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 1. Introduction 

As it is well known, BCK and BCI-algebras are two classes of algebras of logic. They were 

introduced by Imai and Iseki [10,11,12] and have been extensively investigated by many 

researchers. It is known that the class of BCK-algebras is a proper sub class of the BCI-algebras. 

The class of all BCK-algebras is a quasivariety. Is éki posed an interesting problem (solved by 

Wro ński [27]) whether the class of BCK-algebras is a variety. In connection with this problem, 

Komori [16] introduced a notion of BCC-algebras, and Dudek [7] redefined the notion of BCC-

algebras by using a dual form of the ordinary definition in the sense of Komori. Dudek and 

Zhang [8] introduced a new notion of ideals in BCC-algebras and described connections between 

such ideals and congruences . C.Prabpayak and U.Leerawat ([24 ], [25 ]) introduced a new 
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algebraic structure which is called KU - algebra . They gave the concept of homomorphisms of 

KU- algebras and investigated some related properties. Several authors [2,3,5,6,9,15] have 

studied derivations in rings and near rings. Jun and Xin [13] applied the notion of derivations in 

ring and near-ring theory to BCI-algebras, and they also introduced a new concept called a 

regular derivation in BCI -algebras. They investigated some of its properties, defined a d -

derivation ideal and gave conditions for an ideal to be d-derivation. Later, Hamza and Al-Shehri 

[1], defined a left derivation in BCI-algebras and investigated a regular left derivation. Zhan and 

Liu [30] studied f-derivations in BCI-algebras and proved some results.  G. Muhiuddin etl [22,23] 

introduced the notion of ),(  -derivation in a BCI-algebra and investigated related properties. 

They provided a condition for a ),(  -  derivation to be regular. They also introduced the 

concepts of a ),( d - invariant ),(   -derivation and α-ideal, and then they investigated their 

relations. Furthermore, they obtained some results on regular ),(  - derivations. Moreover, they 

studied the notion of t-derivations on BCI-algebras and obtained some of its related properties. 

Further, they characterized the notion of p-semi-simple BCI-algebra X by using the notion of t-

derivation. Later, Mostafa et al [19,20], introduced the notions of  ( ),( r  -( ),( r ) -derivation of 

a KU-algebra and some related properties are explored. The concept of fuzzy sets was introduced 

by Zadeh [29]. In 1991, Xi [28] applied the concept of fuzzy sets to BCI, BCK, MV- 

algebras .Since its inception, the theory of fuzzy sets ,ideal theory and its fuzzification has 

developed in many directions and is finding applications in a wide variety of fields. Mostafa et al, 

in 2011[18] introduced the notion of fuzzy KU-ideals of KU-algebras and then they investigated 

several basic properties which are related to fuzzy KU-ideals. In Mostafa , Abd-eldayem [21] 

introduced the notion of fuzzy (left and right) derivations KU- ideals in KU - algebras and 

investigated related properties. Jun [14], he introduced the notion of Q- fuzzy subalgebras of 

BCK/BCI-algebras, and provided some appropriate examples and described Q- fuzzy 

subalgebras. Morover, he construct fuzzy subalgebras by using Q- fuzzy subalgebras  and how 

the homomorphic images and inverse images of Q- fuzzy subalgebras become Q- fuzzy sub-

algebras. A. Rezaei  et al, in 2014[26] ,show that a KU  –algebra is equivalent to the 

commutative self– distributive BE–algebra. Also, they show that a self –distributiveKU –algebra 

is equivalent to the Hilbert algebra. 
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 Modifying the idea of Jun [14 ],in this paper, we introduce the the concept of Q- fuzzy (left and 

right) derivations KU-ideals in KU–algebras and homomorphic image ( preimage) of Q- fuzzy 

left (right)-derivations KU-ideals in KU-algebras under homomorprhism of a KU -algebras. Also 

we discussed how the homomorphic images and inverse images of Q- fuzzy (left and right) 

derivations KU- ideals become Q- fuzzy (left and right) derivations KU- ideals in KU - algebras. 

Furthermore, we give the concept of the Cartesian product of Q- fuzzy left (right) derivations KU 

- ideals in Cartesian product of KU – algebras. Many related results have been derived. 

 

2. Preliminaries 

In this section, we recall some basic definitions and results that are needed for our work. 

Definition 2.1 [24,25 ] Let X be a set with a binary operation   and a constant   0.  

 ( 0,,X   ) is called KU-algebra if the following axioms hold : Xzyx  ,, :  

0)]()[()()( 1  zxzyyxKU  

00)( 2 xKU  

xxKU 0)( 3  

yximpliesxyyxifKU  0)( 4 . 

Define a binary relation  by: 0 xyyx , 

 Lemma 2.2 On KU-algebra (X; *; 0). We define a binary relation   on X by putting x  y if and only 

if y*x = 0. Then (X;  ) is a partially ordered set and 0 is its smallest element. 

Proof. Let X  be KU-algebra  Xcba  ,, , we have 

1.   is reflexive as .aa   

2. if abba  , ,then ba  . Hence   is anti-symmetric. 

3. if cbba  ,  ,then we want to prove that .ca   

Since 0)()()(0  abacbcacac   ,we have ,0 caac  then   is 

transitive. Hence ),( X  is partial order set. 

Throughout this article, X will denote a KU-algebra unless otherwise mentioned    

Corollary 2.3 [18,24] In KU-algebra the following identities are true for all Xzyx ,, : 

(i) 0 zz    

(ii) 0)(  zxz     
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(iii) If zxzythatimpliesyx   

(v) )()( xzyxyz   

(vi) 0])[(  xxyy  

 

Definition 2.4 [24,25] A subset S of KU-algebra X is called sub algebra of X  if Syx  , 

whenever Syx ,  

 

Definition 2.5 [24,25 ]  Anon empty subset A  of KU-algebra X  is called  ideal of X  if it is 

satisfied the following conditions: 

            (i) A0  

            (ii) XzyAzimpliesAyAzy  ,, . 

 

Definition 2.6 [18] A non - empty subset A of a KU-algebra X is called KU- ideal of X  if it 

satisfies the following conditions :  

 (1)  0   A  ,  

 (2) )( zyx    A  , y  A  implies x * z  A  , for all zyx ,,   X  

 

Definition 2.7[18] Let X  be a KU - algebra, a fuzzy set µ in X  is called fuzzy subalgebra if it 

satisfies: 

         (S1)     µ (0) ≥ µ ( x )  , 

         (S2)     µ ( x ) ≥  min {µ ( yx  ), µ ( y )} for all yx,   X  . 

 

Definition 2.8 [18] Let X be a KU-algebra, a fuzzy set µ in X  is called a fuzzy KU-ideal of X  

if it satisfies the following conditions:  

      (F1)    µ (0) ≥ µ (x) ,  

   (F2)    µ ( zx  ) ≥  min {µ ( )( zyx  ), µ ( y )}. 

 

Definition 2.9  For elements x  and y  of KU-algebra ( 0,,X  ), we denote  yyxyx  )( . 

Definition 2.10[19] Let X  be a KU-algebra. A self map XXd :   is a left –right derivation 

(briefly, ),( r -derivation) of X if it satisfies the identity  

                            ))(())(()( ydxyxdyxd  Xyx  ,  
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 If d satisfies the identity  

                       ))(())(()( yxdydxyxd  Xyx  ,  

 d  is called right-left derivation (briefly, ),( r -derivation) of X . Moreover, if d  is both 

dthenderivationrandr ),(),(  is called a derivation of X  .   

 

Definition 2.11[19] A derivation of KU-algebra is said to be regular if 0)0( d . 

 

Lemma 2.12[19]  A derivation d  of KU-algebra X is regular. 

 

Example 2.13 [19] Let X = { 4,3,2,1,0 } be a set in which the operation   is defined as follows: 

  0  1 2  3  4  

0  0  1 2  3  4  

1 0  0  2  2  4  

2  0  0  0  1 4  

3  0  0  0  0  4  

4  0  1 1 1 0  

 

Using the algorithms in Appendix A, we can prove that (X, *, 0) is a KU-algebra.  Define a map 

XXd : by  

                                













44

3,2,1,00
)(

xif

xif
xd   

Then it is easy to show that d  is both a ),( r  and ),( r -derivation of X . 

 

Example 2.14.  Let  0X  and * binary operation on X defined by 










xyifxy

yxif
yx

0
*  

 Then    )0,*,0( X  is a KU-algebra. If the map XXd :  is defined by   

d (x ) =x −1 for all x .Then   for all Xyx , , we have  

1)()(  xyxydyxd …………………………………………….(I), 

yxd )(  = )(xdy   = )1(  xy  = xy 1  and  )(ydx = xyd )(  = 1 xy   but 
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yxd )(    )(ydx =(( xy 1 )  ( 1 xy ))* ( 1 xy )= 

                                    = ( 1 xy ) –[( 1 xy ) –( xy 1 )]  = xy 1 ……… (II) 

From (I)  and (II), d is not  ),( r derivation of X. 

On other hand 

 1)()(  xyxydyxd ………………………………………………..(I) 

)(ydx = xyd )(  = 1 xy ,  yxd )( = )(xdy  = )1(  xy  = xy 1 , but 

)(ydx ˄ yxd )( = [ ( )(ydx )* ( yxd )( )]* ( yxd )( ) 

                                 = ( )(xdy  ) −[( )(xdy  ) – ( xyd )( )]  = y−x−1……. (III) 

 From (I) and (III), d is ),( r derivation of X .Hence   ),( r -derivation and   ),( r derivation are 

not coincide.                                                      

Proposition 2.15[19] Let X  be a KU-algebra with partial order , and let d  be a derivation 

of X . Then the following hold Xyx  ,  : 

(i) xxd )( . 

(ii) yxdyxd  )()( . 

(iii) )()( ydxyxd  . 

(v) 0))((  xdxd . 

(vi) }0)(|{)0(1  xdXxd is a  sub algebra of X . 

 

Definition 2.16 [19] Let X  be a KU-algebra and d  be a derivation of X . 

  Denote   })(:{)( xxdXxXFixd  . 

 

Proposition 2.17[19] Let X  be a KU-algebra and d  be a derivation of X .Then  )(XFixd is a 

sub algebra of X . 

 

3. Q-Fuzzy derivations KU- ideals of KU-algebras 

In this section, we will discuss and investigate a new notion called Q fuzzy (left and right) 

derivations KU - ideals of KU - algebras and study several basic properties which are related to 

fuzzy left derivations KU - ideals. 
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Definition 3.1 Let X  be a KU-algebra and XXd :  be self map. A non - empty subset A of a 

KU-algebra X is called left derivations KU- ideal of X if it satisfies the following conditions:  

 (1)  0  A ,  

 (2)  )()( zyxd  ) A  , )(yd  A  implies zxd ( ) A  , for all Xzyx ,,  

 

Definition 3.2 Let X  be a KU-algebra and XXd :  be self map. A non - empty subset A  of a 

KU-algebra X  is called right derivations KU ideal of X  if it satisfies the following conditions:  

 (1)  0  A ,  

 (2) )( zydx  ) A  , )(yd  A  implies zxd ( ) A  , for all Xzyx ,,  

Definition 3.3 Let X  be a KU-algebra and XXd :  be self map .A non - empty subset A of a 

KU-algebra X  is called derivations KU -ideal of X if it satisfies the following conditions:  

 (1)  0  A ,  

(2) )(( zyxd  ) A  , )(yd   A  implies d(x * z ) A  , for all Xzyx ,,  

Definition 3.4 Let X  be a KU-algebra and XXd :  be self map. A fuzzy set  

]1,0[: QX in X  is called Q- fuzzy left derivations KU-ideal (briefly,( Q-  ),F ,d) 

of X   if it  satisfies the following conditions  : 

  ( 1F ) µ (0 q, ) ≥ µ ( x  , q  )   

( 2F )  µ( zxd ( ), q ) ≥ min{ µ(( )()( zyxd  ), q ),µ ( )(yd  , q )} QqandXzyx  ,, . 

Definition 3.5 Let X  be a KU-algebra and XXd :  be self map. A fuzzy set 

]1,0[: QX  in X  is called Q- fuzzy right derivations KU-ideal(briefly, (Q- ),rF -

derivation)  of X  if it  satisfies the following conditions:  

 ( 1F )    µ (0 q, ) ≥ µ ( x  , q ). 

 ( 2F )     µ ( zxd ( ), q ) ≥ min {  µ(( ))( zydx  , q ), µ ( )(yd , q )} 

 Xzyx  ,, and Qq  .   

Definition 3.6 Let X  be a KU-algebra and XXd :  be self map. A fuzzy set 

]1,0[: QX  in X is called a Q- fuzzy derivations KU-ideal of X  ,if it satisfies the 

following conditions  : 

   ( 1F )   µ (0 q, ) ≥ µ ( x q, ). 

 ( 2F )    µ ( zxd ( ) q, ) ≥ min{ µ( )(( zyxd  ) q, ), µ ( )(yd q, )} 
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          Xzyx  ,, and Qq  .   

Example 3.7  Let X = { 4,3,2,1,0 } be a set as in example 2.13: Using the algorithms in Appendix 

A, we can prove that (X, *, 0) is a KU-algebra.   

Define a self map XXd : by 

                               












44

3,2,1,00
)(

xif

xif
xd

 , and 

 a fuzzy set μ : X Q  → [0,1] ,by  μ( d (0) q, ) = t0 ,  μ ( d  (1) q, ) =μ ( d  (2) q, ) = t1 , μ ( d  (3) 

q, ) = μ ( d  (4) q, ) = t2 , where t0 , t1 , t2  [0,1] with t0 > t1 > t2  .Routine calculations give that  

μ is a Q- fuzzy (left and right)- derivations KU- ideal of  KU- algebra X .  

                       

                        Lemma 3.8 Let µ  be a Q- fuzzy left derivations KU - ideal of KU - algebra X  , if the inequality  

,  )(zdyx  holds  in X , then µ ( )(yd q, ) ≥ min {µ ( xd( ) q, ) , µ ( z q, ) }, Xzyx  ,,  

and Qq  .  

                   Proof. Assume that the inequality )(zdyx   holds in X  , then  

)()( yxzd  = 0 , )( yxz   = 0  , since zzd )( from (Proposition 2.15(i)) and definition 3.4 

( 2F ) we have 

 µ ( yzd ( ) q, ) ≥ min{ µ(( yxzd  ()( ) q, ),µ ( xd( ) q, )}= …………………(A) 

                            = min{ µ(0 q, ), µ ( xd( ) q, )}= µ ( xd( ) q, ) 

Put z=0  in ( A ), we have   

 µ (d( y0 ) q, ) = µ ( )(yd q, ) ≥ min{ µ(( yx  ) q, ),µ ( xd( ) q, )}……. ..(a), but 

μ (( yx  ) q, ) ≥ min {μ (( yzx  ( ) q, ), μ ( z q, )} = min {μ (( yxz  ( ) q, ) , μ ( z q, )}   

                       =min {μ (0 q, ) , μ ( z q, )} = μ ( z q, )  ……………………(b) 

From (a) , (b) , we get μ ( yd( ) q, ) ≥ min {μ ( z q, ) , μ ( xd( ) q, )}.  

This completes the proof. 

 

Lemma 3.9 If μ is a Q- fuzzy left derivations KU - ideal of KU - algebra X  and  

if x ≤ )(yd  , then μ( xd( ) q, ) ≥ μ ( )(yd q, ). 

Proof.  Straight forward. 
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Proposition 3.10 The intersection of any set of a Q- fuzzy left derivations KU - ideals of KU – 

algebra X  is also Q- fuzzy left derivations KU - ideal. 

Proof. let  i be a family of a Q-fuzzy left derivations KU - ideals of KU- algebra X , then for 

any Xzyx ,, and Qq . 

)),()(())),((inf()),0(inf(),0)(( qxdqxdqq iiii    and 

 

   .)),()((),)),*(*)()(((min)),((inf(),)),*(*)(((inf(min

)),((),)),*(*)(((inf(min)),*((inf()),*()((

qydqzyxdqydqzyxd

qydqzyxdqzxdqzxd

iiii

iiii












 

This completes the proof . 

 

Lemma 3.11 The intersection of any set of a Q- fuzzy right derivations KU - ideals of KU – 

algebra X  is also a Q- fuzzy right derivations KU - ideal. 

proof.  Straight forward. 

 

Theorem3.12 Let μ be a Q- fuzzy set in X  then μ is a Q- fuzzy left derivations KU- ideal of X  

if and only if it satisfies  : For all α [0,1], 

(A1) U (μ , α) = { x  ∈ X  / μ ( xd( ) q, ) ≥ α}  ≠ φ implies U(μ ,α) is KU- ideal of  X . 

Proof . Assume that μ is a Q- fuzzy left derivations KU- ideal of X  , let α  [0,1] be such that U 

(μ , α) ≠ φ , and x , y  X  such that x  U (μ , α) , then μ ( xd( ),q) ≥ α and so by (definition 3.4 

( 2F )) we have , 

  μ ( d  (0) q, ) = μ ( d  ( y  * 0) q, ) ≥ min { μ ( d ( y  )* ( x  * 0) q, ) , μ ( xd( ) q, )}= 

 min{μ ( d  ( y ) * 0) q, ), μ ( d  ( x ) q, )} = min {μ (0) , μ ( d  ( x ) q, )}≥  α , hence  

0 ∈ U (μ , α) . Let  d  ( x ) * ( y  * z )  U (μ, α ) , d  ( y ) ∈ U (μ, α),  

it follows from(definition 3.4 ( 2F )) that 

μ ( d  ( x  * z ) q, ) ≥ min {μ ( d  ( x ) * ( y  * z ) q, ) , μ ( )(yd q, )}≥  α , hence 

 x  * z   U (μ, α) and so U (μ, α ) is KU - ideal of X . 

Conversely, suppose that μ satisfies (A1) , let Xzyx ,, and Qq  , be such that 

μ ( zxd ( ) q, ) < min {μ ( )()( zyxd  ) q, ) , μ ( )(yd q, )},taking 

β0 = 1/2 {μ ( zxd ( ) q, ) + min {μ ( )()( zyxd  q, (،μ( )(yd q, ) } , we have 

β0  [0,1] and μ ( zxd ( ) q, ) < β0 < min {μ( )()( zyxd  ) q, ) ، μ( )(yd q, ) } ,it follows that  
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)()( zyxd   U (μ, β0) and zxd ( )  U (μ, β0) , this is a contradiction and therefore  

μ is a Q- fuzzy left derivations KU - ideal of X  . 

 

Theorem3.13 Let μ be a Q- fuzzy set in X  then μ is a Q fuzzy right derivations KU- ideal of 

X  if and only if it satisfies : For all α [0,1]),U (μ , α) ≠ φ implies U(μ ,α) is KU- ideal of X . 

proof. Straight forward. 

 

Proposition 3.14 If μ is a Q- fuzzy left derivations KU - ideal of X  , then  

                                 μ ( ( xd( ) * ( yx  )) q, ) ≥ μ ( )(yd q, ). 

 

proof . Taking z  = yx  in (definition 3.4 ( 2F )), we get 

μ( xd( ) * ( yx  ) q, ) ≥ min { μ ( xd( ) * ( y * ( yx  )) q, ), μ( )(yd q, ) }  

                                   =min {μ( xd( ) * ( x * ( y  * y ) q, ) , μ( )(yd q, ) }  

                                   = min {μ( xd( ) * ( x  * 0)) q, ) , μ( )(yd q, ) }  

                                    = min {μ (0 q, ) , μ (d( y ) q, ) } = μ ( )(yd q, ). 

 

Definition3.15 Let μ be a Q- fuzzy left derivations KU - ideal of  KU - algebra X ,the KU - 

ideals }),(|{: tqxXxt    , t [0,1] are called level KU - ideal of X  . 

 

Corollary3.16  Let I be an KU - ideal of KU - algebra X  , then for any fixed number t in an 

open interval (0,1) , there exist a Q  fuzzy left derivations  KU – ideal μ of X  such that t = I . 

proof. The proof is similar the corollary 4.4 [17] . 

 

4. Image (Pre-image) of a Q- fuzzy derivations KU-ideals under 

homomorphism 

In this section, we introduce the concepts of the image and the pre-image of a Q fuzzy (left –

right) derivations KU-ideals in KU-algebras under homomorphism.  

Definition 4.1 Let f  be a mapping from the set X  to a set Y . If   is a Q-  fuzzy subset of X , 

then the Q- fuzzy subset β of Y is  defined by  
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



 





 

otherwise                                              0

}y)x(, Xx{)y( if  ),qx,(sup
)y()y)((

1

)(x 1




ff
f yf   

 is said to be the image of   under f. 

Similarly if β is a Q-fuzzy subset of Y  , then the fuzzy subset µ = β   f  in X ( i.e the fuzzy 

subset defined by µ ( x q, ) = β ( f  ( x ) q, ) for  all x   X  ) is called the preimage of β under f .  

Theorem 4.2 An onto homomorphic  preimage of a Q- fuzzy left derivations KU - ideal is also a 

Q- fuzzy left derivations KU - ideal .  

Proof. Let f  : X → X ` be an onto homomorphism of KU - algebras , β a Q- fuzzy left 

derivations KU - ideal of X ` and µ the preimage of β under f  , then  

β ( f ( xd( ) q, ) = µ ( xd( ) q, ) , for all  x   X .  

Let x   X  , then  µ (d(0) q, ) = β ( f  ( 0(d ) q, )) ≥ β ( f ( xd( )) q, )) = µ ( xd( ) q, ).  

Now let Xzyx ,, , then  

       µ ( zxd ( ) q, ) = β ( f  ( zxd ( ) q, ))  

                                  ≥ min{β( f  ( xd( )*`( f ( y )*` f ( z ))) q, ),β( f  ( )(yd q, ))}                                                                                                       

                              = min { β ( f  ( xd( )*( y  * z )) q, ),β ( f  ( )(yd ) q, ) } 

                            =  min {µ( xd( ) * ( y  * z )) q, ) , µ( )(yd q, )} .  

 The proof is completed. 

Theorem 4.3 An onto homomorphic  preimage of a Q-  fuzzy right derivations KU - ideal is also 

a Q-  fuzzy right derivations KU – ideal   

Proof . Straightforward. 

 

Definition 4.4 [4 ] A Q-  fuzzy subset μ of X has sup property if for any subset T of X ,there 

exist  t0 T such that  , ),(sup),( 0 qtqt Tt   . 

 

Theorem 4.5 Let f  : X  → Y  be a homomorphism between KU - algebras X  and Y  .  

For every Q-  fuzzy left derivations KU -  ideal μ in X  , f  (μ) is a Q-  fuzzy left derivations KU 

- ideal of Y  .  

Proof. By definition )),((sup)),()(()),((
))((()( 1

qxdqydfqyd
ydfxd


 

  for all Yy   
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and sup = 0 . We have to prove that  

 )},),((),)),()(((min{)),(( qydqzyxdqzxd     x `, y `, z ` Y . 

 Let f  : X    Y  be an onto  a  homomorphism of KU - algebras , μ a Q- fuzzy left derivations  

KU - ideal of X  with sup property and β the image of μ under f , since μ is a Q-  fuzzy left 

derivations KU - ideal of X  , we have μ( (d 0) q, ) ≥  μ( xd( ) q, )  for all x  X  . Note that 0  

f
1
(0`) , where 0 , 0` are the zeros of X  and Y  respectively  

Thus, ),),((),0()),0(()),((sup)),0((
))0(()( 1

qxdqqdqtdqd
dftd

 
 

for all Xx ,  

which implies that ),),(()),((sup)),0((
))(()( 1

qxdqtdqd
xdftd


 

 for any Yx  .    

For any Yzyx  ,, ,let  ))(()(,))(()(,))(()( 1

0

1

0

1

0 zdfzdydfydxdfxd      

thatsuchbe  )),((sup),(  ,)),((sup)),((
))(()(

0
))(()(

00
1\1

qtdqyqtdqzxd
ydftdzxdftd


 

   

 and  

)),((sup))),()((sup

))),()((})),()(({))),()(((

))()(()(
000

))()(())()((

000000

11
000

qtdqzyxd

qzyxdqzyxdfqzyxd

zyxdftdzyxdfzyxd





 





. 

 Then 

 )),(( qzxd )),(()),((sup 00
))(()( 1

qzxdqtd
zxdftd


 



)}),((),)),()(((min{ 0000 qydqzyxd   =  

 , q),)((supmin
))()(()( 1




 

td
zyxdftd








)),((sup
))(()( \1

qtd
ydftd

 = )}),((,))),()(((min{ qydqzyxd  

.  

Hence β is a Q-  fuzzy left derivations  KU-ideal of Y.  

Theorem 4.6 Let f  : X  → Y  be a homomorphism between KU - algebras X  and Y  .  

For every Q  fuzzy right derivations KU -  ideal μ in X  , f  (μ) is a Q-fuzzy right derivations 

KU - ideal of Y  .  

proof. Straight forward. 

 

5. Cartesian product of a Q- fuzzy derivations KU-ideals  

Definition 5.1A fuzzy μ is called a Q- fuzzy relation on any set S  , if μ is a fuzzy 
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subset μ : ( S  × S )×Q → [0,1] . 

Definition 5.2 If μ is a fuzzy relation on a set S  and β is a fuzzy subset of S  , 

then μ is a Q- fuzzy relation on β if  

μ (( yx, ),q) ≤ min {β (x ,q ) , β ( y, q )}, ∀ x  , y   S  ,qQ. 

Definition 5.3  Let μ and β be a Q-fuzzy subset of a set S , the Cartesian product 

of μ and β is defined by (μ × β) ( x  , y ) = min {μ (x , q) , β ( y, q)} , for all x  , y   S  , qQ 

Lemma 5.4[4] Let μ and β be a fuzzy subset of a set S  ,then  

(i)  is a fuzzy relation on S  . 

(ii)  t)(    = t × t  for all t ∈ [0,1]. 

Definition 5.5 If µ is a Q- fuzzy derivations relation on a set S  and β is a Q-  fuzzy derivations 

subset of S  , then µ is a Q- fuzzy derivations  relation on β if 

           µ ( yxd ,( ) q, ) ≤ min {β( xd( ) q, ) , β( yd( ) q, )},    x  , y   S  and Qq .  

 

Definition 5.6 Let µ and β be Q- fuzzy derivations subset of a set S  , the Cartesian product of µ 

and β is defined by (µ × β)( yxd ,( ) q, ) = min {µ( xd( ) q, ) , β( yd( ) q, )} ,  x  , y   S  and 

Qq . 

 

Definition 5.7 If β is a Q- fuzzy derivations subset of a set S ,  the strongest fuzzy  relation  on 

S  , that is  a Q-  fuzzy  derivations relation on β is µβ given by 

 µβ( yxd ,( ) q, ) = min {β( xd( ) q, ) , β( yd( ) q, )},   x  , y   S  and Qq  .  

Analogous to [17 ] , we have a similar result for Q-fuzzy derivations KU-ideal, which can be 

proved in similar manner ,we state the result without proof. 

 

Lemma 5.8 For a given a Q- fuzzy derivations subset S , let µβ be the strongest fuzzy derivations 

relation on S ,then for t  [0,1] , we have (µβ)t= βt × βt   . 

Theorem 5.9 Let   and   be a Q- fuzzy derivations subset of KU-algebra ,X  

Such that    is a Q- fuzzy derivations KU-ideal of ,XX   then 

(i)  either )),0(()),(( qdqxd    or QqXxqdqxd  ,)),0(()),((  .    

(ii)  if QqXxqdqxd  ,)),0(()),((  , then  

      either  )),0(()),(( qdqxd    or ),),0(()),(( qdqxd     



14                                               SAMY M. MOSTAFA, AHMED ABD-ELDAYEM 

(iii)  if ,)),0(()),(( Xxqdqxd    then either )),0(()),(( qdqxd   or    

        ),),0(()),(( qdqxd     

(iv)  either   or   is Q- fuzzy derivations KU-ideal of .X  

Remark5.10 Let X  and Y  be KU- algebras,  we define * on X  × Y by :  

For every ( x  , y ), (u , v ) X  x Y  , ( x  , y  ) * (u  , v ) = ( x  * u  , y  * v ) , then clearly  

  ( X  × Y , * , ( 0  , 0 ) ) is a KU- algebra .   

 

Theorem 5.11 Let µ and β be a Q- fuzzy derivations KU- ideals of KU - algebra X ,  

then µ × β is a Q- fuzzy derivations KU-ideal of  XX  .  

Proof : for any ( x  , y )  XX  ,we have  

               (µ × β) ( d  ( 0 , 0 ) q, ) = min {µ( d  ( 0 ) q, ) , β( d  ( 0 ) q, )} 

                                                   = min {µ( 0 q, ) , β( 0 q, )}   

                                                    ≥ min {µ( xd( ) q, ) , β( yd( ) q, )} = (µ ×β)( yxd ,( ) q, ) . 

 Now let ( 1x , 2x ) , ( 1y , 2y ) , ( 1z , 2z )  XX   , then  

(µ x β)(d (( 1x  * 1z  ), ( 2x  * 2z )) q,  )= min {µ(d ( 1x * 1z ) q, ) , β(d ( 2x * 2z ) q, )} ≥ min 

{min {µ(d ( 1x *( 1y  * 1z )) q, ), µ(d( 1y ) q, )},min {β( d ( 2x *( 2y * 2z )) q, ) , β( d  ( 2y ) q, )}} 

=min{min{µ(d( 1x *( 1y * 1z )) q, ), β (d( 2x *( 2y  * 2z )) q, )}, min{µ(d( 1y ) q, ),β(d ( 2y ) q, )}} 

= min{(µ ×β)( (d( 1x * ( 1y * 1z )) q, ) ,(d( 2x *( 2y * 2z )) q, ),(µ ×β) ((d ( 1y ) q, ),(d ( 2y ) q, )} . 

Hence µ × β is a fuzzy Q-  derivations KU- ideal of XX  . 

 

Theorem 5.13 Let β be a Q-  fuzzy derivations  subset of KU- algebra X  and let µβ  be the 

strongest Q-  fuzzy derivations relation on X  , then β is a Q- fuzzy derivations KU - ideal of X  

if and only if µβ is a Q-  fuzzy derivations KU- ideal of XX  . 

proof : Assume that β is a fuzzy  derivations KU- ideal of X  , we note from (F1) that  

µβ (( 0 , 0 ) q, ) =min{β ( 0(d ) q, ) , β ( 0(d ) q, )} =min {β ( 0 q, ) , β ( 0 q, )}  

                        ≥ min {β ( xd( ) q, ) , β ( yd( ) q, ) }  = µβ ((d(x) , d(y) ) q,  ).  

Now, for any ( 1x , 2x ) , ( 1y , 2y ) ,( 1z , 2z )  X  × X  , we have from (F2) :  

µβ (d( ( 1x * 1z , 2x  * 2z )) q, ) = min {β (d ( 1x  * 1z )) q, ) , β (d ( 2x  * 2z ) q, )} ≥  min 

{min{β (d(( 1x * ( 1y  *  1z )) q, ) , β (d( 1y ) q, )}, min{β (d ( 2x * ( 2y  * 2z )) q, ), β( 2y ) q, }} = 
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 min{min{β(d( 1x *( 1y * 1z )) q, ),β(d( 2x *( 2y  * 2z )) q, )},min{β( d  ( 1y ) q, ), β( d  ( 2y ) q, )}} 

  =  min {µβ (d ( 1x * ( 1y  * 1z )), d ( 2x * ( 2y  * 2z )) q, ) , µβ (d ( 1y ) , d  ( 2y )) q, )} . 

Hence µβ  is  a fuzzy derivations KU - ideal of XX   . 

Conversely. For all ( x , y )  XX   , we have 

Min {β (0 q, ) , β (0 q, ) } = µβ ((0,0) q, )   µβ )),,(( qyx =  min {β ( x q, ) , β ( y q, )}. 

 It follows that β (0 q, ) ≥ β ( x q, ) for all x   X  , which prove (F1). 

Now, let ( 1x  , 2x ) , ( 1y  , 2y ), ( 1z  , 2z )  XX   , then  

  min {β (d ( 1x  * 1z ) q, ) , β (d( 2x  * 2z ) q, )} = µβ (d( 1x  * 1z ) , d( 2x  * 2z )) q, )   ≥  

min {µβ (d(( 1x  , 2x ) * (( 1y  , 2y ) * ( 1z , 2z ) )) q, ) , µβ ((d( 1y ),d( 2y )) q, )}= 

min {µβ (d( 1x  * ( 1y  * 1z )) q, ) , d( 2x *( 2y * 2z )) q, ), µβ (d( 1y ) , d ( 2y ) q, )}= min  

{min{β (d( 1x *( 1y * 1z )) q, ) , β (d( 2x * (y2 * 2z )) q, )}, min{β (d( 1y ) q, ) , β (d( 2y ) q, )}}=  

  min{min{β(d( 1x *( 1y * 1z )) q, ),β(d( 1y ) q, )},min{β((d( 2x *( 2y * 2z )) q, ) , β ( d ( 2y ) q, )}} 

In particular, if we take 2x  = 2y = 2z  = 0  , then , 

β (d( 1x  * 1z ) q, ) ≥ min { β (d( 1x * ( 1y * 1z )) q, ), β (d( 1y ) q, )} This prove  ( 2F ) and completes 

the proof.   

 

Conclusion 

Derivation is a very interesting and important area of research in the theory of algebraic 

structures in mathematics. In the present paper, the notion of Q- fuzzy left derivations KU - ideal 

in KU-algebra are introduced and investigated the useful properties of Q- fuzzy left derivations 

KU - ideals in KU-algebras.  

In our opinion, these definitions and main results can be similarly extended to some other 

algebraic systems such as BCI-algebra, BCH-algebra, Hilbert algebra, BF-algebra -J-algebra, 

WS-algebra, CI-algebra, SU-algebra, BCL-algebra, BP-algebra, Coxeter algebra, BO-algebra, 

PU- algebras and so forth. 

The main purpose of our future work is to investigate: 

(1) The interval value, bipolar and intuitionistic Q- fuzzy left derivations KU - ideal in KU-

algebra. 

 (2) To consider the cubic structure of left derivations KU - ideal in KU-algebra. 
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We hope the fuzzy left derivations KU - ideals in KU-algebras, have applications in different 

branches of theoretical physics and computer science. 

Algorithm for KU-algebras  

Input ( :X set, : binary operation) 

Output (“ X is a KU-algebra or not”) 

Begin 

If X  then go to (1.); 

End If 

If X0  then go to (1.); 

End If 

Stop: =false; 

1:i ; 

While Xi   and not (Stop) do 

If 0 ii xx  then 

Stop: = true; 

End If 

1:j  

While Xj   and not (Stop) do 

If 0)(*  iji xyx  then  

Stop: = true; 

End If 

End If 

1:k  

While Xk   and not (Stop) do 

If 0))()(()(  kikjji zxzyyx  then  

Stop: = true; 

     End If 

   End While 

 End While 
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End While 

If Stop then  

(1.) Output (“ X is not a KU-algebra”) 

Else  

   Output (“ X is a KU-algebra”) 

     End If 

End. 
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