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Abstract: Credit scoring models are usually developed using the accepted Known Good-Bad applicants, called 

KGB model. Yet, the KGB model does not represent the entire Through-The-Door population. Reject inference 

attempts to correct this inherent flaw by using information of the rejected accounts. Augmentation methods are 

widely used methods of reject inference, among which Fuzzy Augmentation is the most accurate one. In this 

paper, we first establish an important property of Fuzzy Augmentation: If Fuzzy Augmentation is not 

incorporated with variable re-selection, it will produce the same results as the KGB model. We then propose a 

rule of thumb for Augmentation methods. Based on this rule of thumb, we present a two-phase Augmentation. 

This two-phase method works not only for Machine Learning in Python but also for the traditional approach 

using SAS. Moreover, it is user friendly in that the user can specify a factor to increase the bad rate of rejected 

accounts.  
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1. Introduction 

During the development of a credit scoring model, typically we have only data of accepted 

(and booked) applicants (or exchangeably accounts) for credit in the past. After operated and 

observed for some time, these data are used to define the dependent variable  by deriving a 
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Good or Bad status for each accepted account. On the other hand, the behavior of rejected 

applicants, if they had been accepted, is unknown and hence ignored. However, when the 

model using the accepted Known Good-Bad applicants, called KGB model, is applied to all 

applicants, sample bias, often referred to as reject bias [1] will be gained.  

Reject inference [2] attempts to address this kind of reject bias by estimating how rejected 

applicants would have performed had they been accepted. By using information contained in 

rejected accounts, reject inference will improve the quality of the scoring model.  

The core task in reject inference is to estimate the Good or Bad status, that is, the values of 

dependent variable . After the Good or Bad status of each rejected account is known, a new 

logistic scoring model will be developed using the whole population including both accepted 

accounts and rejected accounts.  

A number of reject inference approaches have been developed [3] over the years. According 

to [4], reject inference approaches can be classified into 2 categories:  

(i) Simple Assignment methods: Rejected records are assigned Good or Bad status without 

using the KGB model. 

(ii) Augmentation methods: Rejected records are extrapolated with Good or Bad status by 

extending the KGB model.  

Augmentation methods [5] are generally believed better than Assignment methods in that 

they optimally combine the information of accepted accounts with that of rejected accounts.  

In this paper, we shall concentrate on Augmentation methods. We first prove that if the new 

scoring model with Fuzzy Augmentation does not reselect variables but reuses all the 

variables in the KGB model, then it will produce the same results as the KGB model. We 

then propose a rule of thumb for Augmentation methods. Based on this rule of thumb, we 

present a two-phase Augmentation. This two-phase method works not only for Machine 

Learning in Python but also for the traditional approach using SAS. 
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The rest of the paper is organized as follows. In Section 2, we review logistic regression. In 

Section 3, we introduce Fuzzy Augmentation and explore its true meaning. In Section 4, we 

propose a Rule of Thumb in reject inference. In Section 5, a novel two-phase Augmentation 

method is presented. The paper is concluded in Section 6.  

2.  Basic of logistic regression 

To start with, let’s assume that  are the vector of  independent 

variables and y is the dichotomous dependent variable. Assume we have a sample of  

independent observations   where  denotes the value 

of  (0 for Good status and 1 for Bad status) and  are the values of 

for the -th observation.  

To adopt standard notation in logistic regression [6], we use the quantity   

to represent the conditional probability that  is equal to 1 given  It follows that 

gives the conditional probability that y is equal to zero given x. The logistic 

regression model is given by the equation 
 

                                               (2.1) 

The logit transformation of  is  

                                  (2.2) 

The likelihood function for logistic regression can be expressed as the product form 

                    (2.3) 
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where  is the vector ( . Note that if  is known, either 0 or 1, then the 2 

terms in the product of (2.3) reduces to only one term as the other term will have a value of 1.  

The principle of maximum likelihood states that the solution to the logistic regression is an 

estimate of  which maximizes the expression (2.3). Since it is easier to work with the log 

of equation, the log likelihood is instead used 

   

                                                                    (2.4)                                                      

The value of  given by the solution to (2.4) is called the maximum likelihood estimate and 

will be denoted by  The maximum likelihood estimate of  will be 

denoted by  or simply  It follows from (2.1) that  

The maximum likelihood estimate to (2.4) may not exist, say, in case of complete separation 

or quasi-complete separation [7]. On the other hand, there exists at most one maximum 

likelihood estimate [8]. Therefore, if there is a maximum likelihood estimate, it must be 

unique.  

For the weighted logistic regression, let’s assume the -th observation has a positive weight 

 The weighted likelihood function for logistic regression (2.3) becomes 

                (2.5)                                                           

Accordingly, the weighted log likelihood is 

    (2.6) 
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While weights could be any positive numbers, an integral weight implies the frequency of the 

observation without weights. If an observation is not assigned a weight, it will have a weight 

of 1 by default. In this sense, (2.4) is a special case to (2.6) with all weights equal 1.  

3. Fuzzy Augmentation 

Fuzzy Augmentation is a widely used Augmentation method in credit scoring [4]. This 

method does not simply assign Good or Bad. Instead, it creates weighted Good or Bad using 

the Good and Bad probabilities calculated from the KGB model. Each record in the rejected 

accounts is replaced by 2 new records: one with Bad status and the probability of Bad as its 

weight, the other with Good status and the probability of Good as its weight. The new records 

and their associated weights, combined with the accepted accounts, are used to develop a new 

logistic scoring model.  

The following theorem illustrates the true meaning of Fuzzy Augmentation as the extension 

of the KGB model. Before we go through the theorem, let’s first state a lemma.  

Lemma 3.1. If , then function  reaches its 

maximum value in (0, 1) at . Moreover,  is the only maximum point of in 

  

Proof. Clearly, the derivatives  in  satisfies the following inequalities 

 

 

Hence,  is strictly increasing in  and strictly decreasing in . Since 

 when  or , reaches its maximum value in (0, 1) at  

Moreover,  is the only maximum point of in      Q.E.D.                                                                                                                                                                        
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Theorem 3.2. If the new logistic scoring model with Fuzzy Augmentation does not reselect 

variables but reuses all the variables in the KGB model, then it will produce the same 

maximum likelihood estimate as the KGB model.  

Proof. Assume that there are  observations from booked accounts and  observations 

from rejected accounts with unknown  values. Let  be the vector of  

independent variables selected by the KGB model for the  booked accounts. Let  be the 

solution to the KGB model and the maximum likelihood estimate of .  

 

Therefore, the weighted log likelihood (2.6) for the new logistic model with Fuzzy 

Augmentation becomes  

 

 

Combining the second and third summation in (3.1) for the  rejected accounts, we obtain    

 

Then,  is the solution to（3.2）without the second part for the rejected accounts. Applying                                                          

Lemma 3.1. to each of the  items in the second summation of（3.2), we see that the  
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items will each reach its maximum when  Since 

 when  it follows that  maximizes each item and 

hence maximizes the second summation. Since  already maximizes the first summation, 

 maximizes  Since (3.2) has at most one maximum likelihood estimate,  is 

the only solution to (3.2).     Q.E.D.                                                                                            

To implement Fuzzy Augmentation, one needs to reselect variables for the new logistic 

scoring model for the whole population after applying the KGB model. This can be done by 

means of Information Value or Metric Divergence measures and  [9]. Due to 

reject inference, some variables in the KGB model may be out and some new variables may 

be in. Since the new model for the whole population and the KGB model are likely to select 

different variables, they are likely to have different maximum likelihood estimates. 

4. A Rule of Thumb for reject inference  

Suppose we need to develop a new Augmentation method. Let’s assume that there are  

observations from booked accounts and  observations from rejected accounts with 

unknown .  Let  be the solution to the KGB model and  the maximum likelihood 

estimate of .  

Separating booked accounts and rejected accounts from Equation (2.4) with   

yields 2 summations 

                            

                                                                       (4.1) 
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Replacing  for rejected accounts with their respective maximum likelihood estimate 

 we obtain 

             

                                                                     (4.2) 

Then (4.2) is the same as (3.2). From the proof of Theorem 3.2., one may jump to conclusion 

that this new model will yields the same results as the KGB model. Indeed, this is not true 

simply because  is not dichotomous but a real number between 0 and 1.  However, 

(4.2) can be treated as the weighted log likelihood.  

On the other hand, we note that the expected values of ’s are  for all rejected 

accounts in Fuzzy Augmentation. This motivates us to think the following Rule of Thumb 

when developing a new Augmentation method.   

A Rule of Thumb in Reject Inference: When developing an Augmentation method for 

reject inference, it is better to make the expected values of the estimated ’s for rejected 

accounts equal their respective predicted probabilities from the KGB model.  

5. A two-phase augmentation method for Machine Learning in Python 

It is easy to implement Fuzzy Augmentation in the traditional approach using SAS simply 

because Proc Logistic in SAS has a Weight option. Yet, to the best knowledge of the authors, 

there are no existing packages for weighted logistic for Machine Learning in Python.  

5.1. Two-Phase Augmentation  

Let  denote the bad rate of booked accounts, that is, 
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Phase I: Basic Model  

Step 1: Use the KGB model to find the bad probabilities of rejected accounts. Let  be the 

probability of bad for a rejected account . 

Step 2: Generate a random number  between 0 and 1 for each rejected account . Assign a 

Good or Bad status to each rejected account as follows: 

 

Step 3: Calculate the bad rate of the rejected accounts as follows 

 

If it is high enough, say, 2 times of the bad rate of the booked accounts, start to develop a 

new model for all the accounts. Otherwise, continue the following steps to adjust the bad rate 

of the rejected accounts.  

Phase II: Extended Model 

Step 4. Regenerate a random number  between 0 and 1 for each rejected account . Assign 

a Good or Bad status to each rejected account as follows: 

 

where  and  

Step 5. Start to develop a new model for all the accounts.  

5.2. Analysis of two-phase augmentation  

We shall now analyze the correctness of the two-phase Augmentation method.  
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Theorem 5.1. The basic model in Phase I of the two-phase Augmentation method follows the 

rule of thumb in reject inference.  

Proof. As is known, a uniformly distributed random variable  on a probability space 

 is a real-valued function  by Here,  is Borel 

sigma field which includes all the subsets of [0, 1]  generated by all subintervals  of 

 such that  after finite set operations  (union, intersections, 

complements and differences). It can be proved that any set in  is a finite union of disjoint 

intervals (closed, open or half-closed).  is a probability measure defined as  

 

(i)  

(ii)  

 

Since for each , random number  follows a uniform distribution  in [0, 1], we have 

 

Next, for each  is a discrete random variable on the same probability space  

 as the uniform random variable defined by:   

 

Therefore, the expected value of  Hence, the basic model 

follows the Rule of Thumb in reject inference.                    Q.E.D.                                                                                                                

Theorem 5.2. For the extended model in Phase II of the two-phase Augmentation method, 

the average bad rate of the rejected accounts is  times of the bad rate of the booked 

accounts.  
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Proof.  We shall adopt the same notation about uniformly distributed random variable  

Since for each , random number  is a uniformly distributed  

random variable  in [0, 1], we have 

 

For each  is a random variable on  defined by: 

  

 

Then the expected value  of can be found as  

 

Now define the actual bad rate of the reject accounts by , then 

 

 is also a random variable on . Since  are 

unknown until they are assigned, we turn to its expected value , that is, the average bad 

rate of the reject accounts.  

 

Hence, the average bad rate of the rejected accounts is  times of the bad rage of the booked 

accounts.                                                 Q.E.D.                                                                                                                           
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Remark 5.3. It follows from Theorem 5.2. that if , then the bad rate of rejected 

accounts is In this case, Phase II will have the same results as Phase I. Therefore, we may 

set the default value of . 

Remark 5.4. Usually, the bad rate of rejected accounts after Phase I is much higher than that 

of booked accounts. In this case, we don’t need Phase II. In case Phase II is needed, we may 

adjust the bad rate of rejected accounts to meet the need.  

Remark 5.5. This two-phase Augmentation method has several advantages over other 

Augmentation methods. It works not only for Machine Learning in Python but also for the 

traditional approach using SAS. It is user friendly in that the user can specify a factor  to 

increase the bad rate of rejected accounts.  

6. Conclusions 

In this paper, we first proved an important property of Fuzzy Augmentation: If Fuzzy 

Augmentation is not incorporated with variable re-selection, it will produce the same results 

as the KGB model. We then proposed a Rule of Thumb in reject inference. Based on this 

Rule of Thumb, we presented a novel two-phase Augmentation method. This two-phase 

augmentation method works not only for Machine Learning in Python but also for the 

traditional approach using SAS. Moreover, it is user friendly in that the user can specify a 

factor to increase the bad rate of rejected accounts.  
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