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1.   Introduction and Preliminaries 

E-unitary inverse semigroups form one of the most important classes of inverse semigroups. Indeed 

McAlister [2], [3] proved two remarkable theorems concerning these semigroups: (1) every E-unitary 

inverse semigroup admits a faithful representation as a P-semigroup (which is reminiscent of a semidirect 

product of a semilattice and a group), and (2) every inverse semigroup is an idempotent separating 

homomorphic image of an E-unitary inverse semigroup. Munn and Reilly [4] devised a different proof of 

both of these theorems. 

In this paper, we study E-unitary inverse 𝜔-semigroups using the Bruck-Reilly extension of monoids and 

the Clifford semigroups. In particular, we prove that the Bruck-Reilly extension of monoids is an E-

unitary bisimple inverse 𝜔-semigroup while the Clifford semigroup is an E-unitary simple inverse 𝜔-

semigroup. 

Now we recall some definitions which will be useful in the sequel. 
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We refer the reader to [1] for more detailed knowledge. 

Definition 1.1. Let S be an inverse semigroup and let  𝑎, 𝑏 𝜖 𝑆. Then𝑎 ≤ 𝑏 if there exists an idempotent 

 𝑒 in 𝑆 such that  𝑎 = 𝑏𝑒. 

Definition 1.2. An inverse semigroup is E-unitary if  𝑒 ≤ 𝑎(where 𝑒 is an idempotent) implies 𝑎2 = 𝑎. 

The class of E-unitary inverse semigroups are important as many inverse semigroups are E-unitary. 

Example 1.3. Groups are E-unitary inverse semigroups. 

Example 1.4. Let  𝐵 = ℕ0×ℕ0(ℕ0 is the set of non negative integers) and for (𝑚, 𝑛), (𝑝, 𝑞) 𝜖 𝐵, 

(𝑚, 𝑛)(𝑝, 𝑞) = (𝑚 − 𝑛 + 𝑡, 𝑞 − 𝑝 + 𝑡), where  𝑡 = max  (𝑛, 𝑝). 

Then 𝐵 is a semigroup and is known as the bicyclic semigroup. It can be shown that 𝐵 is an inverse 

semigroup and the set of its idempotents 𝐸(𝐵) = {(𝑚, 𝑚) ∶ 𝑚 𝜖 ℕ0}. 

Let (𝑚, 𝑛) 𝜖 𝐵 and let (𝑟, 𝑟) 𝜖 𝐸(𝐵). Now suppose (𝑟, 𝑟) ≤ (𝑚, 𝑛). Then 

(𝑚, 𝑛)(𝑟, 𝑟) = (𝑚 − 𝑛 + 𝑡, 𝑟 − 𝑟 + 𝑡) = (𝑚 − 𝑛 + 𝑡, 𝑡), 

where  𝑡 = max  (𝑛, 𝑟). Since (𝑚, 𝑛)(𝑟, 𝑟) is an idempotent, it must be equal to (𝑢, 𝑢) for some  𝑢 𝜖 ℕ0. 

This implies that  𝑚 − 𝑛 + 𝑡 = 𝑢  and 𝑡 = 𝑢,  so 𝑚 − 𝑛 + 𝑡 = 𝑡.  Hence  𝑚 = 𝑛  and therefore 

(𝑚, 𝑛) 𝜖 𝐸(𝐵). So  𝐵 is E-unitary. 

Definition 1.5. Let S be a semigroup and 𝐸(𝑆) be its sets of idempotents. Then 𝑆 is an 𝜔-semigroup if 

and only if there exists a one-to-one mapping  𝜃 of  𝐸(𝑆) onto ℕ0 such that for any elements  𝑒, 𝑓 𝜖 𝐸(𝑆),

𝑒𝜃 ≤ 𝑓𝜃  if and only if   𝑓 ≤ 𝑒.  Thus, if  𝑆 is an 𝜔-semigroup, then we write 

𝐸(𝑆) = {𝑒𝑚 ∶  𝑚 𝜖 ℕ0}  where  𝑒𝑚 ≤ 𝑒𝑛 ⟺ 𝑚 ≥ 𝑛  or𝐸(𝑆) = {𝑒𝑖 ∶ 𝑖 = 0,1,2, … }  such that 𝑒0 > 𝑒1 >

𝑒2 … …. 

Definition 1.6. Given a map 𝜃: 𝑆 → 𝑃 we define 

  𝐾𝑒𝑟 𝜃 = {(𝑥, 𝑦)𝜖 𝑆×𝑆 ∶  𝑥𝜃 = 𝑦𝜃} 

and call this the kernel of the map. 

Definition 1.7. Let S be an inverse semigroup with semilattice of idempotents 𝐸(𝑆) .Then for all 

𝑎, 𝑏 𝜖 𝑆,𝑎 𝜎 𝑏  ⟺ 𝑎𝑒 = 𝑏𝑒   for some  𝑒 𝜖 𝐸(𝑆). 

Definition 1.8. Let S be a semigroup and let  𝑎, 𝑏 𝜖 𝑆. We define the following relations on S 

𝑎 ℒ 𝑏 ⟺  S1𝑎 = 𝑆1𝑏, 𝑎 ℛ 𝑏 ⟺ 𝑎S1 = 𝑏𝑆1, 𝑎 𝒥 𝑏 ⟺ S1𝑎S1 = 𝑆1𝑏S1, 

𝑎 ℋ 𝑏 ⟺ 𝑎 ℒ 𝑏  and 𝑎 ℛ 𝑏   i. e  ℋ = ℒ ∩ ℛ, 𝑎 𝒟 𝑏 ⟺ (∃ c ϵ S) such that 𝑎 ℒ 𝑐  and  𝑐 ℛ 𝑏 . 

The relations  ℒ, ℛ, 𝒥, ℋ, 𝒟 are called Green’s relations. 

Remark 1.9.  i) It is more or less easy to see that all Green’s relations are equivalences. 

ii) In any commutative semigroup, ℋ = ℒ = ℛ =  𝒟 =  𝒥 = 𝐺×𝐺. 

Since for any elements  𝑎 𝜖 𝐺  we have 𝐺1a = G and  𝑎𝐺1 = G.  

iii)  𝒟 is defined such that it is the smallest equivalence containing ℒ and  ℛ. 
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iv) If we regard relations as subsets of   𝑆×𝑆 we have the inclusions ℋ ⊆  ℒ, ℛ ⊆  𝒟 ⊆  𝒥. 

The last inclusion follows from iii) and the fact that ℒ, ℛ ⊆  𝒥. 

A proof of the above statements can be found in [1]. 

Definition 1.10. A (left, right) proper ideal I of a semigroup S is an (left, respectively, right) ideal such 

that  𝐼 ≠ 𝑆. That is, such that  𝐼 ⊆ 𝑆 and 𝐼 ≠ 𝑆. A semigroup S is called right simple if it contains no 

proper right ideals, dually a semigroup S is called left simple if contains no proper left ideals, and a 

semigroup S is called simple if it has no two-sided ideals. 

It is easy to see that a semigroup S is right (left) simple if and only if  ℛ = 𝑆×𝑆  (ℒ = 𝑆×𝑆), and simple if 

and only if  𝒥 = 𝑆×𝑆. A semigroup is called bisimple if  𝒟 = 𝑆×𝑆. 

Since in a group G we have that  ℒ =  ℛ = 𝐺×𝐺, we conclude that groups are left and right simple. Thus 

G is simple. 

The following example shows that the bicyclic semigroup is simple as well as bisimple. 

Example 1.11. Let B be a bicyclic semigroup. Let  𝐼 ⊆ 𝐵  be an ideal, and (𝑚, 𝑛) 𝜖 𝐼. Then we have 

(0, 𝑛) = (0, 𝑚)(𝑚, 𝑛) 𝜖 𝐼.  Hence  (0,0) = (0, 𝑛)(𝑛, 0) 𝜖 𝐼. 

Take any arbitrary element (𝑎, 𝑏) 𝜖 𝐵. Then(𝑎, 𝑏) = (𝑎, 𝑏)(0,0) 𝜖 𝐼, thus, 𝐵 ⊆ 𝐼.  Therefore 𝐵 = 𝐼, so 𝐵 

is simple. Infact more is true: let  (𝑚, 𝑛), (𝑘, 𝑙) 𝜖 𝐵. Then 

(𝑚, 𝑛) ℛ (𝑚, 𝑙) ℒ (𝑘, 𝑙), 

So that (𝑚, 𝑛) 𝒟 (𝑘, 𝑙). Hence 𝐵 is bisimple. 

 

2.   Bisimple inverse 𝝎-semigroups 

Let  𝑀 be a monoid with identity 𝑒 and  𝜃 ∶ 𝑀 → 𝑀 be a morphism. Let 𝜃0 be the identity map on 𝑀 and 

let𝑆consist of set  𝑆 = ℕ0×𝑀×ℕ0 (where ℕ0 denote the set of non-negative integers) with multiplication 

defined by the rule 

(𝑚, 𝑥, 𝑛)(𝑝, 𝑦, 𝑞) = (𝑚 − 𝑛 + 𝑡, 𝑥𝜃𝑡−𝑛𝑦𝜃𝑡−𝑝, 𝑞 − 𝑝 + 𝑡), 

where 𝑡 = max (𝑛, 𝑝), for (𝑚, 𝑥, 𝑛), (𝑝, 𝑦, 𝑞) 𝜖 𝑆.  

Under this operation,𝑆 = ℕ0×𝑀×ℕ0 is a semigroup and it is the one we refer to as the Bruck-Reilly 

extensions of the monoid 𝑀. This semigroup is usually denoted by 𝐵𝑅(𝑀, 𝜃). 

The following useful results are proved in [1]. 

Lemma 2.1. Let  𝑆 = 𝐵𝑅(𝑀, 𝜃) be the Bruck-Reilly extension of a monoid 𝑀. Suppose that (𝑚, 𝑥, 𝑛) and 

(𝑝, 𝑦, 𝑞) are elements of  𝑆. Then  

i)  𝑆 is a simple semigroup with identity (0, 𝑒, 0). 

ii) (𝑚, 𝑥, 𝑛) 𝒟(𝑝, 𝑦, 𝑞) if and only if  𝑥 𝒟(𝑀)𝑦. 

iii) The element  (𝑚, 𝑥, 𝑛) is an idempotent in 𝑆 if and only if  𝑚 = 𝑛 and 𝑥2 = 𝑥 𝜖 𝑀. 
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iv)  𝑆 is inverse if and only if  𝑀 is inverse. 

v)  (𝑚, 𝑥, 𝑛) ≥ (𝑝, 𝑦, 𝑞) if and only if  𝑚 + 𝑡 = 𝑝, 𝑛 + 𝑡 = 𝑞 for some 𝑡 𝜖 ℕ0 and for some 𝑒 𝜖 𝐸(𝑀). 

  If we consider the special case of the Bruck-Reilly extension where  𝑀 is a group (with identity 𝑒). By 

(ii) and (iv), 𝐵𝑅(𝑀, 𝜃)  then becomes a bisimple inverse semigroup with identity (0, 𝑒, 0)  and 𝜃  an 

endomorphism of 𝑀. From (v), we know that 

(0, 𝑒, 0) > (1, 𝑒, 1) > (2, 𝑒, 2) > ⋯ 

Since a group morphism maps the identity element to the identity element. 

Hence 𝐵𝑅(𝑀, 𝜃) is a bisimple inverse 𝜔-semigroup. The converse of this theorem also holds. 

Theorem 2.2 (structure theorem). Let 𝑀 be a group and let 𝜃 be an endomorphism of 𝑀. Let 𝑆 =

𝐵𝑅(𝑀, 𝜃)  be the Bruck-Reilly extension of 𝑀  determined by 𝜃.  Then 𝑆  is a bisimple inverse 𝜔 -

semigroup. Conversely, every bisimple inverse 𝜔-semigroup is isomorphic to one of this type. 

     In the next Proposition, we now establish a connection between E-unitariness of 𝑀 and 𝐵𝑅(𝑀, 𝜃). 

Proposition 2.3.  Let 𝑀 be an inverse monoid and let 𝜃 be an endomorphism into the group of units of 𝑀. 

Then  𝑆 = 𝐵𝑅(𝑀, 𝜃) is E-unitary if and only if  𝑀 is E-unitary and  𝜎 = ker 𝜃. 

Proof.  Let  𝐵𝑅(𝑀, 𝜃) be E-unitary. From Lemma 2.1(iii), we know that the idempotents of  𝑆 are of the 

form (𝑚, 𝑒, 𝑚),  where 𝑒 𝜖 𝐸(𝑀).  Let 𝑒, 𝑎𝑒 𝜖 𝐸(𝑀) . Then (0, 𝑒, 0), (0, 𝑎𝑒, 0) 𝜖 𝐸(𝑆).  But we have that 

(0, 𝑎𝑒, 0) = (0, 𝑎, 0)(0, 𝑒, 0) ≤ (0, 𝑎, 0) and so (0, 𝑎, 0) 𝜖 𝐸(𝑆) by assumption. This implies in particular 

that  𝑎 𝜖 𝐸(𝑀). Hence 𝑀 is E-unitary. 

 Let  𝑥 , 𝑦 𝜖  M such that  𝑥 𝜎 𝑦. Then 𝑥𝑒 = 𝑦𝑓 for 𝑒, 𝑓 𝜖 𝐸(𝑀).  Since idempotents are mapped to 

idempotents and since the only idempotent in the group of units is the identity element, we get 

𝑥𝜃 = 𝑥𝜃𝑒𝜃 = (𝑥𝑒)𝜃 

                   = (𝑦𝑓)𝜃 = 𝑦𝜃𝑓𝜃 = 𝑦𝜃. 

Hence 𝜎 ⊆ ker 𝜃. The reverse inclusion and the converse of the proof is clear. 

     As an application of Proposition 2.3, we can now characterize E-unitary bisimple inverse 𝜔 -

semigroups with the help of Theorem 2.2. 

Theorem 2.4. A bisimple inverse 𝜔-semigroup is E-unitary if and only if  𝜃 is one -to-one. 

Proof. It is clear from Proposition 2.3 since every group is E-unitary with the 𝜎-relation being the 

equality relation. 

 

3.    Simple inverse 𝝎-semigroups 

In this section, we obtain a result analogous to Theorem 2.4. But first we have the following useful 

definitions. 

Definition 3.1.  An element 𝑎 𝜖 𝑆 is called central if  𝑎𝑥 = 𝑥𝑎 for all 𝑎 𝜖 𝑆. 
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Definition 3.2. We call a semigroup a Clifford semigroup if it is regular and its idempotents are central. 

Obviously, a Clifford semigroup is inverse, since in particular its idempotents commute. Its structural 

characterization is given below. 

3.3   The Structural Characterization [1]. Let 𝐸(𝑆) be a semilattice and let {𝐺𝑒: 𝑒 𝜖 𝐸(𝑆)} be a family 

of disjoin groups indexed by the elements of  𝐸(𝑆). We denote the identity element of  𝐺𝑒 by 1𝑒. For each 

pair 𝑒, 𝑓 𝜖 𝐸(𝑆)  such that 𝑒 ≥ 𝑓  let 𝜑𝑒,𝑓 ∶  𝐺𝑒 → 𝐺𝑓  be a group morphism such that the following 

conditions hold: 

i)  𝜑𝑒,𝑒  is the identity morphism on 𝐺𝑒 

ii)  if  𝑒 ≥ 𝑓 ≥ 𝑔 then 𝜑𝑓,𝑔𝜑𝑒,𝑓 = 𝜑𝑒,𝑔 

    We endow the set ⋃ 𝐺𝑒𝑒 𝜖 𝐸(𝑆)  with a product defined by 

𝑥 ∘ 𝑦 = (𝑥𝜑𝑒,𝑒𝑓)(𝑦𝜑𝑓,𝑒𝑓)(𝑥 𝜖 𝐺𝑒 , 𝑦𝜖 𝐺𝑓) . 

It is shown in [1] that  (⋃ 𝐺𝑒𝑒 𝜖 𝐸(𝑆) ,∘) is a Clifford semigroup. Infact this semigroup is called a strong 

semilattice of groups and it is denoted by  𝑆(𝐸; 𝐺𝑒; 𝜑𝑒,𝑓). 

   We know from Theorem 2.2 that the Bruck-Reilly extension 𝐵𝑅(𝑀, 𝜃) of a monoid 𝑀 is a bisimple 

inverse 𝜔 -semigroup. To find a structure theorem for simple inverse 𝜔 -semigroups, we examine a 

particular type of Clifford semigroups of the Bruck-Reilly extension. 

     We now introduce this construction. 

3.4   Construction.  Let  𝑌 = {0,1, … , 𝑑 − 1} be a chain with the reversed usual order. To simplify the 

notation we shall use the convention to denote by  ≤ the usual order of the natural numbers, whereas by ∧ 

we refer to the order of the chain, for example  4 ≤ 5 but  4 ∧ 5 = 5. For every  𝑖 𝜖 𝑌 let 𝐺𝑖  denote a 

group such that all the groups 𝐺𝑖 are disjoint. Put   𝑀 ≔ ⋃ 𝐺𝑖 𝑖=0,1,…,𝑑−1 . For every  0 ≤ 𝑖 ≤ 𝑑 − 2 choose 

and fix a morphism  𝛼𝑖,𝑗: 𝐺𝑖 → 𝐺𝑖+1 . Moreover, we define for every  0 ≤ 𝑖 < 𝑗 ≤ 𝑑 − 1 

a new morphism 𝛼𝑖,𝑗 ∶ 𝐺𝑖 → 𝐺𝑗 by the rule  

𝛼𝑖,𝑗 = 𝛾𝑗−1 ∘ 𝛾𝑗−2 ∘ … ∘ 𝛾𝑖 . 

Putting the identity of  𝐺𝑖 as  𝛼𝑖,𝑖 we have 

                 𝛼𝑗,𝑘 ∘ 𝛼𝑖,𝑗 = 𝛼𝑖,𝑘(𝑖 ≤ 𝑗 ≤ 𝑘). 

From 3.3, we know that the strong semilattice of groups  (𝑀,∘) is a Clifford semigroup. We can say that 

the semilattice is a chain isomorphic to 𝑌. The idempotents of  𝑀 are the identity elements of the groups 

𝐺𝑖  denoted by 𝑒0, 𝑒1, … , 𝑒𝑑−1. Recall that identity elements are mapped to identity elements by group 

morphisms and notice that 𝑒0 is the identity element of the monoid  𝑀 ∶ 

∀ 𝑖 ∀ 𝑥 𝜖 𝐺𝑖 ∶  𝑒0𝑥 = 𝛼0,0∧𝑖(𝑒0)𝛼𝑖,0∧𝑖(𝑥) = 𝛼0,𝑖(𝑒0)𝛼𝑖,𝑖(𝑥) 

                                                                         = 𝑒𝑖𝑥 = 𝑥 . 
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A similar argument shows that  𝑥𝑒0 = 𝑥  for all  𝑥 𝜖 𝑀.  Furthermore, a straightforward calculation yields 

𝑒0 > 𝑒1 > ⋯ > 𝑒𝑑−1 . 

We shall refer to 𝑀 as a finite chain of groups of length 𝑑 . 

Let 𝑀 be a finite chain of groups of length 𝑑 . Notice that the group of units of 𝑀 is 𝐺0 because a product 

in which an element 𝑥 𝜖 𝐺𝑖 is involved does necessarily lie in 𝐺𝑗 for some  𝑗 ≥ 𝑖 . Now let  𝑆 = 𝐵𝑅(𝑀, 𝜃),

where 𝜃 is a morphism from 𝑀 to 𝐺0 . By Lemma 2.1 (i), 𝑆 is a simple inverse semigroup since  𝑀 is 

inverse. Also by Lemma 2.1 (ii) the 𝒟-classes of  𝑆 are the subsets ℕ0×𝐺𝑖×ℕ0(𝑖 = 0,1, … , 𝑑 − 1). 

Lemma 3.5. 𝑆 is an 𝜔-semigroup. 

Proof.  Let(𝑚, 𝑒𝑖 , 𝑚), (𝑛, 𝑒𝑗, 𝑛) be two idempotents. We assume without loss of generality that  𝑚 ≥ 𝑛 

and distinguish between two cases : 

Case i.  For  𝑚 = 𝑛 we have 

(𝑚, 𝑒𝑖, 𝑚) ≤ (𝑚, 𝑒𝑗, 𝑚) ⟺ (𝑚, 𝑒𝑖 , 𝑚)(𝑚, 𝑒𝑗, 𝑚) = (𝑚, 𝑒𝑖, 𝑚). 

Having in mind that (𝑚, 𝑒𝑖, 𝑚)(𝑚, 𝑒𝑗, 𝑚) = (𝑚, 𝑒𝑖𝑒𝑗 , 𝑚), this is the case if and only if  𝑒𝑖 ≤ 𝑒𝑗 in 𝑀, i.e. 

if and only if   𝑖 ∧ 𝑗 = 𝑖. 

Case ii.  For  𝑚 < 𝑛 we have  𝜃𝑚−𝑛(𝑒𝑗) = 𝑒0, the identity of 𝑀. Hence  

(𝑚, 𝑒𝑖, 𝑚)(𝑛, 𝑒𝑗, 𝑛) = (𝑚, 𝑒𝑖𝜃𝑚−𝑛(𝑒𝑗), 𝑚) = (𝑚, 𝑒𝑖, 𝑚) 

and so (𝑚, 𝑒𝑖, 𝑚) < (𝑛, 𝑒𝑗 , 𝑛) regardless of the values of  𝑖 and 𝑗. In effect, the idempotents of 𝑆 form a 

chain 

(0, 𝑒0, 0) > (0, 𝑒1, 0) > ⋯ > (0, 𝑒𝑑−1, 0) > 

(1, 𝑒0, 1) > (1, 𝑒1, 1) > ⋯ > (1, 𝑒𝑑−1, 1) > 

                                            . 

                                            . 

                                            . 

                                          (𝑑 − 1, 𝑒0, 𝑑 − 1) > (𝑑 − 1, 𝑒1, 𝑑 − 1) > ⋯ > (𝑑 − 1, 𝑒𝑑−1, 𝑑 − 1). 

Thus 𝑆 = 𝐵𝑅(𝑀, 𝜃) is a simple inverse𝜔-semigroup. The converse of this also holds. 

Theorem 3.6 [1]. Let  𝑀 be a finite chain of groups of length 𝑑 (≥ 1). If  𝜃 is a morphism from 𝑀 into 

the group of units of 𝑀, then the Bruck-Reilly extension 𝐵𝑅(𝑀, 𝜃)of 𝑀  determined by 𝜃  is a simple 

inverse 𝜔-semigroup with  𝑑  𝒟-classes. Conversely, every simple inverse 𝜔-semigroup is isomorphic to 

one of this type. 

Our next task is to characterize the E-unitary simple inverse𝜔-semigroups. From Theorem 3.6, we know 

that within 𝑀  the multiplication is defined via morphism  𝛾𝑖 ∶ 𝐺𝑖 → 𝐺𝑖+1(𝑖 = 0, … , 𝑑 − 2).  From 

Proposition 2.3, we can say exactly when 𝐵𝑅(𝑀, 𝜃) is E-unitary, namely when 𝑀 is E-unitary and 𝜎𝑀 =
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Ker 𝜃. In order to obtain a more elegant criterion we formulate a Lemma that enables us to know when a 

Clifford semigroup is E-unitary and examine the 𝜎-relation on the finite chain of groups. 

Lemma 3.7 [5]. Let 𝑆 = 𝑆(𝐸, 𝐺𝑒 , 𝜑𝑒,𝑓) be a Clifford semigroup. Then 𝑆 is E-unitary if and only if the 

connecting morphisms 𝜑𝑒,𝑓 are one-one. 

Lemma 3.8.Let 𝑆 = 𝑆(𝐸, 𝐺𝑒 , 𝜑𝑒,𝑓) be a Clifford semigroup. Then  𝑎 𝜎 𝑏 if and only if there exists 𝑙 𝜖 𝐸 ∶

𝑎𝜑𝑒,𝑙 = 𝑏𝜑𝑓,𝑙(𝑎 𝜖 𝐺𝑒 , 𝑏 𝜖 𝐺𝑓). 

Proof. The proof is clear. 

Theorem 3.9.  With the notation used in 3.4, a simple inverse 𝜔-semigroup  𝐵𝑅(𝑀, 𝜃) is E-unitary if and 

only if 𝛾𝑖  is one-to-one for all  𝑖 𝜖 {0, … , 𝑑 − 2}and 𝑎𝜃 = 𝑏𝜃 if and only if  𝑎𝛼𝑗,𝑘 = 𝑏(𝑎 𝜖 𝐺𝑗,

𝑏 𝜖 𝐺𝑘 ,   𝑗 ≤ 𝑘). 

Proof. We know from Proposition 2.3 that  𝑆 = 𝐵𝑅(𝑀, 𝜃) is E-unitary if and only if 𝑀 is E-unitary and 

𝜎𝑀 = Ker 𝜃.  From Lemma 3.7 and Lemma 3.8 it follows that this is the case exactly when all connecting 

morphisms are one-to-one and 𝑎𝜃 = 𝑏𝜃 if and only if  there exists  𝑙 ≥ 𝑗, 𝑘 ∶ 𝑎𝛼𝑗,𝑙 = 𝑏𝛼𝑘,𝑙(𝑎 𝜖 𝐺𝑗 ,

𝑏 𝜖 𝐺𝑘). But  𝑆 = 𝐵𝑅(𝑀, 𝜃) is not just any Clifford semigroup. It is a finite chain of groups. The rest of 

the Proof is clear. 
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