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Abstract: A primitive cuboid is a rectangular parallelepiped with natural edges and inner diagonal that have no 

common factor and can be identified as a primitive solution of the four squares Diophantine 

equation 2222 tzyx . The classical quadratic Hopf map associated to Lebesgue’s identity is used to study the 

set of primitive cuboids with odd diagonal. Consider the restriction of the image of the induced integer Hopf map to 

non-negative solutions of the four squares equation, which may include zeros, and are primitive or not, as well as the 

corresponding relevant subset of its fibre. As a main result, we show that permutations in this subset that belong to a 

given partition type generate the same number of distinct solutions to the four squares equation. In the special case 

of a prime diagonal this subset is complete in the sense that it coincides with its fibre. It implies that each partition 

type in the fibre generate the same number of distinct primitive cuboids. As an application, we use Jacobi’s four 

squares theorem to derive Shanks’ theorem stating that there are exactly  n   primitive cuboids with odd prime 

diagonal  p   of the form  18np   or  58np . Though more complicated than the original proof, it is 

remarkable that the Hopf map approach does not use Gauss’s formula on the number of primitive three squares 

representations. Moreover, the alternate proof has the advantage to be constructive and yields an algorithm to 

generate all primitive cuboids with prime diagonal. 
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1. Introduction 

Unlike the representation of integers by sums of two and four squares the representation of 

numbers by sums of three squares has been identified as a much more difficult question (e.g. 

Davenport [7], Section V.5). It is long known that a number  n   is a sum of three squares if, 

and only if  0,0),78(4 babn a , a result due to Legendre [24] and Gauss [11] (see 

Dickson [8], Chap. VII, pp. 261-262). The proof by Legendre assumed that any arithmetic 

progression contains infinitely many primes, a condition proved much later by Dirichlet in 1837 

(see Landau [22], vol. 1, pp.114-121). The first complete but different proof was given by Gauss 

[11], art. 291. Accounts of this fundamental result are found in many textbooks of number theory 

like Krätzel [21], Satz 6.14, Grosswald [12], Chap. 4, Sierpinski [36], Section XI.4 and 

references therein, Nathanson [31], Theorem 1.4, p.23, etc. 

A special case is the cuboid problem, which consists to solve the Diophantine equation 

2222 tzyx        (1.1) 

in non-zero natural numbers  tzyx ,,, . The numbers  zyx ,,   are interpreted as the edges of a 

cuboid (=rectangular parallelepiped) and  t   is its inner diagonal. General solutions to (1.1), 

which may include zeros and non-primitive solutions, however, have been discussed by several 

authors including Lebesgue [23] (see Dickson [8], Chap. VII, p. 265, Nagell [30], p.194), Ayoub 

[4], Carmichael [5], Section II.11, Dickson [8], Chap. VII, Sierpinski [35], [36], Section II.10, 

Mordell [29], Chap. 3, Andreescu et al. [1], Section I.4.1. The more intricate primitive cuboid 

problem of finding natural numbers  tzyx ,,,   with no common factor has been studied by 

Dickson [9], Skolem [37], Miksa [27], Steiger [40], Spira [39], and more recently by the author 

[16], [17]. 

Our new contribution shows how the study of primitive cuboids can be reduced to the study 

of the classical quadratic Hopf map between the real Euclidean spaces of dimensions 4 and 3 that 

is associated to the following identity of Lebesgue 
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22222222 ),(2),(2, srqptqrpszqsprysrqpx . (1.2) 

 

This technique goes back at least to Ono (1994), Section 7, and is thoroughly described in 

Section 2. The analysis is based on an invariant map from the set of ordered primitive partitions 

into four squares to a specific set of permutations that remain invariant for certain partition types 

or sub-types as described in Table 2.2. The obtained results are applied in Section 3 to determine 

the number of primitive cuboids with prime diagonal and generate them exhaustively using a 

specific algorithm. For this, we use Jacobi’s four squares theorem to derive Shanks’ theorem 

stating that there are exactly  n   primitive cuboids with odd prime diagonal  p   of the form  

18np   or  58np . Thanks the Hopf map permutation properties the given new proof 

is constructive and yields an algorithm to generate all primitive cuboids with prime diagonal. 

Table 3.2 provides a complete list of all primitive cuboids with prime diagonal for the 25 first 

odd primes. Finally, Section 4 provides a brief correction note to a previous result by the author. 

 

2. Permutation invariant properties of ordered square partitions 

It is well-known that all solutions of the three squares equation (1.1) with g.c.d. 1),,( zyx   

are obtained from Lebesgue’s identity (e.g. Carmichael [5], Section II.11, Mordell [29], Chap. 3,  

Sierpinski [36], end of Section II.10, Andreescu et al. [1], Section I.4.1, Example 7): 

 

.),(2),(2, 22222222 srqptqrpszqsprysrqpx  (2.1) 

 

In particular, if  t   is an odd prime, all solutions of the primitive cuboid problem with  g.c.d. 

1),,,( tzyx   and  zyx0   are of the form (2.1). At least in this special case, there 

exist presumably a one-to-one correspondence between the distinct solutions of (1.1) and 

solutions of the four squares equation  2222 srqpt   in Lebesgue’s identity (2.1). The 
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main goal of the present Section it to make explicit a general map that is valid for arbitrary odd  

t . 

Let  34: RRh   be the classical Hopf map (see Hopf [15], Ono [32], Section 7) between 

the real Euclidean spaces of dimensions 4 and 3 defined by 

))(2),(2,()(),,( 32414231
2
4

2
3

2
2

2
1321 uuuuuuuuuuuuuhvvvv . For a positive integer  

t , consider the real sets 

 

}:{)( 2
4

2
3

2
2

2
1

43 tuuuuRutS ,   }:{)( 22
3

2
2

2
1

32 tvvvRvtS . 

 

Then  h   induces a map )()(: 23 tStSht . Its restriction to the integers  Z   induces a map 

ZZtZ tStSh )()(: 23
, , where  433 )()( ZtStS Z ,  },:)({)( 32

322 evenvvZtSvtS Z . 

Switching from now on to notation (2.1) one sees that the restricted integer valued Hopf map 

sends  ),,,( srqp   to  ),,( zyx   such that  ),,(),,,(, zyxsrqph tZ . In the context of 

primitive cuboids, one is only interested in distinct positive triples  Nzyx ),,(   such that 

1),,,( tzyx , where the g.c.d. condition is automatically fulfilled in the special case of odd 

primes  t . It is natural to restrict the set  ZtS )(3   further to the subset of non-negative 

integers  433 )()( NtStS N . However, the image of the induced Hopf map  

ZNtN tStSh )()(: 23
,   is larger than the desired set of primitive cuboids in (2.1) with positive 

coordinates, say  pc
NtS )(2 . In fact, the desired solutions of (2.1) in terms of the coordinates  

),,,( srqp   are described by the restriction of  tNh ,   to the Hopf fibre denoted by  

))(()( 21
,

3 pc
NtN

pc
N tShtH . Given an ordered primitive quadruple  srqp0   only 

specific permutations  ),,,( srqp   of  ),,,( srqp   will belong to the fibre pc
NtH )(3 . The 
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analysis of examples suggests that the feasible permutations depend upon the partition type of a 

number into squares, a notion introduced by Lehmer [26]. According to Table 2.1 below, there 

are in general 11 partition types giving rise each to different numbers of representations that take 

into account permutations and sign changes. In the following, the integer  t   runs through the 

set of all odd numbers 3t . Then, only six of them are relevant to our mapping, namely the 

partition types I, II, III, V, VI and VIII. 

 

Table 2.1:  Lehmer’s 11 partition types into four squares and their numbers of representations 

 

type partition # representations 

I 2222 srqp  384 

II 22220 rqp  192 

III 2222 rqpp  192 

IV 2222 qqpp  96 

V 22220 qpp  96 

VI 2222 qppp  64 

VII 2222 00 qp  48 

VIII 22220 ppp  32 

IX 2222 00 pp  24 

X 2222 pppp  26 

XI 2222 000 p  8 
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When restricted to the fibre  pc
NtH )(3 , different permutations of  ),,,( srqp   can lead to 

the same triple (2.1) with  0,, zyx . However, in the special case of an odd prime  7t , it is 

remarkable that the feasible permutations associated to a partition type lead always to the same 

specific number of distinct triples in  pc
NtS )(2 , as will be shown later in Theorem 3.1. 

For a clear distinction, it is useful to consider also the set denoted by  

322 )()( NtStS Z
c
N , which  contains all non-negative solutions to (1.1), which may include 

zeros, and are primitive or not. Its fibre is denoted by  ))(()( 21
,

3 c
NtN

c
N tShtH . The following 

observation is useful. Given  srqp0   a permutation  ),,,( srqp   of  ),,,( srqp   

will belong to the fibre  c
NtH )(3   provided the following necessary conditions are fulfilled: 

 

(C1) 1,0,,1, rqrqsp    

(C2) 0rqsp ,   02222 srqp  

(C3) )2(mod1srqp  

 

The first two conditions ensure that triples  ),,( zyx   have positive coordinates, and (C3) 

is required so that  3t   is odd. To analyse the dependence upon the ordered partition types, it 

is easier to work with a set of simpler structure, denoted by  pc
NtS )(3 . It contains all 

permutations  c
NtHsrqp )(),,,( 3   of an ordered primitive quadruple srqp0  

satisfying (C1), (C2), (C3), where  srqp0   runs through all ordered partition types 

in Table 2.2 below that satisfy the inequality conditions 

 

(C)  0,0 2222 srqpqrps . 
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Theorem 2.1 (One-to-one mapping between partition types and distinct triples in c
NtS )(2 ). Let  

3t   run through the set of odd numbers. The permutations in  pc
NtS )(3   that belong to a 

given partition type generate the same number of distinct triples in  c
NtS )(2   as described in 

Table 2.2. 

 

Table 2.2:  Partition types  srqp0   and distinct triples in  c
NtS )(2  

type partition  # squares in 

pc
NtS )(3  

# zeros in 

pc
NtS )(3  

# triples in 

c
NtS )(2  

1 srqp0  4 0 6 

2 srqp 0  4 1 3 

(3.1) 

 

(3.2) 

 

(3.3) 

 

srqp0  

 

srqp0  

 

srqp0  

3 

 

3 

 

3 

0 

 

0 

 

0 

3 

 

3 

 

3 

(4.1) 

 

(4.2) 

srqp 0  

srqp 0  

3 

 

3 

1 

 

1 

2 

 

2 

(5.1) 

 

(5.2) 

srqp0  

srqp0  

2 

 

2 

0 

 

0 

1 

 

1 

6 srqp 0  2 1 1 
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Proof.  We proceed step by step following the order of the partition types. 

Partition type 1:  srqp0  

When  ),,,( srqp   run through the 24 different permutations of the form ),,,( srqp , the pairs  

),( zx   with  0xz   take 6 distinct values in 4 packages of  ),( zx   with possible signs  

),( , ),( , ),(   and  ),( . Three cases are possible. 

Case (a):  0qrps  

The required 6 permutations with  0,0 zx   are given by 

 

),,,( rqps ,   ),,,( qrps ,   ),,,( rpqs ,   ),,,( prqs ,   ),,,( qprs ,   ),,,( pqrs . 

For all of them the inequality  0)(2 rqspz   follows either from  srqp0   or 

the assumption  0qrps . Checking that  02222 srqpx   follows similarly. 

This is non-trivial for the first two permutations and follows from the calculation 

 

0)(2))((2222 qrpspqrsqrpsrqspx . 

 

These 6 permutations generate at most 6 solutions  ),,( zyx , namely 

))(2),(2,( 2222 pqrsqsprrqsp ,   ))(2),(2,( 2222 prqsrspqrqsp , 

))(2),(2,( 2222 pqrsqrpsrpsq ,   ))(2),(2,( 2222 qrpsrspqrpsq , 

))(2),(2,( 2222 prqsqrpsqpsr ,   ))(2),(2,( 2222 qrpsprqsqpsr . 

 

If  rqps   only 3 of them are distinct, but the components  zyx ,,   are then all even, 

which implies that  t   cannot be odd. Therefore, there are exactly 6 distinct triples. 
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Case (b):  0qrps ,   2222 rqsp  

In this situation, the 6 permutations with  0,0 zx   read  ),,,( rpsq , ),,,( qpsr , ),,,( rqps ,   

),,,( qrps , ),,,( rpqs , ),,,( qprs . For all of them the conditions  02222 srqpx   

and  0)(2 rqspz   follow either from  srqp0   or the made assumptions. 

They generate at most 6 solutions except when  rqps . In this situation 3 of them are 

distinct, but with even  t , a contradiction. 

 

Case (c):  0qrps ,   2222 rqsp  

The 6 permutations with  0,0 zx   are  ),,,( sprq , ),,,( rpsq , ),,,( spqr , ),,,( qpsr ,   

),,,( rpqs , ),,,( qprs . They generate 6 solutions. They are all distinct except when 

simultaneously  sqpr   and  rqps , which implies that  0qp , hence  

0qp , a contradiction. 

 

Partition type 2:  srqp 0  

In the proof for partition type 1 set  0p   to see that  0qrqrps , hence either Case (b) 

or Case (c) must hold. 

 

Case (b):   222 rqs  

The following pairs generate at most 3 solutions  ),,( zyx   with  0,0 zx , namely 

 

),,0,( rqs   and  ),,0,( qrs   generate the solution  )2,2,( 222 qsrsrqs , 
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),0,,( rsq   and  ),0,,( rqs   generate the solution  )2,2,( 222 qrrsrsq , 

),0,,( qsr   and  ),0,,( qrs   generate the solution  )2,2,( 222 qrqsqsr . 

 

They are distinct except when  rqs . In this case  t   is even and cannot occur. 

 

Case (c):   222 rqs  

The maximum of 3 solutions are generated as follows: 

),0,,( srq   and  ),0,,( sqr   generate the solution  )2,2,( 222 qsrssrq  

),0,,( rsq   and  ),0,,( rqs   generate the solution  )2,2,( 222 qrrsrsq  

),0,,( qsr   and  ),0,,( qrs   generate the solution  )2,2,( 222 qrqsqsr  

The exceptional case with  sqr   and  rqs   is impossible. 

 

Partition type 3:   

 

Three sub-partition types are distinguished. 

 

(3.1)  srqp0  

In the proof for partition type 1 set  pq   to see that  0)( rspqrps , which is Case 

(a). The permutations  ),,,( rpps ,  ),,,( prps   and  ),,,( pprs   generate 3 solutions except 

when  rps 2   with one solution and even  t , which is excluded. 

 

(3.2)  srqp0  

With  qr   one has  2qpsqrps   and three cases must be distinguished. 
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Case (a):  2qps  

The permutations  ),,,( qqps , ),,,( qpqs  and ),,,( pqqs   generate 3 solutions except when  

qps 2 , which is excluded because  t   is even. 

 

Case (b):  2qps ,   222 2qsp  

The 3 permutations  ),,,( qpsq , ),,,( qqps  and ),,,( qpqs   generate 3 solutions except when  

qps 2 , which is excluded because  t   is even. 

 

Case (c):  2qps ,   222 2qsp  

The 3 permutations  ),,,( spqq , ),,,( qpsq  and ),,,( qpqs   generate 3 solutions except when  

0sp   and  qps 2 , which is impossible. 

  

(3.3)  srqp0  

One has  0)( qprqrps   and  0222222 qprqsp , hence only Case (c) 

in the proof of partition type 1 can occur. In this situation, the 3 permutations  ),,,( rprq ,  

),,,( rpqr   and  ),,,( qprr   generate 3 solutions except when  0qp , which is 

impossible. 

 

Partition type 4:   

 

Two sub-partition types may occur. 

 

(4.1)  srqp 0  
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From the proof of partition type 2 one sees that either Case (b) or Case (c) must hold. 

 

Case (b):   22 2qs  

The permutation  ),,0,( qqs   generates the solution  )2,2,2( 22 qsqsqs   while the 

permutations  ),0,,( qsq   and  ),0,,( qqs   generate the solution  )2,2,( 22 qqss . Both are 

distinct except when  qs 2 , which leads to  t   even, a contradiction. 

 

Case (c):  22 2qs  

The permutation  ),0,,( sqq   generates the solution  )2,2,2( 22 qsqssq   while the 

permutations  ),0,,( qsq   and  ),0,,( qqs   generate the solution  )2,2,( 22 qqss . Both are 

distinct except when  02qs , which is impossible. 

 

(4.2)  srqp 0  

Since  0qrqrps   and  022222 qrqsp , only Case (c) in the proof for 

partition type 2 is possible. The permutations  ),0,,( rrq   and  ),0,,( rqr   generate the 

solution  )2,2,( 22 qrrq   while  ),0,,( qrr   generates the solution  )2,2,2( 22 qrqrqr . Both 

are distinct except when  0q , which is impossible. 

 

Partition type 5:   

 

One distinguishes between two sub-partition types. 

 

(5.1)  srqp0  
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Since  0)( pspqrps   one relies on Case (a) in the proof for the sub-partition (3.1). 

The 3 distinct solutions degenerate to a single solution, namely  ))(2),(2,( 22 pspsppps . 

It is generated by the permutation  ),,,( ppps . 

 

(5.2)  srqp0  

Since  0)( qpqqrps   and  0222222 qprqsp   the proof for 

sub-partition type (3.3) applies. There is exactly one solution  ))(2),(2,( 22 pqqqpppq , 

which is generated by the permutation  ),,,( qpqq . 

 

Partition type 6:  srqp 0  

 

Since  02qqrps   and  022222 qrqsp   the proof for sub-partition type 

(4.2) applies. The permutation  ),0,,( qqq   generates the single possible solution  

)2,2,( 222 qqq . 

Theorem 2.1 is shown.  ◊ 

 

An important special case is the restriction of Theorem 2.1 to prime numbers  7t . In this 

situation, the set  pc
NtS )(3   is complete in the sense that it coincides with the fibre  pc

NtH )(3 . 

We need the following result on primitive cuboids, originally due to Steiger [40] and Spira [39]. 

Theorem 2.2 (Unique representation of primitive cuboids). A primitive cuboid with odd diagonal  

3t   has the unique representation (2.1) if, and only if, there is a permutation  ),,,( srqp   

of some  srqp0 , which satisfies the Steiger-Spira conditions: 
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(C1) 1,0,,1, rqrqsp    

(C2) 0rqsp ,   02222 srqp  

(C3) )2(mod1srqp  

(C4) 1),,gcd( 2222 sqrpsrqp  

(C5) rsqqpr 0,0  

 

Proof. See Steiger [40], proof of Theorem 2.  ◊ 

 

Theorem 2.3 (Completeness of  pc
NtS )(3 )). One has  pc

N
pc
N tStH )()( 33   for all primes  

7t . 

 

Proof.  As a by-product, one sees that the condition (C4) is always fulfilled for primes. Indeed, 

suppose that  1),gcd( 2222 msrqp . Let  ba,   be integers such that  maqp 22 , 

mbsr 22 , and  )(2222 bamsrqpt . If  3t   is a prime, then necessarily  

1m  and (C4) is fulfilled. Moreover, since  c
N

pc
N tStS )()( 22   for prime  t , one has  

c
N

pc
N tHtH )()( 33 . Now, it is clear by definition that  pc

N
pc
N tHtS )()( 33 . It remains to show 

that  c
N

pc
N tStH )()( 33 . Let  pc

NtHsrqp )(),,,( 3 . By (C1) of Theorem 2.2, this primitive 

quadruple must be permutation of some ordered partition type  srqp0   in Table 2.1. 

The remaining conditions  02222 srqp   and    0qrps   in (C) that define  

pc
NtS )(3   are shown as follows. Let us distinguish between the first five partition types of Table 

2.1. First, it is trivial that  02222 srqp   because  2222 srqp   for all partition 

types. It remains to show that  0qrps . From the proof of Theorem 2.1 one sees that  
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0qrps   is only possible for the partition types 1 and (3.2). 

 

Partition type 1:  srqp0  

If  qrps  then there exist integers  1,ba   such that  abp , qa , rb . Write  

braq , , for some integers  1, . Then, one has necessarily  s . It follows that  

))(( 22222222 basrqpt   cannot be a prime number. 

 

Partition type (3.2):  srqp0  

If  2qps  then there exist an integer  1a   such that  paq , hence  2pas , and 

therefore  222222 )1(2 apsqpt   cannot be a prime.  ◊ 

 

For composite odd  3t  , the situation is more complex. 

 

Examples 2.1:  non-primitive cuboids generated by  pc
NtS )(3  

For  15t   there are 3 permutations in  pc
NS )15(3   of the ordered partition (1,1,2,3) of type 

3.1, namely (3.1,1,2), (3,1,2,1) and (3,2,1,1). While the last two generate two primitive cuboids, 

the first one generates the non-primitive cuboid  )3,2,2,1(5),,,( tzyx . Similarly, for  39t   

there are 6 permutations in  c
NS )39(3   of the ordered partition (1,2,3,5) of type 1, but only five 

of them generate primitive cuboids. 

 

Examples 2.2:  exceptional permutations pc
NtHsrqp )(),,,( 3   but not in pc

NtS )(3  

These examples are related to the exceptional partitions of type 1 and (3.2) in the proof of 

Theorem 4.3 such that  qrps . For  25t   the permutations (4,2,1,2) and (4,1,2,2) of the 
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ordered partition (1,2,2,4) of type (3.2) are not in  pc
NS )25(3    but generate the two primitive 

cuboids (15,6,12,25) and (9,20,12,25). Similarly, for  65t   the permutations (6,2,3,4), 

(6,3,2,4) and (6,4,2,3) of the ordered partition (2,3,4,6) of type 1 are not in  pc
NS )85(3   but 

generate the three primitive cuboids  (15,52,36,65), (25,48,36,65) and (39,48,20,65). 

 

3. Counting and generating primitive cuboids with prime diagonal 

The usefulness of the obtained results is illustrated for the special case of primitive cuboids with 

prime diagonal. Theorem 2.3 implies that each partition type in the fibre generate the same 

number of distinct primitive cuboids as follows. 

 

Theorem 3.1 (One-to-one mapping between partition types in  pc
NtH )(3   and primitive 

cuboids). Let  7t   run through the set of odd primes. Each partition type in  pc
NtH )(3   

generates the same number of distinct triples in  pc
NtS )(2   as described in Table 3.1. 

 

Table 3.1:  Partition types in  pc
NtH )(3   and distinct triples in  pc

NtS )(2  

 

type partition # squares in 

pc
NtH )(3  

# zeros in 

pc
NtH )(3  

# triples in 

pc
NtS )(2  

1 2222 srqp  
4 0 6 

2 22220 rqp  
4 1 3 

3 2222 rqpp  
3 0 3 

4 22220 qpp  
3 1 2 

5 2222 qppp  
2 0 1 
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As an application, a new constructive proof of Shanks’ theorem on the number of primitive 

cuboids with prime diagonal is obtained. It uses Jacobi’s four squares theorem, which counts the 

number of representations of a positive integer into four squares including permutations and sign 

changes. This result is formulated in terms of the arithmetic function  )(m , which for each 

positive integer  m   yields the sum of all its positive divisors. As usual, the total number of 

representations of  m   as a sum of  2k   squares such that  mxxx k
22

2
2
1 ... ,  is 

denoted by  )(mrk   while the number of primitive representations with g.c.d. 

1),...,,( 21 kxxx   is denoted by  )(mRk  (e.g. Grosswald [12], Section 1.1). 

 

Theorem 3.2 (Jacobi’s four squares theorem). Consider the unique representation of a positive 

integer  m   as  )(2 )( mbm ma , where  )(ma   is a non-negative and  )(mb   is odd. Then, 

one has 

))2((24)2(),12(8)12( 44 mbmrmmr .   (3.1) 

 

Proof. Besides the original articles by Jacobi [18]-[20] a lot of proofs are known (e.g. Venkov 

[41], Chap. 5, Ewell [10], Sierpinski [36], Section XIII.7, Hirschhorn [13], [14], Andrews et al. 

[2], Spearman and Williams [38] and references therein).  ◊ 

 

For an odd prime  7t   Jacobi’s formula tells us that the number of primitive representations 

is 

)1(8)(4 ttR .        (3.2) 

We are ready for the following new derivation of Theorem 86 in Shanks (1993). 

 

Theorem 3.3 (Primitive cuboids with prime diagonal from Jacobi’s four squares theorem). Let 
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7t  be an odd prime number of the form 18nt  or 58nt . Then, there are exactly  n   

distinct primitive cuboids with prime diagonal. 

 

Proof.  In case  7t   is an odd prime, the four squares representations from the partition 

types in Table 3.1 with at most one zero are relevant. Additionally, two squares representations of 

the type VII in Table 2.1 are counted in Jacobi’s four squares formula. Their number of distinct 

representations is non-zero and counted 48 times if, and only if, one has  )4(mod1t  

(Girard-Euler’s theorem). Denote by  )()(
4 mp i   the number of distinct primitive representations 

of the natural number  m   by sums of four squares of partition type  5,...,2,1i . Recall the 

fact that  0)()4(
4 tp   if  )8(mod7,5t   and   1)()4(

4 tp   if  )8(mod3,1t  (e.g. 

Andreescu et al. [1], Theorem 4.4.2). One distinguishes between two main cases. 

 

Case 1:  )4(mod1t  

With Table 2.1 one obtains from (3.2) the equality in numbers of primitive representations 

 

)1(848)(64)(96)}()({192)(384 )5(
4

)4(
4

)3(
4

)2(
4

)1(
4 ttptptptptp . (3.3) 

 

Two sub-cases can occur. If  58nt   then divide (3.3) by 64 and use that  0)()4(
4 tp   to 

see that it is equivalent with the equation 

 

ntptptptptp )()(2)}()({3)(6 )5(
4

)4(
4

)3(
4

)2(
4

)1(
4 .   (3.4) 

 

With the last column of Table 3.1 this equation tells us that the number of distinct primitive 

cuboids with prime diagonal  t   is exactly  n . Similarly, if  18nt   then use that  



HOPF’S QUADRATIC MAP AND PERMUTATION INVARIANCE OF PRIMITIVE CUBOIDS      19 

1)()4(
4 tp   to establish the equivalence between (3.3) and (3.4). 

 

Case 2:  )4(mod3t  

Jacobi’s four squares formula (3.2) reads here 

 

)1(8)(64)(96)}()({192)(384 )5(
4

)4(
4

)3(
4

)2(
4

)1(
4 ttptptptptp .  (3.5) 

 

Two sub-cases must be considered. If  18nt   then (3.5) is equivalent with (3.4) because  

0)()4(
4 tp . If  58nt   the same holds because  1)()4(

4 tp . The proof is complete.  ◊ 

 

The Hopf map approach does not use Gauss’s formula on the number of primitive three squares 

representations (as in the original proof by Shanks [33]). It avoids herewith a result that is not 

viewed as elementary and simple by some authors, e.g. Davenport [7], p.114 (see however 

Ankeny [3], Mordell [28], Wójcik [42], Cooper and Hirschhorn [6]). Though more complex than 

the original proof by Shanks, the alternative proof has the advantage to be constructive. Indeed, it 

leads to the following algorithm to compute the  n   distinct solutions in Shanks’ theorem. To 

illustrate, Table 3.2 contains a list of all distinct solutions for the first 25 odd primes. 

 

Theorem 3.4 (Primitive cuboids with prime diagonal: quantitative algorithmic form). Let  7t   

be an odd prime number of the form  18nt   or  58nt . Given the finite list  

tssss r
22

2
2
1

2
0 . . .410   of all squares below  t , determine all the distinct 

non-negative primitive solutions of the four squares equation  tsrqp 2222   for each 

of the five partition types in Table 3.1. Based on Lebesgue’s identity (2.1) determine the 

permutations of  ),,,( srqp   that yield the distinct primitive solutions of the equation  

zyxtzyx 0,2222 . The generated list contains exactly  n   primitive cuboids with 
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prime diagonal. 

 

Table 3.2:  Primitive cuboids with prime diagonal: four squares generators and partition types 

p p n p q r s partition p p n p q r s partition
mod 8 type mod 8 type

3 -5 1 0 1 1 1 6 67 -5 9 0 3 3 7 4.1
5 5 0 n.a. 1 1 1 8 5.1
7 -1 1 1 1 1 2 5.1 1 1 4 7 3.1
11 -5 2 0 1 1 3 4.1 1 4 5 5 3.3
13 5 1 1 2 2 2 5.2 71 -1 9 1 3 5 6 1
17 1 2 0 2 2 3 4.1 2 3 3 7 3.2
19 -5 3 0 1 3 3 4.2 73 1 9 0 1 6 6 4.2

1 1 1 4 5.1 1 2 2 8 3.2
23 -1 3 1 2 3 3 3.3 2 2 4 7 3.1
29 5 3 0 2 3 4 2 4 4 4 5 5.1
31 -1 4 1 1 2 5 3.1 79 -1 10 1 2 5 7 1

2 3 3 3 5.2 2 5 5 5 5.2
37 5 4 1 2 4 4 3.3 3 3 5 6 3.1

2 2 2 5 5.1 83 -5 11 0 1 1 9 4.1
41 1 5 0 1 2 6 2 0 3 5 7 2

0 3 4 4 4.2 1 3 3 8 3.2
43 -5 6 0 3 3 5 4.1 3 3 4 7 3.1

1 1 4 5 3.1 89 1 11 0 2 2 9 4.1
3 3 3 4 5.1 0 2 6 7 2

47 -1 6 1 1 3 6 3.1 0 3 4 8 2
2 3 3 5 3.2 1 4 6 6 3.3

53 5 6 0 1 4 6 2 97 1 12 0 5 6 6 4.2
2 2 3 6 3.1 1 4 4 8 3.2

59 -5 8 0 1 3 7 2 2 2 5 8 3.1
0 3 5 5 4.2 3 4 6 6 3.3
3 3 4 5 3.1 4 4 4 7 5.1

61 5 7 0 3 4 6 2 101 5 12 0 1 6 8 2
2 2 2 7 5.1 0 2 4 9 2
2 4 4 5 3.2 0 4 6 7 2

2 5 6 6 3.3  

 

Remark 3.1. The steps required to generate all distinct fours squares permutations can be 

reduced to a minimum (constructive version of Table 3.1 as found in the proof of Theorem 2.1). 

 

4.  Correction note on primitive cuboids with odd diagonal 

We clarify some points from the author [16]. Theorem 3 there claims that any primitive cuboid 

with odd diagonal is generated by (2.1) such that  ),,,(),,,( dSdRfQfPsrqp   for some 

positive integers  SRQPfd ,,,,, , which satisfy some conditions, in particular 
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1),(,1),(,1),( SRQPfd ,        (4.1) 

,0)()(
,0)(

2222222222 SRdQPfrqsp
QRPSdfqrps

    (4.2) 

1),(,1),(,1),( 2222 QRPSQSPRSRfQPd .  (4.3) 

 

The stated result includes the case  0R   but omits that  0Q   is possible by the proof of 

Theorem 2.1, partition types 2 and 4. In fact, under the convention that any integer is divisible by 

zero, these cases are part of (4.1). On the other hand, the inequality  QRPSQSPR   in 

(3.9) of [16] is incorrect and superfluous. A counterexample is the solution for 31t   

generated by )2,1(),(),1,5(),(),1,1(),( SRQPfd , for which  97 QRPSQSPR  

(use Table 3.2 above, partition type (3.1)). To summarize, any primitive cuboid with odd 

diagonal is generated by Lebesgue’s identity with  ),,,(),,,( dSdRfQfPsrqp   for some 

positive integers SPfd ,,, , and non-negative integers  RQ, , not both equal to zero, which 

satisfy the conditions (4.1), (4.2) and (4.3). It is interesting to relate this characterization with the 

somewhat different Steiger-Spira conditions of Theorem 2.2. Uniqueness of the representation is 

achieved if condition (C5) is added, that is  RSQQPR 0,0 . 
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