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Abstract. In This paper, we introduce the associated graphs of commutative KU-algebra.  Firstly, we define the KU-

graph which is determined by all the elements of commutative KU-algebra as vertices. Secondly, the graph of 

equivalence classes of commutative KU-algebra is studied and several examples are presented. Also, by using the 

definition of graph folding, we prove that the graph of equivalence classes and the graph folding of commutative 

KU-algebra are the same, where the graph is complete bipartite graph. 
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1. Introduction 

The notion of BCK and BCI-algebras are first introduced by Imai and Is éki [11, 12 and 13]. 

Later on, in 1984, Komori [15] introduced a notion of BCC-algebras, and Dudek [7] redefined 

the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of 

Komori. Accordingly, Dudek and Zhang [8] introduced a new notion of ideals in BCC-algebras 

and described connections between such ideals and congruences. Prabpayak and Leerawat [18, 

19] introduced a new algebraic structure which is called KU-algebra. They gave the concept of 

homomorphisms of KU-algebras and investigated some related properties. Several authors 
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studied the graph theory in connection with (commutative) semigroups and (commutative) rings, 

see [1, 2, 4, and 6]. Beck [3] introduced a coloring of commutative rings and he considered all 

the elements of a ring as vertices. The graph of equivalence classes of zero divisors of 

commutative rings is studied by Mulay [17]. In [14], Jun and Lee defined the notion of zero 

divisors and quasi-ideals in BCI-algebra and they have proved that if X is a BCK-algebra, then 

the associated graph of X is connected. Zahiri and Borzooei [21] defined a new graph to a BCI-

algebra X, then this definition and last definition, which were introduced by Jun and Lee are the 

same.  In this paper, we introduce the KU-graph of a commutative KU-algebra X , denoted by 

)(XG , as the (undirected) graph with all elements of X  as vertices and for distinct Xyx , , the 

vertices x  and y  are adjacent if and only if 0 yx   . Moreover, we study the graph )(XGE of 

equivalence classes of X  and several examples are presented. Also, by using the definition of 

graph folding, we prove that the graph of equivalence classes and the graph folding of a 

commutative KU-algebra are the same, and every one, then both, is complete bipartite graph. 

 

2. Preliminaries 

In this section, we recall some known concepts related to KU-algebra from the literature which 

will be helpful in further study of this article. 

 

Definition2.1. [18] Let X be a nonempty set with a binary operation and a constant 0 . The 

triple )0,,( X is called a KU-algebra, if for all Xzyx ,,  the following axioms are satisfied: 

( 1ku )  0)]())[()(  zxzyyx . 

( 2ku )  00 x . 

( 3ku )  xx 0 . 

( 4ku ) 0 yx  and 0xy  implies yx  . 

( 5ku ) 0 xx . 

 On a KU-algebra X we can define a binary relation   on X by putting   0 xyyx . Then 

),( X is a partially ordered set and 0 is its smallest element. Thus )0,,( X satisfies the following 

conditions: for all Xzyx ,,   

 ( \1
ku ) )()()( yxzxzy  .   
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 ( \2
ku ) x0 .   

 ( \3
ku ) xyyx  ,  implies yx  . 

( \
4

ku )   xxy  . 

 

Theorem 2.2. [16] In a KU-algebra X , the following axioms are satisfied: for all Xzyx ,, , 

 (1)  yx  imply zxzy  . 

 (2) )()( zxyzyx  . 

 (3) yxxy  ))(( . 

 

Definition2.3. [19, 20] Let I  be a non empty subset of a KU-algebra X . Then I  is said to be a 

KU-ideal of X , if  

)( 1I  I0 ; 

)( 2I ,,, Xzyx  if Izyx  )(  and ,Iy  imply Izx  . 

 

Definition 2.4. We define xxyyx  )(  , then a KU-algebra )0,,( X is said to be KU-

commutative if it satisfies: for all yx,  in X , yyxxxy  )()( , i.e. xyyx   . 

 

Theorem2.5. For a KU-algebra )0,,( X , the following are equivalent: 

(a) X is commutative; 

(b) yyxxxy  )()( ; 

(c) 0))(())((  xxyyyx . 

Proof: clear. 

 

Lemma 2.6.  If X  is commutative KU-algebra, then )()()( zxyxzyx   . 

Proof: If X  is commutative KU-algebra, 

then zyxyxzxxzxxyzxyx

byku


  



\1

)()())))(())((()()( . Also by 

  


\4

)()()(

ku

xzxzxyx  . It follows that )()()( zyxzxyx   . 
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Conversely, by \
1

ku and Theorem2.2 (3) we have 

)))(()))())(())(())()(( xxzyxxzxxyzyxzxyx    

0)()()())()((  zyzyzyxyxz , hence  )()()( zxyxzyx   . Therefore 

)()()( zxyxzyx   .  

 

We will refer to X  is commutative KU-algebra unless otherwise indicated. 

 

Definition 2.7. Let A be a subset of X . Then we define 0:{)(  xaXxAann  for all }Aa  

and call it the KU-annihilator of A . If }{aA , then we write )(aann instead of })({aann . 

Lemma 2.8. Let A be a subset of X  and )(Aann  be the KU-annihilator of A , then )(Aann  is an 

ideal of X . 

Proof: Since 0)0(0  aaaaa   , then )(0 Aann . 

Let )(),( Aannyzyx  , then 0))((  zyxa  , which implies that 0))((  zxya  , and 

by Lemma 2.6 0))(()(  zxaya   . Since )(Aanny , then 0))((0  zxa  , hence 

0)(  zxa  , i.e. )()( Aannzx  . Therefore )(Aann is an ideal of X . 

Lemma2.9. If XBA  , , then 

 (I)     If thenBA ,  )()( AannBann  ; 

 (II)  )()()( BannAannBAann   ; 

 (III)  )()()( BAannBannAann   . 

Proof: (I) Suppose that 

 ).()( hence,)(.

,0*)*(,,,0*)*(,)(

AannBannAannxei

AbbbxtherforeBAbutBbbbxthenBannx




 

(II) Since BAA   and BAB  , we have by part (I) of Lemma 2.9 that, 

)(),()( BannAannBAann  , and hence )1()()()(  BannAannBAann   

 Conversely, if )()( BannAannx  , then )(),( BannAannx , therefore Aaaax  ,0)(  

and Bbbbx  ,0)( . But if  BAc  , then  

)(0)( BAcccx  we have )( BAannx  , hence 

 )()()( BAannBannAann   ------------- (2) 
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From (1) and (2), we have )()()( BannAannBAann   . 

 (III): we have BAA  , BAB   from (I) )()( BAannAann  and )()( BAannBann   

which implies that )()()( BAannBannAann   . 

Lemma 2.10. If A is a nonempty subset of X , then 
Aa

aannAann


 )()( . 

Proof: Since 
Aa

aA


 }{  , we have 
AaAa

aannaannAann


 )(}}{{)( . 

Definition2.11. Define a relation  on X  as follows: 

Xyxyannxannifonlyandifyx  ,,)()(~  

Lemma2.12. the relation  (from Definition2.11) is an equivalence relation on X . 

Proof:  The reflexivity, symmetry, and transitivity follow very easily from Definition 2.11 

showing ~ is an equivalence relation. 

 

3. A graph of a commutative KU-algebra 

In this section, we introduce the concepts of graph of X and the graph of equivalence classes of 

X . For a graph G , we denote the set of vertices of  G  as )(GV  and the set of edges as )(GE . A 

graph G  is said to be complete if every two distinct vertices are joined by exactly one edge. A 

graph G  is said to be bipartite graph if its vertex set )(GV  can be partitioned into disjoint 

subsets 1V  and 2V  such that, every edge of G  joins a vertex of 1V  with a vertex of 2V . So, G  is 

called a complete bipartite graph if every vertex in one of the bipartition subset is joined to every 

vertex in the other bipartition subset.  Also, a graph G is said to be connected if there is a path 

between any given pairs of vertices, otherwise the graph is disconnected. For distinct vertices x 

and y of G, let d(x, y) be the length of the shortest path from x to y and if there is no such path 

we define d(x, y) = ∞. The diameter of G is :),(sup{)( yxdGdiam   x and y are distinct vertices 

of G}. The diameter is 0 if the graph consists of a single vertex. A connected graph with more 

than one vertex has diameter 1 if and only if it is complete; i.e., each pair of distinct vertices 

forms an edge. The neighborhood of a vertex Gx  is the set of the vertices in G adjacent to x  

(i.e.) }:)({)( yxGVyxN  . In case Xx , it is easy to see that )()( xannxN   for all 0x . 

A graph H is called a subgraph of G  if  )()( GVHV   and )()( GEHE  . Two graphs 1G and 

2G  are said to be isomorphic if there exists a bijective mapping )()(: 21 GVGVf   such that 
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)( 1GEyx   then   )()()( 2GEyfxf  . A fan graph, denoted by nF , is a path 1nP  plus an 

extra vertex 0x  connected to all vertices of the path 1nP , where },...,,{ 1211   nn xxxP . A graph G  

is called a star graph in case there is a vertex x  in G  such that every other vertex in G  is an end, 

connected to x  and no other vertex by an edge. For more details we refer to [5, 10]. 

 

Definition 3.1. A graph of X , denoted by )(XG  is an undirected simple graph whose vertices 

are the elements of X  and two distinct elements Xyx ,  are adjacent if and only if 0 yx   .  

This graph is called the KU-graph. 

 

Theorem3.2. With notations as above. )(XG  is connected and 3))(( XGdiam . 

 

Proof: Let Xyx , be two distinct vertices. We have the following two cases: 

Case1: 0 yx  . Then 1),( yxd . 

Case2: 0 yx  . Then there are },{\, yxXba   with 0 ybxa  . If ba  , then yax   

is a path of length 2; Thus 2),( yxd .  We may assume that ba   , if 0ba  , then 

ybax   is a path of length 3, and hence 3),( yxd . If 0ba  , then 0)(  bax  , 

0)(  bay  , thus ybax    is a path of length 2, so 2),( yxd .  In all of the cases, 

3))(( XGdiam . From above, there exists a path between any two distinct elements in X and so 

)(XG  is connected. 

 

Example 3.3. Let },,,0{ cbaX   be a set, with the operation    defined by the following table 

 

   

 

 

 

 

 

 

  0 a b c 

0 0 a b c 

a 0 0 a c 

b 0 0 0 c 

c 0 a b 0 
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Using the algorithms in Appendix A, we can prove that (X, *, 0) is a KU-algebra and it is easy to 

show that X is a commutative KU-algebra. By Definition 3.1, we determine the graph of X  as 

follows: The set of vertices are },,,0{)( cbaXV  and the set of edges are   

}},{},,{},,0{},,0{},,0{{)( cbcacbaXE  , The Figure (1) shows the graph )(XG . 

 

Now, we introduce the graph of equivalence classes of commutative KU-algebra X , which is 

constructed from classes of equivalence relation ~ in definition 2.11. For any Xyx , , we say 

that x ~ y if and only if )()( yannxann  . Note that ~ is an equivalence relation on X . 

Furthermore, if 21  x~x and 01  yx  , then )()( 21 xannxanny   and hence 02  yx  . We 

define ][x , the equivalence class of x, as follows: )}()(:{][ xannzannXzx  . 

 

Lemma 3.4. Let }:]{[ Xxx   be the set of equivalence classes of X  , 

where )}()(:{][ xannzannXzx  . Then ][][][ yxyx   . 

Proof: Since )()( yxannxann   , )()( yxannyann   , we have ][],[][ yxyx  . 

We claims that ][][][ yxyx    . Let ][],[][ yxt  . Then  )()( tannxann  , )()( tannyann  . 

Now, we claim that )()( tannyxann  . Let )( yxannz   , then )()( tannyannxz  . This 

gives 0 txz  ; that is )()( tannxanntz  . Hence 0 tz  ; that is )(tannz . Then 

)()( tannyxann  . Thus ][][ yxt    and ][][],[ yxyx   . Therefore, ][][][ yxyx   . 

a 

b 

0 
c 

)(XG  

Fig. (1) 
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Definition 3.5. Let X  be as mention above. The graph of equivalence classes of X , denoted by 

)(XGE is a simple graph whose vertices are the set of equivalence classes  Xxx ];[  and two 

distinct classes ][],[ yx  are adjacent in )(XGE  if and only if }0{][][  yx  .  

Example 3.6. Let },,,,,0{ edcbaX  be a set, with the operation    defined by the following 

table: 

 

 

 

   

 

 

 

 

Using the algorithms in Appendix A, we can prove that (X, *, 0) is a KU-algebra and it is easy to 

show that X is a commutative KU-algebra. Now, we determine the graph of X  as follows: The 

set of vertices is },,,,,0{)( edcbaXV  , and the set of edges is  

}},{},,{},,0{},,0{},,0{},,0{},,0{{)( cabaedcbaXE  , and the set of  vertices of  )(XGE  is 

]}[],[],[],0{[ dba  since Xann )0( , },,0{)( cbaann   ,  

},0{)()( acannbann  , }0{)()(  eanndann ,then 

]}}[],{[]},[],0{[]},[],0{[]},[],0{{[)(( badbaXGE E  . The Figure (2) shows the graph )(XG and 

the graph of equivalence classes )(XGE . 

 

o [o]

e

[a] [b]

[d]
a

b

c
d

G(X)
E

G  (X)

Fig .(2)  

  0 a b c d e 

0 0 a b c d e 

a 0 0 b c b c 

b 0 a 0 b a d 

c 0 a 0 0 a a 

d 0 0 0 b 0 b 

e 0 0 0 0 0 0 
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Lemma 3.7.     With notations as before. 

                         1) )(XGE  is a sub graph of )(XG ; 

                         2) XxforallXN  },0{\)0( . Then the KU-graph is a star graph.    

Proof: straightforward. 

 

Theorem 3.8. Let  )(XGE  be the associated graph of equivalence classes of X . For any distinct 

vertices )(][],[ XGyx E , if ][][ yandx  connected by an edge, then  )()( yannandxann  are 

distinct KU-annihilator ideal of X . 

Proof: suppose that )()( yannxann  , then yx ~ . Hence ][][ yx   this is a contradiction. 

Therefore, )()( yannandxann  are distinct KU-annihilator ideal of X . 

 The converse of this theorem is not true.  In Example 3.6 it is easy to see that the vertices 

][][ dandb are distinct KU-annihilators, but no edge joint between them. 

 

Theorem 3.9. Let X  as mentioned above. If )(XG  is one of the following graphs:  

(a) Complete graph;  

(b)  Fan graph,  

 then )()( XGXG E . 

Proof: (a) Suppose that },...,,{))(( 21 nxxxXGV  . If  )(XG  is the complete graph, then every 

pair of its vertices are adjacent. Thus nixxxxN i ,...,2},,...,,{)( 321  , 

nixxxxN i ,...,3,1},,...,,{)( 312  ,…, },...,,{)( 121  nn xxxxN .Then,    

)()(),...,()(),()( 2211 nn xNxannxNxannxNxann  .Thus )(...)()( 21 nxannxannxann   , 

therefore every vertex of )(XG  is a equivalence class of  )(XGE  , thus the vertices of 

)(XGE are distinct and the same number of vertices of  )(XG , then there exist an  

isomorphic )()(: XGXGf E  satisfies ][)( ii xxf   for each },...,2,1{ ni and the mapping of 

edges  ))(())((: XGEXGEf E , which sends the edge ji xx   in ))(( XGE  to the edge 

][][ ji xx   in ))(( XGE E  is a well-defined bijection. 
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 (b) If )(XG  is a fan graph, then there exist a path },...,,{ 1211   nn xxxP  plus an extra vertex 0x  

connected to all vertices of the path 1nP . Thus 

},{)(},...,,,{)(},,{)(,)( 10310220110   nnn xxxNxxxxNxxxNPxN , so 

)(...)()(...,)()( 121 11 rrr xannxannxannxannxann    then the vertices of )(XGE are 

distinct and the same number of vertices of  )(XG , thus  there exist an  

isomorphic )()(: XGXGf E  satisfies ][)( ii xxf   for each },...,2,1{ ni , and the mapping of 

edges ))(())((: XGEXGEf E , which sends the edge ji xx   in )(XG  to the edge ][][ ji xx   

in )(XGE  is a well-defined bijection.  In all of the cases, )()( XGXG E . 

 

Theorem 3.10. If )(XG  of X  is the complete bipartite graph, then )(XGE  is an edge. 

Proof:  Suppose that )(XG  is the complete bipartite graph with vertex set 

},...,,,...,,{))(( 121 11 rrr xxxxxXGV  . This set can be split into two sets },...,,{
1211 rxxxV   and 

},...,{ 12 1 rr xxV   such that each vertex of 1V  is joined to each vertex of 2V  by exactly one edge. 

Thus, the set of edges are: 

},...,,,....,,...,,,...,,{))((
12111121 1121211111 rrrrrrrrrrr xxxxxxxxxxxxxxxxXGE   , 

so 22111 )(...)(},...,,{)(
121

VxNxNxxxxN rrrr    and 

11211 )(...)(},...,,{)(
211

VxNxNxxxxN rrrr   , then 221 )(...,)()(
1

Vxannxannxann r   

and 
121 )(...,)()(

21
Vxannxannxann rrr  

. 

Then there are two distinct equivalence classes ][ 1x  and ][ 11 rx  in )(XGE  , which are adjacent. 

Thus )(XGE  is an edge. 

 

Lemma 3.11. Let G  and H  be two graphs of commutative KU-algebras and HG  . For all 

)(),( HVyGVx  , if yxf )( , then )())(( yNxNf  .  

Proof: straightforward. 

 

Theorem 3.12. If )()( YGXG   for X  and  Y , then )()( YGXG EE  . 
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Proof: Suppose that },...,,{))(( 21 nxxxXGV  and },...,,{))(( 21 nyyyYGV   such that the 

isomorphism )()(: YGXGf   satisfies ii yxf )(  for each },...,2,1{ ni . By Lemma 3.11, 

)())(( ii yNxNf   for each i , thus )())(( ii yannxannf  and the mapping of edges 

))(())((: YGEXGEf EE  , which sends the edge ][][ ji xx   in )(XGE  to the edge ][][ ji yy   in 

)(YGE  is a well-defined bijection. Thus  )()( YGXG EE  . 

The converse of this theorem is false as illustrated in the following example. 

 

Example 3.13. (a) Let }4,3,2,1,0{X be a set, with the operation     defined by the following 

table 

 

 

   

 

 

 

 

Using the algorithms in Appendix A, we can prove that )0,,( X  is a KU-algebra and it is easy to 

show that X is a commutative KU-algebra. We determine the graph of X  as follows: The set of 

vertices is }4,3,2,1,0{)( XV and the set of edges is   

}}4,3{},4,2{},3,2{},4,1{},3,1{},4,0{},3,0{},2,0{},1,0{{)( XE , and the set of vertices of  )(XGE  

is ]}4[],3[],1[],0{[  since Xann )0( , }4,3,0{)2()1(  annann  , }4,2,1,0{)3( ann , 

}3,2,1,0{)4( ann , then ]}}4[],3{[]},4[],1{[]},3[],1{[]},4[],0{[]},3[],0{[]},1[],0{{[)(( XGE E . 

Hence Figure(3) shows the graph )(XG and the graph of equivalence classes )(XGE . 

  0 1 2 3 4 

0 0 1 2 3 4 

1 0 0 1 3 4 

2 0 0 0 3 4 

3 0 1 2 0 4 

4 0 1 2 3 0 
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 (b) Let }3,2,1,0{Y  be a set, with the operation    defined by the following table 

 

   

 

 

 

 

 

Using the algorithms in Appendix A, we can prove that (Y, *, 0) is a KU-algebra and it is easy to 

show that Y is a commutative KU-algebra. We determine the graph of Y  as follows: The set of 

vertices is }3,2,1,0{)( YV and the set of edges is   }}3,2{},3,1{},2,1{},3,0{},2,0{},1,0{{)( YE , 

then )(YG  is complete graph. 

Therefore, )()( YGYG E  see Figure (4). 

  0 1 2 3 

0 0 1 2 3 

1 0 0 2 3 

2 0 1 0 3 

3 0 1 2 0 

)(XG  
)(XGE  

0 

1 2 

4 

3 

[0] 

[1] [4] 

[3] 

Fig. (3) 
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We have that )()( YGXG EE    but )()(
~

YGXG  . 

 

4. Graph folding 

 

In this section, we describe the graph folding of a graph of commutative KU-algebra. 

 

Definition 4.1. [9] (Graph folding) Let 1G  and 2G  be two graphs and 21: GGF   be a 

continuous function. Then F  is called a graph map, if  

(i) for each vertex )(),( 1 xFGVx  is a vertex in )( 2GV ; 

(ii) for each edge )( 1GEe , )dim())(dim( eeF  . 

A graph map 21: GGF   is called a graph folding if and only if F  maps vertices to vertices and 

edges to edges, i.e., for each  ),( 1GVx  then )()( 2GVxF  and for )( 1GEe , 

then )()( 2GEeF  . The graph folding is non trivial if and only if )(.))((. 11 GVNoGFVNo  , also 

)(.))((. 11 GENoGFENo  . 

The set of graph foldings between graphs 1G  and 2G  is denoted by ),( 21 GG  and the set of 

graph folding of 1G  into itself by )( 1G . 

 

 

3 1 

2 

Fig. (4) 

0 [0] 

[1] 

[2] 

[3] 

)(YG  )(YGE  
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Example 4.2.  Let },,,0{ cbaX   be a set, with the operation     defined by the following table 

 

 

 

 

 

 

 

 

Using the algorithms in Appendix A, we can prove that (X, *, 0) is a KU-algebra and it is easy to 

show that X is a commutative KU-algebra. We determine the graph of X  as follows: 

The set of vertices is },,,0{)( cbaXV   and the set of edges is  

}},0{},,0{},,0{{)( 321 cebeaeXE   , then it is clear that this graph is a complete bipartite 

graph (star graph), as shown in Fig (5).  

 

 

Now, we can define a graph map )()(: XGXGF  by: 

},{},{ aacbF   and 132 },{ eeeF   . It is clear that this graph map is a graph folding, such 

that )())(( XGXGF  , this graph shown in Fig. (6) 

  0 a b c 

0 0 a b c 

a 0 0 a b 

b 0 0 0 a 

c 0 0 0 0 

a 

b c 

0 

1e  
2e  3e  

Fig. (5) 

)(XG  
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Thus, the complete bipartite graph (star graph) )(XG  can be folded onto an edge. 

 

Theorem 4.3.  Any complete bipartite graph )(XG of X  can be folded to an edge. 

Proof: Let )(XG  be a complete bipartite graph of a commutative KU-algebra X   with vertex set 

},...,,,...,{)( 11 11 rrr xxxxGV  . The vertex set can be split into two sets },...,{
111 rxxV   and 

},...,{ 12 1 rr xxV  such that each vertex of 1V  is adjacent to each vertex of 2V  by one edge, hence 

}.,...,,,....,,...,,,...,,{))((
12111121 1121211111 rrrrrrrrrrr xxxxxxxxxxxxxxxxXGE  

Let 










 rriifx

riifx
xF

r

i ,...,1

,...,1
)(

11

11

1

. 

Thus, the image of any edge of ))(( XGE will be the edge 11 1
 rxx . Moreover, this map is a graph 

folding. 

Theorem 4.4. Let X  be a commutative KU-algebra. If )(XG  is the complete bipartite graph 

then )(XGE  and   the graph folding of  X  are the same. 

Proof: By using Theorem3.10 and Theorem 4.3, we obtain the result. 

 

Conclusion  

Graphs are a very interesting and important area of research in the theory of algebraic structures 

in mathematics. In the present paper, we have studied two types of graphs )(XG and )(XGE of a 

commutative KU-algebras and discussed few results of these types, such as if )(XG  is the 

complete graph and the fan graph, then )()( XGXG E . Also, if )(XG  is the complete bipartite 

0 a 
1e  

)(XG  

Fig. (6) 
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graph, then )(XGE  is an edge.  Furthermore, we proved that if )()( YGXG  , then 

)()( YGXG EE   but the converse is not true. 

In the last section, the graph folding is defined and we proved that if the KU-graph is complete 

bipartite graph, then the graph )(XGE and the graph folding of a commutative KU-algebra are 

the same.  

In our opinion, these definitions and main results can be similarly extended to some other 

algebraic systems such as BCH-algebra -Hilbert algebra -BF-algebra -J-algebra -WS-algebra -

CI-algebra- SU-algebra -BCL-algebra -BP-algebra -Coxeter algebra -BO-algebra and so forth. 

The main purpose of our future work is to investigate the folding and unfolding to other types of 

graphs on other algebraic systems.  

 

Appendix A. Algorithms 

Algorithm for KU-algebras  

Input ( :X set, : binary operation) 

Output (“ X is a KU-algebra or not”) 

Begin 

If X  then go to (1.); 

EndIf 

If X0  then go to (1.); 

EndIf 

Stop: =false; 

1:i ; 

While Xi   and not (Stop) do 

If 0 ii xx  then 

Stop: = true; 

EndIf 

1:j  

While Xj   and not (Stop) do 

If 0))((  iij xxy  then  

Stop: = true; 

EndIf 

EndIf 
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1:k  

While Xk   and not (Stop) do 

If 0))()(()(  kikjji zxzyyx  then  

Stop: = true; 

     EndIf 

   EndIf While 

 EndIf While 

EndIf While 

If Stop then  

(1.) Output (“ X is not a KU-algebra”) 

Else  

   Output (“ X is a KU-algebra”) 

     EndIf 

End 
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