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Abstract. In this paper, we will obtain several results concerning the properties of pairwise C-closed spaces and

to study the relations of pairwise C-closed spaces with some related pairwise topological properties like pairwise

compactness, sequential spaces, pairwise quasi-k spaces and pairwise C-sequential spaces.
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1. INTRODUCTION

The study of bitopological spaces was first initiated by J. C. Kelly [1] in 1963 and thereafter

a large number of papers have been done to generalize the topological concepts to bitopological

setting. In thiseaper, we study the notion of pairwise C-closed spaces in bitopological spaces

and their relation with other bitopological concepts. we will show that pairwise countably com-

pact C- closed space has countable tightness and we will introduce characterization of pairwice

sequential compact hausdorff spaces . We use R to denote the set of all real and P- to denote

pairwise, Cl to denote the closure of a set, and t (X) to denote the tightness of X.
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2. PAIRWISE C-CLOSED SPACE

Definition 2.1: [6] A cover V of the bitoplogical space (X ,τ1,τ2) is called pairwise open

cover if V ∈ τ1∨ τ2.

Definition 2.2: . A bitopological space (x,τ1,τ2) is said to be pairwise countably compact if

every countably pairwise open cover of X has finite subcover.

Definition 2.3: [1] A bitobological space (x,τ1,τ2) is called pairwise hausdorff if for any tow

distinct points x,y ∈ X , there exist disjoint V1 ∈ τ1 and V2 ∈ τ2 with x ∈V1 and y ∈V2

Definition 2.4: [4] In a space (x,τ1,τ2), τ1 is said to be regular with respect to τ2 if, for each

point x∈ X and each τ1- closed subset F s.t x/∈ F, there are τ1-open set U and τ2-open set V s.t

x∈U and F⊂ V and U ∩V = Ø. (x,τ1,τ2) is p- regular if τ1 regular with respect to τ2 and

vise versa.

Reilly [5] proves the following proposition:

Proposition 2.5: If (X ,τ1,τ2) is a bitopological space, the following are equivalent:

a) τ1 is regular with respect to τ2

b) For each point x ∈ X and τ1-open set U containing X , there is a τ1-open set V such that X

∈ V ⊂ τ2-cl V ⊂U

Definition 2.6: A bitopological space (x,τ1,τ2) is called pairwise C- closed if every τ1-

countably compact subset of X is τ2- closed in X and every τ2- countably compact subset of X

is τ1- closed in X.

Definition 2.7: Let (x,τ1,τ2) be bitoplogical space, A⊂ X , we say that x ∈ X is a τ i- cluster

point for A, if for every τ i-open set U containing x, U ∩A / {x} 6= Ø i=1,2.

Definition 2.8: A bitoplogical space (X ,τ1,τ2) is called pairwise C-closed if every non τ1-

closed subset A of X contains a sequence which has no τ2-cluster point in A,and every non

τ2-closed subset B of X contains a sequence which has no τ1-cluster point in B.

From definition of pairwise C-closed we have:

Corollary 2.9: Every subspace of pairwise c-closed is pairwise C-closed.

Definition 2.10: A bitopological space (x,τ1,τ2) is said to be sequantial if both (x,τ1) and

(x,τ2) sequantial, i.e every non τ1- closed subset A of X contains a sequance converting to a
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point in X \ A and every non τ2- closed subset B of X contains a sequance converting to a

point in X\ B

Theorem 2.11: Let (X ,τ1,τ2) be pairwise Hausdorff space, let (xn) be a convergent sequnce

in X , then (xn) has exactly one limit point.

Proof: Suppose the contrary. Then Xn → x and Xn → y for some x 6= y, there exist disjoint

U ∈ τ1 and V ∈ τ2 with x ∈U and y ∈ V. Therefore, there exist NU ∈ N such that xn ∈U for

every n > NU and NV ∈N such that xn ∈V for every n > NV ,choose N = max{NU ,NV}. Thus,

there exist N ∈ N such that xn ∈U,xn ∈V for every n > N.

But U ∩V = φ , which is the contradiction.

Proposition 2.12: Every pairwise Hausdorff sequantial space is pairwise C-closed.

Proof: let A be non τ1-closed subset of X ,since X is sequantial, there exist a sequnce (xn)

converting to apoint in X \A say x, By uniquness of limit point of the sequnce in pairwice

hausdorff space, we conclude that (Xn) has no τ2-cluster point in A,similarly we can proof that

every non τ2-closed subset B of X contain sequnce has no τ1-cluster point in B.

Hence the result.

Proposition 2.13: If X is pairwise Hausdroff and every pairwise countably compact subset of

X is sequantial then X is pairwise C- closed.

Proof: let A be τ1- countably compact subset of X and suppose that A is not τ2- closed in X,

then there exist x ∈ τ2-Cl A \ A, let B = A ∪ {x}, then B is also τ1- countably compact, now A

is not τ2- closed in B, Since B is sequantial then there exist sequance xn in A s.t xn→ B\ A =

{x}. Therefore there exist seq xn in A has no τ1- cluster point in A, this is contradiction.

Note that every pairwise countably compact subset of a bitopological space X may be se-

quantial and X may still be not sequantial. such is, the follwing example:

Example 2.14: The space of all continous real valued function on the interval [0,1] and

generalize example [7] by letting τ1 = τ2 = the point wise convergence topology.

Definition 2.15: [2] A map f: X−→ Y from bitopological space (X ,τ1,τ2) to another bitopo-

logical space (Y,σ1,σ2) is called pairwise continous if f is continous both as a map from (X ,τ1)

to (Y,σ1) and as a map from (X ,τ2) to (Y,σ2) .
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Proposition 2.16: Let f : (X ,τ1,τ2)−→ (Y,σ1,σ2) be a pairwise continous one - to - one func-

tion, if (X ,τ1,τ2) is pairwise hausdroff space and (Y,σ1,σ2) is pairwise C-closed, then(X ,τ1,τ2)

is pairwise C-closed.

Proof: Let f : (X ,τ1,τ2) −→ (Y,σ1,σ2) be pairwise continous and one- to - one map, then

f : (X ,τ1) −→ (Y,σ1) and f : (X ,τ2) −→ (Y,σ2) are both continous, let A be τ1-countably

compact subset of X , then f (A) is σ1-countably compact subset of Y, but Y is pairwise C-

closed, thus f (A) is σ2-closed subset of Y, since f is pairwise continous and one- to - one map,

we get f−1 ( f (A)) = A is τ2- closed subset of X . similarly we can prove that if A is τ2-countably

compact subset of X then A is τ1-closed subset of X , this completes the proof.

Corollary 2.17: In a bitobological space (x,τ1,τ2), if X has a weaker bitoplogical space which

is pairwise C-closed, then X is is pairwise C-closed.

Proposition 2.18: Let X be a pairwise regular space and every point has a pairwise C-closed

neighbourhood, then X is pairwice C-closed.

Proof: Let A be τ1-countably coompact subset of X and x∈ τ2-cl (A), wont to show that

x∈ A, let U be a τ2- open set containing x and U is pairwise C-closed,then by p- regularity

there is a τ2-open set V such that x∈ V ⊂ τ1-cl (V ) ⊂ U. since A is τ1- countably compact,

then τ1-cl (V )∩A is also τ1-countably compact subset of U,hence it is τ2-closed subset of U.

But x∈ τ2-cl(τ1-cl(V )∩A)= τ1-cl(V )∩A, hence x∈ A,therefore A is τ2-closed subset of of X.

similarly, we can prove that if A is τ2-countably compact subset of X, then A is τ1-closed subset

of A,this complete the proof.

Definition 2.18: [3] The tightness of x t(X) denoted by the smallest cardinal numbers Γ s.that

whenever A⊂ X and x∈ A ,then there is a subset B of A so that | B |≤ Γ and x ∈ B.

Definition 2.19: A bitopological space (x,τ1,τ2) is said to have a pairwise countable tightness

property if it has τ1-countable tightness and τ2-countable tightness property.

Definition 2.20: A subset A of bitopological space (x,τ1,τ2) is called pairwise k- closed if

for every pairwise compact subset K of X, A ∩ K is τ1- closed (τ2 - closed) in K.

Definition 2.21: A subset A of bitopological space is called pairwise quasi k- closed if for

every pairwise countably compact subset K of X, A ∩ K is τ1- closed(τ2 - closed) in K.
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Definition 2. 22: A bitopological space (x,τ1,τ2) is said to be pairwise k- space if every τ1-

k-closed (τ2- k-closed) subset of X is τ1-closed (τ2- closed) in X .

Example 2.23: Consider (R, τ1,τ2) where τ1 is the discrete topology and τ2= {U ⊂ R : 0 /∈ R}

∪ {R}, then (R, τ1,τ2) is a a pairwise-k space.

Definition 2.24: A bitopological space (x,τ1,τ2) is said to be pairwise quasi- k- space if every

τ1-quasi- k-closed (τ2-quasi- k-closed) subset of X is τ1-closed (τ2- closed) in X .

Proposition 2.25: If X is a pairwise hausdorff, pairwise quasi -k and (in particular pairwise

countably compact or pairwise k ) and pairwise C-closed space, then t(X)≤ w0.

Proof: Let

A ⊂ X Y = ∪{τ1-cl(B) : B⊂ A and | B |≤ ω0} and Z = ∪{τ2-cl(F) : F ⊂ A and | F |≤ ω0} .

wont to show that τ1-cl(A) =Y and τ2-cl(B) = Z. now A⊆Y ⊆ τ1-cl(A) and A⊆ Z ⊆ τ2-cl(A),

we need to show that Y is τ1-closed in X and Z is is τ2-closed in X . assume the contrary that Y

is not τ1-closed in X or Z is not τ2-closed in X . if Y is not τ1-closed in X , then Y is not quasi-k-

closed in X , i.e there is pairwise coutably compact subset K of X s.that K ∩Y is not τ1-closed in

K. since K is pairwise C-closed, then K ∩ Y is not τ2- countably compact, i.e there is a sequnce

xn in K ∩ Y which has no cluster point in K ∩ Y,but K is pairwise countably compact, hence xn

must have cluster point in K say x, therefore x /∈ Y. now for every n choose Bn ⊆ A s.that Bn is

countable and xn ∈ τ1-cl (Bn) and let B =
∞

∪
n=1

Bn, then x ∈ τ1-cl(B), but τ1-cl(B)⊆Y , thus x∈ y,

this is a contraduction.

The assumption of quasi-k space in the above propsition is very importent to get the result,

the following example shows this:

Example 2.26: Let (X ,τ1,τ2) be topological space, where X = Y∪ {x}, where τ1 consist of Y

which is discrete space of cardinality ω1 and x has countable neighborhoods and τ2 has discrete

topology, then every τ1- countably compact subset of X is finite, therefore it is τ2-closed, and

every τ2-countably compact subset of X is finite and hence it is τ1-closed subset of X , therefore

X is pairwise C-closed space, but t(X) = ω1

Definition 2.27: Let (x,τ1,τ2) be a bitopological space, let A⊂ X , then x is called τ i-isolated

point of A if there exist open set U ∈ τ i s.that U ∩A = {x} , i = 1,2.
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Definition 2.28: A bitopological space (x,τ1,τ2) is said to be (C-sequantial) if for every τ1-

closed (τ2-closed) subset A of X and for every non τ1-isolated (non τ2-isolated) point x of A,

there is a sequnce xn in A / {x} converting to x.

Proposition 2.29: If X is pairwise Hausdorff, pairwise quasi- k and pairwise C-closed, then

X is pairwise C-sequantial.

Proof: since every P– closed subset of X is pairwise quasi-K and pairwise C-closed, it is

enough to show that if x is not τ1-isolated(not τ2-isolated) point in X , then there is a sequnce

in X / {x} converting to x. if x is not τ1-isolated point of X , then U ∩X 6= {x} for every U ∈ τ1

and hence X / {x} is not τ1-closed in X . similarly, if x is not τ2- isolated point in X , then

V ∩A 6= {x} for every V ∈ τ2 and hence X / {x} is not τ2-closed in X . If X / {x} is not τ1-

closed in X , then there is τ1- countably compact subset K of X S.that K / {x} is not τ1-closed

in K. since K is C-closed, K / {x} is not τ1-closed in K, then there is a sequnce xn in K / {x}

which has no τ2-cluster point in K / {x}, Therefore xn→ x. similarly, if X / {x} is not τ2-closed

in X , we get xn −→ x. This complete the proof.

Definition 2.30: A bitoplogical space (x,τ1,τ2) is said to be sequantially compact with respect

to τ i if every infinite sequence has convergent subsequance with respect to τ i,i.e for every

sequnce{xn : n ∈ w} and for every τi-open nhd U of x s.that xn ∈U whenever n ≥ m for some

m, there exist subsequnce
{

xnk
: k ∈ w

}
of xn s. that xnk

∈U whenever k ≥ m. i= 1,2.

Definition 2.31: A bitoplogical space space (x,τ1,τ2) is said to be pairwise sequantially

compact if it is sequantially compact with respect to τ1 and sequantially compact with respect

to τ2.

Proposition 2.32: A pairwise sequentially compact Hausdorff space X is pairwise sequential

iff it is pairwise C-closed.

Proof: (⇒) it is obvious from Corollary 2. 12 (⇐) let A be non τ1-closed subset of X, then

there is a sequance xn in A which has no τ2-cluster point in A, but X is pairwise seuantially

compact, thus xn has convergent subsequnce xnK
with respect to τ2 say to x∈ X , since xnK

has

no τ2-cluster point in A, then x∈ X / A, therefore there is a sequance in A converting to a point

in X/A. we get (X ,τ1) is sequantial. (1) similarly, if B is non τ2-closed subset of X, then

there is a sequance xm in B which has no τ1-cluster point in B, since X is pairwise seuantially
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compact, xm has convergent subsequnce xmL
with respect to τ1 say to y ∈ X ,but xmL

has no

τ1- cluster point in A,hence y∈ X /B and (X ,τ2) is sequantial. (2) from 1 and 2, we get X is

pairwise sequantial.
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