ S\U)

= z(y1a2)
pk(a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s (by zigzag equations)

= zypk
1 apk

2 (a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s (by Result 2.5 as y1, tm ∈ S\U)

= zy(1)1
pk

b(1)1
pk · · ·b(1)k−1

pk
apk

2 (a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s (by Results 2.4 and

2.5 for some b(1)1 , . . . ,b(1)k−1 ∈U and y(1)1 ∈ S\U as y1, tm ∈ S\U)

= zy(1)1
pk

v(1)b(1)1
p1 · · ·b(1)k−1

pk−1
apk

2 (a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y(1)1 , tm ∈ S\U and where v(1) = b(1)1
pk−p1 · · ·b(1)k−1

pk−pk−1
)

= zy(1)1
pk

v(1)b(1)1
p1 · · ·b(1)k−1

pk−1
(a2a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y(1)1 , tm ∈ S\U)

= zy(1)1
pk

v(1)b(1)1
p1 · · ·b(1)k−1

pk−1
(a1a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

(as a2a2m−1tm = a2a2m ∈U and U satisfies (3))

= zy(1)1
pk

v(1)b(1)1
p1 · · ·b(1)k−1

pk−1
apk

1 (a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y(1)1 , tm ∈ S\U)

= zy(1)1
pk

b(1)1
pk · · ·b(1)k−1

pk
apk

1 (a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y(1)1 , tm ∈ S\U and v(1) = b(1)1
pk−p1 · · ·b(1)k−1

pk−pk−1
)

= zypk
1 apk

1 (a2m−1tm)pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s (by Result 2.5 as y(1)1 , tm ∈ S\U)

= xp1
1 xp2

2 · · ·x
pk−1
k−1 ypk

1 apk
1 (a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s (as z = xp1

1 xp2
2 · · ·x

pk−1
k−1 )

= xp1
1 xp2

2 · · ·x
pk−1
k−1 (y1a1a2m−1tm)pkxpk+1

k+1 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

(by Result 2.5 as y1, tm in S\U)
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= xp1
1 xp2

2 · · ·x
pk−1
k−1 (a0a2m)

pkxpk+1
k+1 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s (by the zigzag equations)

= wt1
1 wt2

2 · · ·wtn
n

(by inductive hypothesis as a0a2m ∈U)

as required. �

Proposition 3.2:Let U be a permutative semigroup satisfying a seminormal permutation iden-

tity of a semigroup S such that Dom(U,S) = S. If U satisfies the semigroup identity (3), then (3)

also holds for all x1, . . . ,xr,y1, . . . ,ys ∈ S and w1, . . . ,wn in U, where p1, p2, . . . , pr;q1,q2, . . . ,qs;

t1, t2, . . . , tn, are any non negative integers such that: (r,s,n ≥ 1); p1 ≤ p2 ≤ ·· · ≤ pr−1 ≤ pr,

qs ≤ qs−1 · · · ≤ q2 ≤ q1 and t1 ≤ t2 ≤ ·· · ≤ tn.

Proof: We show that (3) is true for all x1,x2, . . . ,xr,y1,y2, . . . ,ys ∈ S and w1,w2, . . . ,wn ∈U . For

k = 1,2,3, . . . ,s; consider the word yq1
1 yq2

2 · · ·y
qk
k of length q1+q2+ · · ·+qk. We shall show that

(3) is satisfied by induction on k assuming that the remaining elements yk+1,yk+2, ...,ys in U . For

k = 0, (3) trivially holds. So assume that (3) is true for all x1,x2, . . . ,xr,y1,y2, . . . ,yk−1 ∈ S and

for all yk,yk+1, . . . ,ys ∈U . Then we shall show that (3) is true for all x1,x2, . . . ,xr,y1,y2, . . . ,yk ∈

S and yk+1, . . . ,ys ∈ U . If yk ∈ U , then (3) holds by inductive hypothesis. So assume that

yk ∈ S\U . As yk ∈ S\U and Dom(U,S) = S, by Result 2.2, let (2) be a zigzag of minimal length

m over U with value yk. So assume that 1 ≤ k < r. As the equalities (4) and (5) follow by

Results 2.4 and 2.5 for some b(1)k+1, . . . ,b
(1)
r ∈U and t(1)1 in S \U as y1, t1 ∈ S \U and where

z = yqk+1
k+1 · · ·y

qs
s and w(1) = b(1)k+1

qk−qk+1 · · ·b(1)r
qk−qs

, we have

xp1
1 xp2

2 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 aqk

0 tqk
1 yqk+1

k+1 · · ·y
qs
s (by zigzag equations and Result 2.6)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 aqk

0 b(1)k+1

qk · · ·b(1)s
qk

t(1)1
qk

yqk+1
k+1 · · ·y

qs
s (4)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 aqk

0 b(1)k+1

qk+1 · · ·b(1)s
qs

w(1)t(1)1
qk

z (5)
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= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a2

1)
qkb(1)k+1

qk+1 · · ·b(1)s
qs

w(1)t(1)1
qk

z

(by inductive hypothesis as y1a2
1 = y1a1a1 = a0a1 ∈U)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qkaqk
1 b(1)k+1

qk+1 · · ·b(1)s
qs

w(1)t(1)1
qk

z

(by Result 2.5 as y1, t
(1)
1 ∈ S\U)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qkaqk
1 b(1)k+1

qk · · ·b(1)s
qk

t(1)1
qk

z

(by Result 2.5 and definition of w(1))

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qkaqk
1 tqk

1 z

(by Result 2.5 as b(1)k+1

qk · · ·b(1)s
qk

t(1)1
qk
= tqk

1 )

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qk(a1t1)
qkz (by Result 2.5 as y1, t1 ∈ S\U)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qk(a2t2)
qkz (by zigzag equations)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qkaqk
2 tqk

2 z (by Result 2.5 as y1, t2 ∈ S\U)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1a2)

qktqk
2 z (by Result 2.5 as y1, t2 ∈ S\U)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1a2)

qkb(2)k+1

qk · · ·b(2)s
qk

t(2)2
qk

z

where the last equality follows by Results 2.4 and 2.5 for some b(1)k+1, . . . ,b
(1)
s in U , t(2)2 in

S\U as y1, t2 ∈ S\U .

As the equalities (6), (7) and (8) follow by letting w(2) = b(2)k+1

qk−qk+1 · · ·b(2)s
qk−qs

and by Result

2.5 as y1, t
(2)
2 ∈ S \U ; by Result 2.5 as y1, t

(2)
2 ∈ S \U ; and by Result 2.5 and the definition of

w(2) respectively, we have

xp1
1 xp2

2 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1a2)

qkb(2)k+1

qk · · ·b(2)s
qk

t(2)2
qk

z
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= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1a2)

qkb(2)k+1

qk+1 · · ·b(2)s
qs

w(2)t(2)2
qs

z (6)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1a3)

qkb(2)k+1

qk+1 · · ·b(2)s
qs

w(2)t(2)2
qk

z

(by inductive hypothesis as y1a1a3 = a0a3 ∈ U)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qkaqk
3 b(2)k+1

qk+1 · · ·b(2)s
qs

w(2)t(2)2
qk

z (7)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qkaqk
3 b(2)k+1

qk · · ·b(2)s
qk

t(2)2
qk

z (8)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qkaqk
3 tqk

2 z (by Result 2.5 asb(2)k+1

qk · · ·b(2)s
qk

t(2)2
qk
= tqk

2 )
...

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qkaqk
2m−3tqk

m−1z

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qk(a2m−3tm−1)
qkz (by Result 2.5 as y1, tm−1 in S\U)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qk(a2m−1tm)
qkz (by zigzag equations) ‘

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1)

qkaqk
2m−2tqk

m z (by Result 2.5 as y1, tm ∈ S\U)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1a2m−2)

qktqk
m z (by Result 2.5 as y1, tm ∈ S\U)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1a2m−2)

qkb(m)
k+1

qk · · ·b(m)
s

qk
t(m)
m

qk
z

where the last equality follows by Results 2.4 and 2.5 for some b(m)
k+1, . . . ,b

(m)
s ∈U and t(m)

m ∈

S \U as y1, tm ∈ S \U . As the equality (9) follows by Result 2.5 as y1, t
(m)
m ∈ S \U and where

w(m) = b(m)
k+1

qk−qk+1 · · ·b(m)
s

qk−qr
, we have

xp1
1 xp2

2 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1a2m−2)

qkb(m)
k+1

qk+1 · · ·b(m)
s

qs
w(m)t(m)

m
qk

z (9)
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= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1a2m−1)

qkb(m)
k+1

qk+1 · · ·b(m)
s

qs
w(m)t(m)

m
qk

z

(by inductive hypothesis as y1a1a2m−1 = a0a2m−1 ∈ U)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1a2m−1)

qkb(m)
k+1

qk · · ·b(m)
s

qk
t(m)
m

qk
z (10)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1a2m−1)

qktqk
m z

(by Result 2.5 as b(m)
k+1

qk · · ·b(m)
s

qk
t(m)
m

qk
= tqk

m )

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (y1a1a2m−1tm)

qkyk+1
qk+1 · · ·ys

qs

( by Result 2.5 and the definition of z)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 · · ·y
qk−1
k−1 (a0a2m)

qkyk+1
qk+1 · · ·ys

qs (by zigzag equations)

= wt1
1 wt2

2 · · ·wtn
n (by inductive hypothesis as a0a2m ∈U),

where equality (10) follows by Result 2.5 as y1, t
(m)
m ∈ S\U and the definition of w(m).

Therefore

xp1
1 xp2

2 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s = wt1

1 wt2
2 · · ·w

tn
n

holds for all x1,x2, . . .xr,y1,y2, . . . ,ys ∈ S and w1,w2, . . . ,wn ∈U . �

Proposition 3.3:Let U be a permutative semigroup satisfying a seminormal permutation iden-

tity of a semigroup S such that Dom(U,S) = S. If U satisfies the semigroup identity (3), then (3)

also holds for all x1,x2, . . . ,xr,y1,y2, . . . ,ys ∈U and w1, . . . ,wn

in S, where p1, p2, . . . , pr,q1,q2, . . . ,qs, t1, t2, . . . , tn are any non negative integers

(r,s,n≥ 1); p1 ≤ p2 ≤ ·· · ≤ pr−1 ≤ pr, qs ≤ qs−1 · · · ≤ q2 ≤ q1 and t1 ≤ t2 ≤ ·· · ≤ tn.

Proof: We show that (3) is true for all x1,x2, . . . ,xr,y1,y2, . . . ,ys ∈U and w1,w2, . . . ,wn ∈ S.

For k = 1,2,3, . . . ,r; consider the word wt1
1 wt2

2 · · ·w
tk
k of length t1 + t2 + · · ·+ tk. We shall show

that (3) holds for all w1,w2, . . . ,wn ∈ S and x1, . . . ,xr,y1, . . . ,ys in U by induction on k assuming

that the remaining elements wk+1,wk+2, ...,wr in U . For k = 0, (3) trivially holds. So assume

that (3) is true for all w1,w2, . . . ,wk−1 ∈ S and for all wk,wk+1, . . . ,wn ∈U . Then we shall show
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that (3) is true for all w1,w2, . . . ,wk ∈ S and wk+1, . . . ,wn ∈ U . If wk ∈ U , then (3) holds by

inductive hypothesis. So assume that wk ∈ S\U . As wk ∈ S\U and Dom(U,S) = S, by Result

2.2, let (2) be a zigzag of minimal length m over U with value wk. Now for 1≤ k < r

wt1
1 wt2

2 · · ·w
tn
n

= wt1
1 wt2

2 · · ·w
tk−1
k−1ytk

maa
2mtkwtk+1

k+1 · · ·w
tn
n (by zigzag

equations and Result 2.6)

= zy(m)
m

tk
b(m)

1
tk · · ·b(m)

k−1

tk
atk

2mwtk+1
k+1 · · ·w

tn
n

(by Results 2.4 and 2.5 for some b(m)
1 , . . . ...,b(m)

k−1 ∈U

and y(m)
m ∈ S\Uas ym ∈ S\Uand a2m = a2m−1tm

with tm ∈ S\U and where z = wt1
1 wt2

2 · · ·w
tk−1
k−1)

= zy(m)
m

tk
v(m)b(m)

1
t1 · · ·b(m)

k−1

tk−1
atk

2mwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as y(m)
m , tm ∈ S\U and where

v(m) = b(m)
1

tk−t1 · · ·b(m)
k−1

tk−tk−1
)

= zy(m)
m

tk
v(m)b(m)

1
t1 · · ·b(m)

k−1

tk−1
(a2

2m−1tm)
tkwtk+1

k+1 · · ·w
tn
n

(as a2
2m−1tm = a2m−1a2m−1tm = a2m−1a2m ∈U,

y(m)
m , tm ∈ S\U and U satisfies (3))

= zy(m)
m

tk
v(m)b(m)

1
t1 · · ·b(m)

k−1

tk−1
atk

2m−1(a2m−1tm)
tkwtk+1

k+1 · · ·w
tn
n

(by Result 2.5 as y(m)
m , tm ∈ S\U)

= zy(m)
m

tk
b(m)

1
tk · · ·b(m)

k−1

tk
atk

2m−1(a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as y(m)
m , tm ∈ S\U and as

v(m) = b(m)
1

tk−t1 · · ·b(m)
k−1

tk−tk−1
)
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= zytk
matk

2m−1(a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as y(m)
m , tm ∈ S\U and as y(m)

m
tk

b(m)
1

tk · · ·b(m)
k−1

tk
= ytk

m)

= z(yma2m−1)
tk(a2m−1tm)tkwtk+1

k+1 · · ·w
tn
n

(by Result 2.5 as ym, tm ∈ S\U)

= z(ym−1a2m−2)
tk(a2m−1tm)tkwtk+1

k+1 · · ·w
tn
n (by zigzag equations)

= zytk
m−1atk

2m−2(a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result2.5 as ym−1, tm ∈ S\U)

= zy(m−1)
m−1

tk
b(m−1)

1
tk · · ·b(m−1)

k−1

tk
atk

2m−2(a2m−1tm)tkxtk+1
k+1 · · ·w

tn
n

(by Results 2.4 and 2.5 for some b(m−1)
1 , . . . ,b(m−1)

k−1 ∈U

and y(m−1)
m−1 ∈ S\U as ym−1, tm ∈ S\U)

= zy(m−1)
m−1

tk
v(m−1)b(m−1)

1
t1 · · ·b(m−1)

k−1

tk−1
(a2m−2a2m−1tm)

tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as ym−1, tm ∈ S\U and where

v(m−1) = b(m−1)
1

tk−t1 · · ·b(m−1)
k−1

tk−tk−1
)

= zy(m−1)
m−1

tk
v(m−1)b(m−1)

1
t1 · · ·b(m−1)

k−1

tk−1
(a2m−3a2m−1tm)tkwtk+1

k+1 · · ·w
tn
n

(as a2m−3a2m−1tm = a2m−3a2m ∈U and U satisfies (3))

= zy(m−1)tk
m−1 v(m−1)b(m−1)

1
t1 · · ·b(m−1)

k−1

tk−1
atk

2m−3(a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as y(m−1)
m−1 , tm ∈ S\U)

= zy(m−1)
m−1

tk
b(m−1)

1
tk · · ·b(m−1)

k−1

tk
atk

2m−3(a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as v(m−1) = b(m−1)
1

tk−t1 · · ·b(m−1)
k−1

tk−tk−1

and y(m−1)
m−1 , tm ∈ S\U)
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= zytk
m−1atk

2m−3(a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n (by Result 2.5 as

y(m−1)
m−1 , tm ∈ S\U and y(m−1)

m−1
tk

b(m−1)
1

tk · · ·b(m−1)
k−1

tk
= ytk

m−1)

= z(ym−1a2m−3)
tk(a2m−1tm)tkwtk+1

k+1 · · ·w
tn
n (by Result 2.5 as

ym−1, tm ∈ S\U)

= z(ym−2a2m−4)
tk(a2m−1tm)tkwtk+1

k+1 · · ·w
tn
n (by zigzag equations)

= zytk
m−2atk

2m−4(a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as ym−2, tm ∈ S\U)
...

= zytk
2 atk

4 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

= zy(2)2
tk

b(2)1
tk · · ·b(2)k−1

tk
atk

4 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n (by Results 2.4

and 2.5 for some b(2)1 , . . . ,b(2)k−1 ∈U and y(2)2 ∈ S\U as y2, tm ∈ S\U)

= zy(2)2
tk

v(2)b(2)1
t1 · · ·b(2)k−1

tk−1
atk

4 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n (by Result

2.5 as y(2)2 , tm ∈ S\U and where v(2) = b(2)1
tk−t1 · · ·b(2)k−1

tk−tk−1
)

= zy(2)2
tk

v(2)b(2)1
t1 · · ·b(2)k−1

tk−1
(a4a2m−1tm)tkwtk+1

k+1 · · ·w
tn
n

(by Result 2.5 as y(2)2 , tm ∈ S\U)

= zy(2)2
tk

v(2)b(2)1
t1 · · ·b(2)k−1

tk−1
(a3a2m−1tm)tkwtk+1

k+1 · · ·w
tn
n

(as a3a2m−1tm = a3a2m ∈U and U satisfies (3))

= zy(2)2
tk

v(2)b(2)1
t1 · · ·b(2)k−1

tk−1
atk

3 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as y(2)2 , tm ∈ S\U)

= zy(2)2
tk

b(2)1
tk · · ·b(2)k−1

tk
atk

3 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as y(2)2 , tm ∈ S\U and v(2) = b(2)1
tk−t1 · · ·b(2)k−1

tk−tk−1
)
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= zytk
2 atk

3 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as y(2)2 , tm ∈ S\U and y(2)tk2 b(2)tk1 · · ·b(2)tkk−1 = ytk
2 )

= z(y2a3)
tk(a2m−1tm)tkwtk+1

k+1 · · ·w
tn
n (by Result 2.5 as y2, tm ∈ S\U)

= z(y1a2)
tk(a2m−1tm)pkwtk+1

k+1 · · ·w
tn
n (by zigzag equations)

= zytk
1 atk

2 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n (by Result 2.5 as y1, tm ∈ S\U)

= zy(1)1
tk

b(1)1
tk · · ·b(1)k−1

tk
atk

2 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n (by Results 2.4 and

2.5 for some b(1)1 , . . . ,b(1)k−1 ∈U and y(1)1 ∈ S\U as y1, tm ∈ S\U)

= zy(1)1
tk

v(1)b(1)1
t1 · · ·b(1)k−1

tk−1
atk

2 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as y(1)1 , tm ∈ S\U and where

v(1) = b(1)1
tk−t1 · · ·b(1)k−1

tk−tk−1
)

= zy(1)1
tk

v(1)b(1)1
t1 · · ·b(1)k−1

tk−1
(a2a2m−1tm)tkwtk+1

k+1 · · ·w
tn
n

(by Result 2.5 as y(1)1 , tm ∈ S\U)

= zy(1)1
tk

v(1)b(1)1
t1 · · ·b(1)k−1

tk−1
(a1a2m−1tm)tkwtk+1

k+1 · · ·w
tn
n

(as a2a2m−1tm = a2a2m ∈U and U satisfies (3))

= zy(1)1
tk

v(1)b(1)1
t1 · · ·b(1)k−1

tk−1
atk

1 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as y(1)1 , tm ∈ S\U)

= zy(1)1
tk

b(1)1
tk · · ·b(1)k−1

tk
atk

1 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as y(1)1 , tm ∈ S\U and v(1) = b(1)1
tk−t1 · · ·b(1)k−1

tk−tk−1
)

= zytk
1 atk

1 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n

(by Result 2.5 as y(1)1 , tm ∈ S\U and y(1)tk1 b(1)tk1 · · ·b(1)tkk−1 = ytk
1 )

= ytk
1 atk

1 (a2m−1tm)tkwtk+1
k+1 · · ·w

tn
n (as z = wt1

1 wt2
2 · · ·w

tk−1
k−1)



EPIMORPHICALLY PRESERVED SEMIGROUP IDENTITIES 17

= wt1
1 wt2

2 · · ·w
tk−1
k−1(y1a1a2m−1tm)tkwtk+1

k+1 · · ·w
tn
n (by Result 2.5 as y1, tm

in S\U)

= wt1
1 wt2

2 · · ·w
tk−1
k−1(a0a2m)

tkwtk+1
k+1 · · ·w

tn
n (by the zigzag equations)

= xp1
1 xp2

2 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s (by inductive hypothesis as a0a2m ∈U).

Therefore

wt1
1 wt2

2 · · ·w
tn
n = xp1

1 xp2
2 · · ·x

pr
r yq1

1 yq2
2 · · ·y

qs
s .

Now using Propositions 3.2, 3.3 and 3.4, we have the following:

Theorem 3.4:All semigroup identities of the form

xp1
1 xp2

2 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s = wt1

1 wt2
2 · · ·w

tn
n ;

are preserved under epis in conjunction with all seminormal permutation

identities for all non negative integers p1, p2, . . . , pr,q1,q2, . . . ,qs, t1, t2, . . . , tn

(r,s,n≥ 1); p1 ≤ p2 ≤ ·· · ≤ pr−1 ≤ pr, qs ≤ qs−1 · · · ≤ q2 ≤ q1, t1 ≤ t2 ≤ ·· · ≤ tn.

Proof: Take any x1, . . . ,xr,y1, . . . ,ys,w1, . . . ,wn ∈ S. Then by proposition 3.2, for any u1,u2, . . . ,un ∈

U , we have

xp1
1 xp2

2 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s = ut1

1 ut2
2 · · ·utn

n (11)

Again, by proposition 3.3, for any v1,v2, . . . ,vr+s ∈U , we have

wt1
1 wt2

2 · · ·wtn
n = vp1

1 vp2
2 · · ·v

pr
r vq1

r+1 · · ·v
qs
r+s (12)

Now,

xp1
1 xp2

2 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s

= ut1
1 ut2

2 · · ·utn
n ( by equality (11))

= vp1
1 vp2

2 · · ·v
pr
r vq1

r+1 · · ·v
qs
r+s ((as U satisfies (3))

= wt1
1 wt2

2 · · ·wtn
n (by equality (12))
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as required. �

Similarly, we can prove the following theorem:

Theorem 3.5:All semigroup identities of the form

xp1
1 xp2

2 · · ·x
pr
r = wt1

1 wt2
2 · · ·w

tn
n zl1

1 zl2
2 · · ·z

lm
m ;

are preserved under epis in conjunction with all seminormal permutation

identities for all non negative integers p1, p2, . . . , pr, t1, t2, . . . , tn, l1, l2, . . . , lm(r,n,m ≥ 1); p1 ≤

p2 ≤ ·· · ≤ pr−1 ≤ pr, t1 ≤ t2 ≤ ·· · ≤ tn and lm ≤ lm−1 · · · ≤ l2 ≤ l1.

Now using Theorems 3.4 and 3.5, Finally, we have the following main theorem which is the

extension of [1, Theorem 3.4]:

Theorem 3.6:All semigroup identities of the form

xp1
1 xp2

2 · · ·x
pr
r yq1

1 yq2
2 · · ·y

qs
s = wt1

1 wt2
2 · · ·w

tn
n zl1

1 zl2
2 · · ·z

lm
m ;

are preserved under epis in conjunction with all seminormal permutation

identities for all non negative integers p1, p2, . . . , pr,q1,q2, . . . ,qs, t1, t2, . . . , tn, l1, l2, . . . , lm

(r,s,n,m ≥ 1); p1 ≤ p2 ≤ ·· · ≤ pr−1 ≤ pr, qs ≤ qs−1 · · · ≤ q2 ≤ q1, t1 ≤ t2 ≤ ·· · ≤ tn and

lm ≤ lm−1 · · · ≤ l2 ≤ l1.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgement

The author is thankful to U.G.C., INDIA for START-UP-GRANT (No.F.30-90/2015, BSR).

REFERENCES

[1] Ashraf, W., Khan, N,M.: Epimorphism and heterotypical identities-II, J. Semigroup Theory Appl. Vol.1

(2012), No. 1, 1-28.



EPIMORPHICALLY PRESERVED SEMIGROUP IDENTITIES 19

[2] Ashraf, W., Khan, N,M.: On Epimorphisms and Seminormal identities, J. Semigroup Theory Appl. 2013

(2013), Article ID 1.

[3] Ashraf, W., Khan, N,M.: On Epimorphisms and Semigroup identities, Algebra Letters 2013 (2013), Article

ID 2.

[4] Clifford, A. H., Preston, G. B.: The Algebraic Theory of Semigroups, Math. Surveys No.7, Amer. Math.

Soc., Providence, R. I., (vol. I, 361), (vol. II, 367).

[5] Higgins, P. M.: Saturated and epimorphically closed varieties of semigroups, J. Austral. Math. Soc. (Ser. A)

36 (384), 33-35.

[6] Higgins, P. M.: Epimorphisms, permutation identities and finite semigroups, Semigroup Forum 29(384),

87-97.

[7] Howie, J. M.: An introduction to semigroup theory, London Math. Soc. Monographs vol.7, Academic Press,

376.

[8] Howie, J. M., Isbell, J.R.: Epimorphisms and dominions II, J. Algebra 6(367), 7-21.

[9] Isbell, J. R.: Epimorphisms and dominions, Proceedings of the conference on Categorical Algebra, La Jolla,

365, 232-246, Lange and Springer, Berlin 366.

[10] Khan, N. M.: Epimorphisms, dominions and varieties of semigroups, Semigroup Forum 25(382), 331-337.

[11] Khan, N. M.: Some saturated varieties of semigroups, Bull. Austral. Math. Soc. 27(383), 43-425.

[12] Khan, N. M.: On saturated permutative varieties and consequences of permutation identities, J. Austral.

Math. Soc. (ser. A) 38(385), 186-37.

[13] Khan, N. M.: Epimorphically closed permutative varieties, Trans. Amer. Math. Soc. 287(385), 507-528.

[14] Khan, N. M., Shah, A.H., Alam, N., Ashraf, W.: Epimorphism and heterotypical identities, Algebra and

its applications, 111-126, (2010)(Proceedings of the conference on Algebra and its Applications, Aligarh,

India).


