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1. Introduction

Soft set theory was introduced by Molodtsov [1] in 1999 as a new mathematical tool for

dealing with uncertainties. It has seen a many applications in algebraic structures such as groups

[2,3], semirings [4], rings [5], BCK/BCI-algebras [6,7,8], BL-algebras [9], near-rings [10] and

soft substructures and union soft substructures [11,12] since its inception.
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Soft set operations has been studied by [13], [14], [15], [16] as well and soft set theory has

also a wide-ranging applications as in the following studies: [17,18,19,20,21,22,23].

In this paper, with the concept of soft union semigroup, a new approach to semigroup theory

via soft set theory is made. The paper reads as follows: In Section 2, we remind some basic

definitions about soft sets and semigroups. In Section 3, we define soft union product and ob-

tain its basic properties. In Section 4, soft union semigroup, Section 5, soft union left (right,

two-sided) ideals, Section 6, soft union bi-ideals and soft union semiprime ideals are defined

and studied with respect to soft set operations and soft union product. In the following five sec-

tions, regular, intra-regular, completely regular, weakly regular and quasi-regular semigroups

are characterized by the properties of these ideals, respectively.

2. Preliminaries

In this section, we recall some basic notions relevant to semigroups and soft sets. A semi-

group S is a nonempty set with an associative binary operation. Note that throughout this paper,

S denotes a semigroup.

A nonempty subset A of S is called a subsemigroup of S if AA⊆ A and is called a right ideal

of S if AS ⊆ A and is called a left ideal of S if SA ⊆ A. By two-sided ideal (or simply ideal),

we mean a subset of S, which is both a left and right ideal of S. A subsemigroup X of S is

called a bi-ideal of S if XSX ⊆ X . A subset P of a semigroup S is called semiprime if ∀a ∈ S,

a2 ∈P implies that a∈P. We denote by L[a](R[a],J[a],B[a]), the principal left ideal (right ideal,

two-sided ideal, bi-ideal) of a semigroup S generated by a ∈ S, that is,

L[a] = {a}∪Sa,

R[a] = {a}∪aS,

J[a] = {a}∪Sa∪aS∪SaS

B[a] = {a}∪{a2}∪aSa

A semilattice is a structure S = (S, .), where “.” is an infix binary operation, called the semi-

lattice operation, such that “.” is associative, commutative and idempotent. For all undefined

concepts and notions about semigroups, we refer to [24,25,26]. Note that, throughout this paper
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the product of ordered pairs will be considered componentwise. From now on, U refers to an

initial universe, E is a set of parameters, P(U) is the power set of U and A,B,C ⊆ E.

Definition 2.1. ([1,18]) A soft set fA over U is a set defined by

fA : E→ P(U) such that fA(x) = /0 if x /∈ A.

Here fA is also called an approximate function. A soft set over U can be represented by the set

of ordered pairs

fA = {(x, fA(x)) : x ∈ E, fA(x) ∈ P(U)}.

It is clear to see that a soft set is a parametrized family of subsets of the set U . Note that the

set of all soft sets over U will be denoted by S(U).

Definition 2.2. [18] Let fA, fB ∈ S(U). Then, fA is called a soft subset of fB and denoted by

fA⊆̃ fB, if fA(x)⊆ fB(x) for all x ∈ E.

Definition 2.3. [18] Let fA, fB ∈ S(U). Then, union of fA and fB, denoted by fA∪̃ fB, is defined

as fA∪̃ fB = fA∪̃B, where fA∪̃B(x) = fA(x)∪ fB(x) for all x ∈ E.

Definition 2.4. [18] Let fA, fB ∈ S(U). Then, intersection of fA and fB, denoted by fA∩̃ fB, is

defined as fA∩̃ fB = fA∩̃B, where fA∩̃B(x) = fA(x)∩ fB(x) for all x ∈ E.

Definition 2.5. [18] Let fA, fB ∈ S(U). Then, ∧-product of fA and fB, denoted by fA ∧ fB, is

defined as fA∧ fB = fA∧B, where fA∧B(x,y) = fA(x)∩ fB(y) for all (x,y) ∈ E×E.

Definition 2.6. [27] Let fA and fB be soft sets over the common universe U and Ψ be a function

from A to B. Then, soft anti image of fA under Ψ, denoted by Ψ?( fA), is a soft set over U by

(Ψ?( fA))(b) =


⋂
{ fA(a) | a ∈ A and Ψ(a) = b}, if Ψ−1(b) 6= /0,

/0, otherwise

for all b ∈ B. And soft pre-image (or soft inverse image) of fB under Ψ, denoted by Ψ−1( fB), is

a soft set over U by (Ψ−1( fB))(a) = fB(Ψ(a)) for all a ∈ A.

Definition 2.7. [28] Let fA be a soft set over U and α ⊆U. Then, lower α-inclusion of fA,

denoted by L ( fA;α), is defined as

L ( fA : α) = {x ∈ A | fA(x)⊆ α}.
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3. Soft union product and soft anti characteristic function

In this section, we define soft union product and soft anti characteristic function and study

their properties.

Definition 3.1. Let fS and gS be soft sets over the common universe U. Then, soft union product

fS ∗gS is defined by

( fS ∗gS)(x) =


⋂

x=yz{ fS(y)∪gS(z)}, if ∃y,z ∈ S such that x = yz,

U, otherwise

for all x ∈ S.

Note that soft union product is abbreviated by soft uni-product in what follows.

Example 3.2. Consider the semigroup S = {a,b,c,d} defined by the following table:

. a b c d

a a a a a

b a a a a

c a a b a

d a a b b

Let U = D2 = {< x,y >: x2 = y2 = e,xy = yx}= {e,x,y,yx} be the universal set. Let fS and gS

be soft sets over U such that fS(a) = {e,y,yx}, fS(b) = {e,x}, fS(c) = {y,yx}, fS(d) = {e,x,y}

and gS(a) = {x,y}, gS(b) = {e,yx}, gS(c) = {yx}, gS(d) = {e,y}. Since b = cc, b = dc and

b = dd, then

( fS ∗gS)(b) = { fS(c)∪gS(c)}∩{ fS(d)∪gS(c)}∩{ fS(d)∪gS(d)}= {y}

Similarly, ( fS ∗gS)(a) = /0, ( fS ∗gS)(c) = ( fS ∗gS)(d) =U.

Theorem 3.3. Let fS,gS,hS ∈ S(U). Then,

i) ( fS ∗gS)∗hS = fS ∗ (gS ∗hS).

ii) fS ∗gS 6= gS ∗ fS, generally.

iii) fS ∗ (gS∪̃hS) = ( fS ∗gS)∪̃( fS ∗hS) and ( fS∪̃gS)∗hS = ( fS ∗hS)∪̃(gS ∗hS).

iv) fS ∗ (gS∩̃hS) = ( fS ∗gS)∩̃( fS ∗hS) and ( fS∩̃gS)∗hS = ( fS ∗hS)∩̃(gS ∗hS).
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v) If fS⊆̃gS, then fS ∗hS⊆̃gS ∗hS and hS ∗ fS⊆̃hS ∗gS.

vi) If tS, lS ∈ S(U) such that tS⊆̃ fS and lS⊆̃gS, then tS ∗ lS⊆̃ fS ∗gS.

Proof. i) and ii) follows from Definition 3.1. and Example 3.2.

iii) Let a ∈ S. If a is not expressible as a = xy, then ( fS ∗ (gS∪̃hS))(a) =U . Similarly,

(( fS ∗gS)∪̃( fS ∗hS))(a) = ( fS ∗gS)(a)∪ ( fS ∗hS)(a) =U ∪U =U

Now, let there exist x,y ∈ S such that a = xy. Then,

( fS ∗ (gS∪̃hS))(a) =
⋂

a=xy
( fS(x)∪ (gS∪̃hS)(y))

=
⋂

a=xy
( fS(x)∪ (gS(y)∪hS(y))

=
⋂

a=xy
[( fS(x)∪gS(y))∪ ( fS(x)∪hS(y))]

= [
⋂

a=xy
( fS(x)∪gS(y))]∪ [

⋂
a=xy

( fS(x)∪hS(y))]

= ( fS ∗gS)(a)∪ ( fS ∗hS)(a)

= [( fS ∗gS)∪̃( fS ∗hS)](a)

Thus, ( fS∪̃gS)∗hS = ( fS ∗hS)∪̃(gS ∗hS) and (iv) can be proved similarly.

v) Let x ∈ S. If x is not expressible as x = yz, then ( fS ∗hS)(x) = (gS ∗hS)(x) =U . Otherwise,

( fS ∗hS)(x) =
⋂

x=yz
( fS(y)∪hS(z))

⊆
⋂

x=yz
(gS(y)∪hS(z)) (since fS(y)⊆ gS(y))

= (gS ∗hS)(x)

Similarly, one can show that hS ∗ fS⊆̃hS ∗gS.

(vi) can be proved similar to (v).



6 ASLIHAN SEZGIN

Definition 3.4. Let X be a subset of S. We denote by SXc the soft characteristic function of the

complement X and define as

SXc(x) =

 /0, if x ∈ X ,

U, if x ∈ S\X

Theorem 3.5. Let X and Y be nonempty subsets of a semigroup S. Then, the following proper-

ties hold:

i) If Y ⊆ X, then SXc⊆̃SY c .

ii) SXc∩̃SY c = SXc∩Y c , SXc∪̃SY c = SXc∪Y c .

Proof. i) is straightforward by Definition 3.4.

ii) Let s be any element of S. Suppose s ∈ Xc∩Y c. Then, s ∈ Xc and s ∈ Y c. Thus, we have

(SXc∩̃SY c)(s) = SXc(s)∩SY c(s) =U ∩U =U = SXc∩Y c(s)

Suppose s /∈ Xc∩Y c. Then, s /∈ Xc or s /∈ Y c. Hence, we have

(SXc∩̃SY c)(s) = SXc(s)∩SY c(s) = /0 = SXc∩Y c(s)

Let s be any element of S. Suppose s ∈ Xc∪Y c. Then, s ∈ Xc or s ∈ Y c. Thus, we have

(SXc∪̃SY c)(s) = SXc(s)∪SY c(s) =U = SXc∪Y c(s)

Suppose s /∈ Xc∪Y c. Then, s ∈ S and s ∈ Y . Hence, we have

(SXc∪̃SY c)(s) = SXc(s)∪SY c(s) = /0 = SXc∪Y c(s)

4. Soft union semigroup

In this section, we define soft union semigroups, study their basic properties with respect to

soft operations and soft uni-product.
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Definition 4.1. Let S be a semigroup and fS be a soft set over U. Then, fS is called a soft union

semigroup of S, if

fS(xy)⊆ fS(x)∪ fS(y)

for all x,y ∈ S.

For the sake of brevity, soft union semigroup is abbreviated by SU-semigroup in what fol-

lows.

Example 4.2. Let S = {a,b,c,d} be the semigroup in Example 2.1. and fS be a soft set

over U = S3, symmetric group. If we construct a soft set such that fS(a) = {(1)}, fS(b) =

{(1),(123)}, fS(c) = {(1),(12),(123)}, fS(d) = {(1),(123)} then, one can easily show that fS

is an SU-semigroup over U.

Now, let U =


 x 0

0 x

 | x,y ∈ Z4

, 2× 2 matrices with Z3 terms, be the universal set.

We construct a soft set gS over U by

gS(a) =


 0 0

0 0

 ,

 1 0

0 1

 ,

gS(b) =


 0 0

0 0

 ,

 1 0

0 1

 ,

 2 0

0 2

 ,

gS(c) =


 1 0

0 1

 ,

 2 0

0 2


gS(d) =


 0 0

0 0

 ,

 2 0

2 0

 .

Then, since

gS(dd) = gS(b)* gS(d)∪gS(d),

gS is not an SU-semigroup over U.

Note 4.3. It is easy to see that if fS(x) = /0 for all x ∈ S, then fS is an SU-semigroup over U. We

denote such a kind of SU-semigroup by θ̃ . It is obvious that θ̃ =SSc , i.e. θ̃(x) = /0 for all x ∈ S.

Lemma 4.4. Let fS be any SU-semigroup over U. Then, we have the followings:
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i) θ̃ ∗ θ̃⊇̃θ̃ .

ii) fS ∗ θ̃⊇̃θ̃ and θ̃ ∗ fS⊇̃θ̃ .

iii) fS∩̃θ̃ = θ̃ and fS∪̃θ̃ = fS.

Theorem 4.5. Let fS be a soft set over U. Then, fS is an SU-semigroup over U if and only if

fS ∗ fS⊇̃ fS

Proof. Assume that fS is an SU-semigroup over U . Let a ∈ S. If ( fS ∗ fS)(a) = U, then it is

obvious that

( fS ∗ fS)(a)⊇ fS(a), thus fS ∗ fS⊇̃ fS.

Otherwise, there exist elements x,y ∈ S such that a = xy. Then, since fS is an SU-semigroup

over U , we have:

( fS ∗ fS)(a) =
⋂

a=xy
( fS(x)∪ fS(y))

⊇
⋂

a=xy
fS(xy)

=
⋂

a=xy
fS(a)

= fS(a)

Thus, fS ∗ fS⊇̃ fS.

Conversely, assume that fS ∗ fS⊇̃ fS. Let x,y ∈ S and a = xy. Then, we have:

fS(xy) = fS(a)

⊆ ( fS ∗ fS)(a)

=
⋂

a=xy
( fS(x)∪ fS(y))

⊆ fS(x)∪ fS(y)

Hence, fS is an SU-semigroup over U . This completes the proof.
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Theorem 4.6. A non-empty subset A of a semigroup of S is a subsemigroup of S if and only if

the soft subset fS defined by

fS(x) =

 α, if x ∈ S\A,

β , if x ∈ A

is an SU-semigroup, where α,β ⊆U such that α ⊇ β .

Proof. Suppose A is a subsemigroup of S and x,y ∈ S. If x,y ∈ A, then xy ∈ A. Hence, fS(xy) =

fS(x) = fS(y) = β and so, fS(xy)⊆ fS(x)∪ fS(y). If x,y /∈ A, then xy ∈ A or xy /∈ A. In any case,

fS(xy)⊆ fS(x)∪ fS(y) = α . Thus, fS is an SU-semigroup.

Conversely assume that fS is an SU-semigroup of S. Let x,y ∈ A. Then, fS(xy) ⊆ fS(x)∪

fS(y) = β . This implies that fS(xy) = β . Hence, xy ∈ A and so A is a subsemigroup of S.

Theorem 4.7. Let X be a nonempty subset of a semigroup S. Then, X is a subsemigroup of S if

and only if SXc is an SU-semigroup of S.

Proof. Since

SXc(x) =

 U, if x ∈ S\X ,

/0, if x ∈ X

and U ⊇ /0, the rest of the proof follows from Theorem 4.6.

Proposition 4.8. Let fS and fT be SU-semigroup over U. Then, fS ∨ fT is an SU-semigroup

over U.

Proof. Let (x1,y1),(x2,y2) ∈ S×T . Then,

fS∨T ((x1,y1)(x2,y2)) = fS∨T (x1x2,y1y2)

= fS(x1x2)∪ fT (y1y2)

⊆ ( fS(x1)∪ fS(x2))∪ ( fT (y1)∪ fT (y2))

= ( fS(x1)∪ fT (y1))∪ ( fS(x2)∪ fT (y2))

= fS∨T (x1,y1)∪ fS∨T (x2,y2)

Therefore, fS∨ fT is an SU-semigroup over U .

Proposition 4.9. If fS and hS are SU-semigroups over U, then so is fS∪̃hS over U.
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Proof. Let x,y ∈ S, then

( fS∪̃hS)(xy) = fS(xy)∪hS(xy)

⊆ ( fS(x)∪ fS(y))∪ (hS(x)∪hS(y))

= ( fS(x)∪hS(x))∪ ( fS(y)∪hS(y))

= ( fS∪̃hS)(x)∪ ( fS∪̃hS)(y)

Therefore, fS∪̃hS is an SU-semigroup over U .

Proposition 4.10. Let fS be a soft set over U and α be a subset of U such that α ∈ Im( fS), where

Im( fS) = {α ⊆U : fS(x) = α, f or x ∈ S}. If fS is an SU-semigroup over U, then L ( fS;α) is

a subsemigroup of S.

Proof. Since fS(x) = α for some x ∈ S, then /0 6= L ( fS;α) ⊆ S. Let x,y ∈ L ( fS;α), then

fS(x)⊆ α and fS(y)⊆ α . We need to show that xy ∈U ( fS;α) for all x,y ∈L ( fS;α). Since fS

is an SU-semigroup over U , it follows that fS(xy) ⊆ fS(x)∪ fS(y) ⊆ α ∪α = α implying that

xy ∈L ( fS;α). Thus, the proof is completed.

Definition 4.11. Let fS be an SU-semigroup over U. Then, the subsemigroups L ( fS;α) are

called lower α-subsemigroups of fS.

Proposition 4.12. Let fS be a soft set over U, L ( fS;α) be lower α-subsemigroups of fS for

each α ⊆U and Im( fS) be an ordered set by inclusion. Then, fS is an SU-semigroup over U.

Proof. Let x,y ∈ S and fS(x) = α1 and fS(y) = α2. Suppose that α1 ⊆ α2. It is obvious

that x ∈ L ( fS;α1) and y ∈ L ( fS;α2). Since α1 ⊆ α2, x,y ∈ L ( fS;α2) and since L ( fS;α)

is a subsemigroup of S for all α ⊆U , it follows that xy ∈ U ( fS;α2). Hence, fS(xy) ⊆ α2 =

α1∪α2 = fS(x)∪ fS(y). Thus, fS is an SU-semigroup over U .

Proposition 4.13. Let fS and fT be soft sets over U and Ψ be a semigroup isomorphism from S

to T . If fS is an SU-semigroup over U, then so is Ψ?( fS).

Proof. Let t1, t2 ∈ T . Since Ψ is surjective, then there exist s1,s2 ∈ S such that Ψ(s1) = t1 and

Ψ(s2) = t2. Then,
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(Ψ?( fS))(t1t2)

=
⋂
{ fS(s) : s ∈ S,Ψ(s) = t1t2}

=
⋂
{ fS(s) : s ∈ S,s = Ψ−1(t1t2)}

=
⋂
{ fS(s) : s ∈ S,s = Ψ−1(Ψ(s1s2)) = s1s2}

=
⋂
{ fS(s1s2) : si ∈ S,Ψ(si) = ti, i = 1,2}

⊆
⋂
{ fS(s1)∪ fS(s2) : si ∈ S,Ψ(si) = ti, i = 1,2}

= (
⋂
{ fS(s1) : s1 ∈ S,Ψ(s1) = t1})∪ (

⋂
{ fS(s2) : s2 ∈ S,Ψ(s2) = t2})

= (Ψ?( fS))(t1)∪ (Ψ( fS))(t2)

Hence, Ψ( fS) is an SU-semigroup over U .

Proposition 4.14. Let fS and fT be soft sets over U and Ψ be a semigroup homomorphism from

S to T . If fT is an SU-semigroup over U, then so is Ψ−1( fT ).

Proof. Let s1,s2 ∈ S. Then,

(Ψ−1( fT ))(s1s2) = fT (Ψ(s1s2))

= fT (Ψ(s1)Ψ(s2))

⊆ fT (Ψ(s1))∪ fT (Ψ(s2))

= (Ψ−1( fT ))(s1)∪ (Ψ−1( fT ))(s2)

Hence, Ψ−1( fT ) is an SU-semigroup over U .

5. Soft union left (right, two-sided) ideals of semigroups

In this section, we define soft union left (right, two-sided) ideal of semigroups and obtain

their basic properties related with soft set operations and soft uni-product.

Definition 5.1. A soft set over U is called a soft union left (right) ideal of S over U if

fS(ab)⊆ fS(b) ( fS(ab)⊆ fS(a))

for all a,b ∈ S. A soft set over U is called a soft union two-sided ideal (soft union ideal) of S if

it is both soft union left and soft union right ideal of S over U.
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For the sake of brevity, soft union left (right) ideal is abbreviated by SU-left (right) ideal in

what follows.

Example 5.2. Consider the semigroup S = {0,x,1} defined by the following table:

. 0 x 1

0 0 0 0

x 0 x x

1 0 x 1

Let fS be a soft set over S such that fS(0) = {0}, fS(1) = {0,1,x}, fS(x) = {0,x}. Then, one

can easily show that fS is an SU-ideal of S over U. However if we define a soft set hS over S

such that hS(0) = {0,1}, hS(1) = {1}, hS(x) = {0,x,1}, then, hS(x1) = hS(x)+ hS(1) Thus, hS

is not an SU-left ideal of S and moreover since hS(1x) = hS(x) + hS(1), hS is not an SU-right

ideal of S over U.

Theorem 5.3. Let fS be a soft set over U. Then, fS is an SU-left ideal of S over U if and only if

θ̃ ∗ fS⊇̃ fS.

Proof. First assume that fS is an SU-left ideal of S over U . Let s ∈ S. If

(θ̃ ∗ fS)(s) =U,

then it is clear that θ̃ ∗ fS⊇̃ fS. Otherwise, there exist elements x,y ∈ S such that s = xy. Then,

since fS is an SU-left ideal of S over U , we have:

(θ̃ ∗ fS)(s) =
⋂

s=xy
(θ̃(x)∪ fS(y))

⊇
⋂

s=xy
( /0∪ fS(xy))

=
⋂

s=xy
( fS(xy))

= fS(s)

Thus, we have θ̃ ∗ fS⊇̃ fS.
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Conversely, assume that θ̃ ∗ fS⊇̃ fS. Let x,y ∈ S and s = xy. Then, we have:

fS(xy) = fS(s)

⊆ (θ̃ ∗ fS)(s)

=
⋂

s=mn
(θ̃(m)∪ fS(n))

⊆ θ̃(x)∪ fS(y)

= /0∪ fS(y)

= fS(y)

Hence, fS is an SU-left ideal over U . This completes the proof.

Theorem 5.4. Let fS be a soft set over U. Then, fS is an SU-right ideal of S over U if and only

if

fS ∗ θ̃⊇̃ fS

Proof. Similar to the proof of Theorem 5.3.

Theorem 5.5. Let fS be a soft set over U. Then, fS is an SU-ideal of S over U if and only if

fS ∗ θ̃⊇̃ fS and θ̃ ∗ fS⊇̃ fS

Corollary 5.6. θ̃ is both SU-right and SU-left ideal of S.

Theorem 5.7. A non-empty subset L of a semigroup of S is a left (right) ideal of S if and only if

the soft subset fS defined by

fS(x) =

 α, if x ∈ S\L,

β , if x ∈ L

is an SU-left (right) ideal of S, where α,β ⊆U such that α ⊇ β .

Proof. Suppose L is a left ideal of S and x,y ∈ S. If y ∈ L, then xy ∈ L. Hence, fS(xy) = fS(y) =

β . If y /∈ L, then xy ∈ L or xy /∈ L. In any case, fS(xy)⊆ fS(y) = α . Thus, fS is an SU-left ideal

of S.



14 ASLIHAN SEZGIN

Conversely assume that fS is an SU-left ideal of S. Let y ∈ L and x ∈ S. Then, fS(xy) ⊆

fS(y) = β . This implies that fS(xy) = β . Hence, xy ∈ L and so L is a left ideal of S.

Theorem 5.8. Let X be a nonempty subset of a semigroup S. Then, X is a left (right, two-sided)

ideal of S if and only if SXc is an SU-left (right, two-sided) ideal of S over U.

Proof. It follows from Theorem 5.7.

Proposition 5.9. Let fS be a soft set over U. Then, fS is an SU-ideal of S over U if and only if

fS(xy)⊆ fS(x)∩ fS(y)

for all x,y ∈ S.

Proof. Let fS be an SU-ideal of S over U . Then,

fS(xy)⊆ fS(x) and fS(xy)⊆ fS(y)

for all x,y ∈ S. Thus, fS(xy)⊆ fS(x)∩ fS(y) Conversely, suppose that fS(xy)⊆ fS(x)∩ fS(y) for

all x,y ∈ S. It follows that

fS(xy)⊆ fS(x)∩ fS(y)⊆ fS(x) and fS(xy)⊆ fS(x)∩ fS(y)⊆ fS(y)

so fS is an SU-ideal of S over U .

It is obvious that every left (right, two-sided) ideal of S is a subsemigroup of S. Moreover,

we have the following:

Theorem 5.10. Let fS be a soft set over U. Then, if fS is an SU-left (right, two-sided) ideal of

S over U, fS is an SU-semigroup over U.

Proof. We give the proof for SU-left ideals. Let fS be an SU-left ideal of S over U. Then,

fS(xy)⊆ fS(y) for all x,y ∈ S. Thus, fS(xy)⊆ fS(y)⊆ fS(x)∪ fS(y), so fS is an SU-semigroup

over U.

Proposition 5.11. If fS is an SU-right (left) ideal of S over U, then

fS∩̃(θ̃ ∗ fS) ( fS∩̃( fS ∗ θ̃)

is an SU-ideal of S over U.
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Proof. Assume that fS is an SU-right ideal of S. Then,

θ̃ ∗ ( fS∩̃(θ̃ ∗ fS)) = (θ̃ ∗ fS)∩̃(θ̃ ∗ (θ̃ ∗ fS)) (by T heorem3.3.(iii))

= (θ̃ ∗ fS)∩̃((θ̃ ∗ θ̃)∗ fS) (by T heorem3.3(i))

⊇̃ (θ̃ ∗ fS)∩̃(θ̃ ∗ fS) (by Lemma4.4.(i))

= θ̃ ∗ fS

⊇̃ fS∩̃(θ̃ ∗ fS)

Thus, fS∩̃(θ̃ ∗ fS) is an SU-left ideal of S over U. Also,

( fS∩̃(θ̃ ∗ fS))∗ θ̃ = ( fS ∗ θ̃)∩̃((θ̃ ∗ fS)∗ θ̃)

= ( fS ∗ θ̃)∩̃(θ̃ ∗ ( fS ∗ θ̃))

⊇̃ ( fS ∗ θ̃)∩̃(θ̃ ∗ fS) (since fS ∗ θ̃⊇̃ fS)

⊇̃ fS∩̃(θ̃ ∗ fS)

Hence, fS∩̃(θ̃ ∗ fS) is an SU-right ideal of S over U. This completes the proof.

Theorem 5.12. Let fS be an SU-right ideal of S over U and gS be an SU-left ideal of S over U.

Then

fS ∗gS⊇̃ fS∪̃gS

Proof. Let fS and gS be SU-right and SU-left ideal of S over U, respectively. Then, since

fS,gS⊇̃θ̃ always holds, we have:

fS ∗gS⊇̃ fS ∗ θ̃⊇̃ fS and fS ∗gS⊇̃θ̃ ∗gS⊇̃gS

It follows that fS ∗gS⊇̃ fS∪̃gS.

Now, we show that if fS is an SU-right ideal of S over U and gS is an SU-left ideal of S over

U, then

fS ∗gS*̃ fS∩̃gS

with the following example:
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Example 5.13. Consider the semigroup S and SU-ideal fS in Example 5.2. Let gS be a soft set

over S such that gS(0) = {x,1}, gS(x) = {x}, gS(1) = {x}, One can easily show that gS is an

SU-ideal of S over U. However,

( fS ∗gS)(x) =
⋂

x=ab

( fS(a)∪gS(b)) = {0,1,x}* ( fS∩̃gS)(x) = {x}.

Proposition 5.14. Let fS and hS be SU-left (right) ideals of S over U. Then, fS ◦hS is an SU-left

(right) ideal of S over U.

Proof. Let fS and hS be SU-left ideal of S and x,y ∈ S. Then,

( fS ∗hS)(y) =
⋂

y=pq
( fS(p)∪hS(q))

If y = pq, then xy = x(pq) = (xp)q. Since fS is an SU-left ideal of S, fS(xp)⊆ fS(p). Thus,

( fS ∗hS)(y) =
⋂

y=pq
( fS(p)∪hS(q))

⊇
⋂

xy=xpq
( fS(xp)∪hS(q))

= ( fS ∗hS)(xy)

So,

( fS ∗hS)(xy)⊆ ( fS ∗hS)(y)

If y is not expressible as y = pq, then ( fS ∗hS)(y) =U ⊇ ( fS ∗hS)(xy). Thus, fS ∗hS is an SU-left

ideal of S.

We give the following propositions without proof. The proofs are similar to those in Section

4.

Proposition 5.16. Let fS and fT be SU-left (right) ideals of S over U. Then, fS ∨ fT is an

SU-left (right) ideal of S×T over U.

Proposition 5.17. If fS and hS are two SU-left (right) ideals of S over U, then so is fS∪̃hS of S

over U.

Proposition 5.18. Let fS be a soft set over U and α be a subset of U such that α ∈ Im( fS). If

fS is an SU-left (right) ideal of S over U, then L ( fS;α) is a left (right) ideal of S.
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Definition 5.19. Let fS be an SU-left (right) ideal of S over U. Then, the left (right) ideals

L ( fS;α) are called lower α-left (right) ideals of fS.

Proposition 5.20. Let fS be a soft set over U, L ( fS;α) be lower α-ideals of fS for each α ⊆U

and Im( fS) be an ordered set by inclusion. Then, fS is an SU-left (right) ideal of S over U.

In order to show Proposition 5.18., we have the following example:

Example 5.21. Consider the semigroup in Example 3.2. Define a soft set fS over U = D2 =

{e,x,y,yx} such that fS(a) = {x}, fS(b) = {e,x}, fS(c) = {e,x,y}, fS(d) = {e,x,yx}. Then,

one can easily show that fS is an SU-ideal of S over U. By taking into account Im( fS), we

have: L ( fS;{x}) = {a},L ( fS;{e,x}) = {a,b},L ( fS;{e,x,y}) = {a,b,c},L ( fS;{e,x,yx}) =

{a,b,d} One can easily show that {a},{a,b},{a,b,c} and {a,b,d} are two-sided ideals of S.

In order to show Proposition 5.20., we have the following example:

Example 5.22. Consider the semigroup in Example 3.2. Define a soft set fS over U = D2 =

{e,x,y,yx} such that fS(a) = {e}, fS(b) = {e,y}, fS(c) = {e,y,yx}, fS(d) = {e,x,y,yx}, By

taking into account

Im( fS) = {{e},{e,y},{e,y,yx},{e,x,y,yx}}

and considering that Im( fS) is ordered by inclusion, we have:

L ( fS;α) =



{a}, if α = {e}

{a,b}, if α = {e,y}

{a,b,c}, if α = {e,y,yx}

{a,b,c,d}, if α = {e,x,y,yx}

Since {a},{a,b},{a,b,c} and {a,b,c,d} are two-sided ideals of S, fS is an SU-ideal of S over

U.

Now we define a soft set hS over U = D2 such that hS(a) = {x},hS(b) = {e,x,y,yx}, hS(c) =

{e,x}, hS(d) = {e,x,yx}. By taking into account Im( fS) = {{e,x,y,yx},{e,x,yx},{e,x},{x}}
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and considering that Im( fS) is ordered by inclusion, we have:

L ( fS;α) =



{a}, if α = {x}

{a,c}, if α = {e,x}

{a,b,d}, if α = {e,x,yx}

{a,b,c,d}, if α = {e,x,y,yx}

Since {a,c}S * {a,c} and S{a,c}* {a,c} {a,c} is not a two-sided ideal of S. Moreover, since;

hS(cc) = hS(b)* hS(c) hS is not an SU-ideal of S over U.

Proposition 5.23. Let fS and fT be soft sets over U and Ψ be a semigroup isomorphism from S

to T . If fS is an SU-left (right) ideal of S over U, then so is Ψ?( fS) of T over U.

Proposition 5.24. Let fS and fT be soft sets over U and Ψ be a semigroup homomorphism from

S to T . If fT is an SU-left (right) ideal of T over U, then so is Ψ−1( fT ) of S over U.

6. Soft union bi-ideals of semigroups

In this section, we define soft union bi-ideals and study their properties as regards soft set

operations and soft uni-product.

Definition 6.1. An SU-semigroup fS over U is called a soft union bi-ideal of S over U if

fS(xyz)⊆ fS(x)∪ fS(z)

for all x,y,z ∈ S.

For the sake of brevity, soft union bi-ideal is abbreviated by SU-bi-ideal in what follows. Ex-

ample 3.1. Let S = {0,a,b,c} be the semigroup with the operation table given below.

+ 0 a b c

0 0 0 0 0

a 0 a b 0

b 0 0 0 0

c 0 c 0 0
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Define the soft set fS over U =Z5 such that fS(0)= {0}, fS(a)= {0,1}, fS(b)= {0,3}, fS(c)=

{0,2}. Then, one can easily show that fS is an SU-bi-ideal of S over U.

Theorem 6.2. Let fS be a soft set over U. Then, fS is an SU-bi-ideal of S over U if and only if

fS ∗ fS⊇̃ fS and fS ∗ θ̃ ∗ fS⊇̃ fS

Proof. First assume that fS is an SU-bi-ideal of S over U. Since fS is an SU-semigroup over U,

by Theorem 4.5., we have

fS ∗ fS⊇̃ fS.

Let s ∈ S. In the case, when ( fS ∗ θ̃ ∗ fS)(s) =U, then it is clear that fS ∗ θ̃ ∗ fS⊇̃ fS, Otherwise,

there exist elements x,y, p,q ∈ S such that

s = xy and x = pq

Then, since fS is an SU-bi-ideal of S over U, we have:

fS(s) = fS(xy) = fS((pq)y)⊆ fS(p)∪ fS(y)

Thus, we have

( fS ∗ θ̃ ∗ fS)(s) = [( fS ∗ θ̃)∗ fS](s)

=
⋂

s=xy
[( fS ∗ θ̃)(x)∪ fS(y)]

=
⋂

s=xy
[(

⋂
x=pq

( fS(p)∪ θ̃(q))∪ fS(y)]

=
⋂

s=xy
[(

⋂
x=pq

( fS(p)∪ /0)∪ fS(y)]

=
⋂

s=pqy
( fS(p)∪ fS(y))

⊇
⋂

s=pqy
fS(pqy)

= fS(xy)

= fS(s)

Hence, fS ∗ θ̃ ∗ fS⊇̃ fS. Here, note that if x 6= pq, then ( fS ∗ θ̃)(x) =U, and so, ( fS ∗ θ̃ ∗ fS)(s) =

U ⊇ fS(s).
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Conversely, assume that fS ∗ fS⊇̃ fS. By Theorem 4.5., fS is an SU-semigroup of S. Let

x,y,z ∈ S and s = xyz. Then, since fS ∗ θ̃ ∗ fS⊇̃ fS, we have

fS(xyz) = fS(s)

⊆ ( fS ∗ θ̃ ∗ fS)(s)

= [( fS ∗ θ̃)∗ fS](s)

=
⋂

s=mn
[( fS ∗ θ̃)(m)∪ fS(n)]

⊆ ( fS ∗ θ̃)(xy)∪ fS(z)

= [
⋂

xy=pq
( fS(p)∪ θ̃(q)]∪ fS(z)

⊆ (( fS(x)∪ θ̃(y))∪ fS(z)

= fS(x)∪ fS(z)

Thus, fS is an SU-bi-ideal of S over U. This completes the proof.

Theorem 6.3. A non-empty subset B of a semigroup of S is a bi-ideal of S if and only if the soft

subset fS defined by

fS(x) =

 α, if x ∈ S\B,

β , if x ∈ B

is an SU-bi-ideal of S, where α,β ⊆U such that α ⊇ β .

Theorem 6.4. Let X be a nonempty subset of a semigroup S. Then, X is a bi-ideal of S if and

only if SXc is an SU-bi-ideal of S over U.

Proof. It follows from Theorem 6.3.

It is known that every left (right, two sided) ideal of a semigroup S is a bi-ideal of S. Moreover,

we have the following:

Theorem 6.5. Every SU-left (right, two sided) ideal of a semigroup S over U is an SU-bi-ideal

of S over U.
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Proof. Let fS be an SU-left (right, two sided) ideal of S over U and x,y,z ∈ S. Then, fS is as

SU-semigroup by Theorem 6.5. Moreover,

fS(xyz) = fS((xy)z)⊆ fS(z)⊆ fS(x)∪ fS(z)

Thus, fS is an SU-bi-ideal of S.

Theorem 6.6. Let fS be any soft subset of a semigroup S and gS be any SU-bi-ideal of S over

U. Then, the soft uni-products fS ∗gS and gS ∗ fS are SU-bi-ideals of S over U.

Proof. We show the proof for fS ∗gS. To see that fS ∗gS is an SU-bi-ideal of S over U, first we

need to show that fS ∗gS is an SU-semigroup over U. Thus,

( fS ∗gS)∗ ( fS ∗gS) = fS ∗ (gS ∗ ( fS ∗gS))

⊇̃ fS ∗ (gS ∗ (θ̃ ∗gS)) (since fS⊇̃θ̃)

= fS ∗ (gS ∗ θ̃ ∗gS)

⊇̃ fS ∗gS (since gS ∗ θ̃ ∗gS⊇̃gS))

Hence, by Theorem 4.5., fS ∗gS is an SU-semigroup over U. Moreover we have:

( fS ∗gS)∗ θ̃ ∗ ( fS ∗gS) = fS ∗ (gS ∗ (θ̃ ∗ fS)∗gS)

⊇̃ fS ∗ (gS ∗ θ̃ ∗gS) (since θ̃ ∗ fS⊇̃θ̃)

⊇̃ fS ∗gS

Thus, it follows that fS ∗gS is an SU-bi-ideal of S over U. It can be seen in a similar way that

gS ∗ fS is an SU-bi-ideal of S over U. This completes the proof.

Proposition 6.7. Let fS and fT be SU-bi-ideals over U. Then, fS∨ fT is an SU-bi-ideal of S×T

over U.

Proposition 6.8. If fS and hS are two SU-bi-ideals of S over U, then so is fS∪̃hS of S over U.

Proposition 6.9. Let fS be a soft set over U and α be a subset of U such that α ∈ Im( fS). If fS

is an SU-bi-ideal of S over U, then L ( fS;α) is a bi-ideal of S.
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Definition 6.10. If fS is an SU-bi-ideal of S over U, then bi-ideals L ( fS;α) are called lower

α bi-ideals of fS.

Proposition 6.11. Let fS be a soft set over U, L ( fS;α) be lower α bi-ideals of fS for each

α ⊆U and Im( fS) be an ordered set by inclusion. Then, fS is an SU-bi-ideal of S over U.

Proposition 6.12. Let fS and fT be soft sets over U and Ψ be a semigroup isomorphism from S

to T . If fS is an SU-bi-ideal of S over U, then so is Ψ?( fS) of T over U.

Proposition 6.13. Let fS and fT be soft sets over U and Ψ be a semigroup homomorphism from

S to T . If fT is an SU-bi-ideal of T over U, then so is Ψ−1( fT ) of S over U.

7. Regular semigroups

In this section, we characterize a regular semigroup in terms of SU-ideals.

A semigroup S is called regular if for every element a of S there exists an element x in S such

that

a = axa

or equivalently a ∈ aSa. There is a characterization of a regular semigroup in [31]iseki as

follows:

Proposition 7.1. [31] For a semigroup S, the following conditions are equivalent:

1) S is regular.

2) RL = R∩L for every right ideal R and left ideal L of S.

Theorem 7.2. For a semigroup S, the following conditions are equivalent:

1) S is regular.

2) fS ∗gS = fS∪̃gS for every SU-right ideal fS of S over U and SU-left ideal gS of S over U.

Proof. Let S be a regular semigroup and fS be an SU-right ideal of S and gS be an SU-left ideal

of S over U. In Theorem 5.12., we show that

fS ∗gS⊇̃ fS∪̃gS
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for every SU-right ideal fS of S and SU-left ideal gS of S over U. Therefore, it suffices to show

that fS∪̃gS⊇̃ fS ∗gS. Let s be any element of S. Then, since S is regular, there exists an element

x in S such that s = sxs. Thus, we have

( fS ∗gS)(s) =
⋂

s=ab

( fS(a)∪gS(b))

⊆ fS(sx)∪gS(s)

⊆ fS(s)∪gS(s)

= ( fS∪̃gS)(s)

Thus, fS ∗gS = fS∩̃gS.

Conversely, assume that (2) holds. In order to show that S is regular, we need to illustrate

that RL = R∩L for every for every right ideal R of S and left ideal L of S over U. Let R and

L be any right ideal and left ideal of S, respectively. It is known that RL ⊆ R∩L always holds.

So it is enough to show that R∩L ⊆ RL. On the contrary, let there exists a ∈ R∩L such that

a /∈ RL. By Theorem 5.8., the soft characteristic functions SRc and SLc are SU-right ideal and

SU-left ideal of S, respectively. Since a ∈ R∩L, a ∈ R and a ∈ L. Thus,

SRc(a) = SLc(a) = /0

On the other hand, since a /∈ RL, this implies that there do not exist x ∈ R and y ∈ L such that

a = xy. Thus,

(SRc ∗SLc)(a) =
⋂

a=bc

(SRc(b)∪SLc(c)) =
⋂

a=bc

(U ∪U) =U

But this contradicts our hypothesis. Hence, R∩L⊆ RL. It follows by Proposition 7.1. that S is

regular. Hence (2) implies (1).

Corollary 7.3. For a semigroup S, the following conditions are equivalent:

1) S is regular.

2) fS ∗gS = fS∪̃gS for every SU-ideals fS and gS of S over U.

Proposition 7.4. A semigroup S is regular if and only if every SU-ideal of S is idempotent.
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Proof. Let S be a regular semigroup and hS be an SU-ideal of S. Since hS is an SU-right ideal

of S, we have

hS ∗hS⊇̃hS ∗ θ̃⊇̃hS.

Now, we show that hS⊇̃hS ∗hS. Since S is regular, there exists an element x∈ S such that a = axa

for all a ∈ S. So, we have;

(hS ∗hS)(a) =
⋂

a=axa
(hS(ax)∪hS(a))

⊆ hS(a)∪hS(a)

= hS(a)

Hence, hS⊇̃hS ∗hS and so (hS)
2 = hS ∗hS = hS.

Now, let kS be any SU-ideal of S. Since it is an SI-left ideal of S, we have

kS ∗ kS⊇̃θ̃ ∗ kS⊇̃kS.

Thus, we show that kS⊇̃kS ∗kS. Since S is regular, there exists an element x∈ S such that a= axa

for all a ∈ S. Thus, we have;

(kS ∗ kS)(a) =
⋂

a=axa
(kS(a)∪ kS(xa))

⊆ (kS(a)∪ kS(a))

= kS(a)

Hence, kS⊇̃kS ∗ kS and so (kS)
2 = kS ∗ kS = kS.

For the converse, let fS and kS be an SU-ideals of S. In view of Corollary 7.3., it is sufficient

to show that hS ∗ kS = fS∪̃kS. It is obvious that fS ∗ kS⊇̃ fS∪̃kS. For the inverse inclusion, we

argue as follows:

( fS∪̃kS)(x) = ( fS∪̃kS)
2(x)
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by idempotency of fS∪̃kS and x ∈ R. Thus,

( fS∪̃kS)(x) = ( fS∪̃kS)
2(x)

=
⋂

x=
m

∑
i=1

aibi

( fS∪ kS)(ai)∪ ( fS∪̃kS)(bi)

⊇
⋂

x=
m

∑
i=1

aibi

fS(ai)∪ kS(bi)

= ( fS ∗ kS)(x)

Hence, fS∪̃kS⊇̃ fS ∗ kS, whence fS∪̃kS = fS ∗ kS.

Corollary 7.5. Every SU-left (right) of a regular semigroup is idempotent.

Corollary 7.6. The set of all SU-ideals of a regular semigroup S forms a semilattice under the

soft uni-product.

Proposition 7.7. Let the set of all SU-ideals of S be a regular semigroup of S under the soft

uni-product. Then, every SU-ideal of S has the form fS = fS ∗ θ̃ ∗ fS.

Proof. Let fS be an SU-ideal of S. Then, by assumption, there exists an SU-ideal gS of S such

that

fS = fS ∗gS ∗ fS.

Thus, we have

fS = fS ∗gS ∗ fS⊇̃ fS ∗ θ̃ ∗ fS⊇̃( fS ∗ θ̃)∩̃(θ̃ ∗ fS)⊇̃ fS∩̃ fS = fS,

since

fS ∗ θ̃ ∗ fS⊇̃ fS ∗ θ̃ ∗ θ̃⊇̃ fS ∗ θ̃

and

fS ∗ θ̃ ∗ fS⊇̃θ̃ ∗ θ̃ ∗ fS⊇̃θ̃ ∗ fS.

Hence, fS = fS ∗ θ̃ ∗ fS.

Definition 7.8. An SU-ideal fS of a semigroup S is said to be soft strongly irreducible if and

only if for every SU-ideals gS and hS of S, gS∪̃hS⊇̃ fS implies that gS⊇̃ fS or hS⊇̃ fS.
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Definition 7.9. An SU-ideal hS of a semigroup S is said to be soft prime ideal if for any SU-

ideals fS and gS of S, fS ∗gS⊇̃hS implies that fS⊇̃hS or gS⊇̃hS.

Definition 7.10. The set of SU-ideals of a semigroup is called totally ordered under inclusion

if for any SU-ideals fS and gS of S, either fS⊇̃gS or gS⊇̃ fS.

Proposition 7.11. In a regular semigroup S, an SU-ideal is soft strongly irreducible if and only

if it is soft prime.

Proof. It follows from Corollary 7.3., Definition 7.8. and Definition 7.9.

Proposition 7.12. Every SU-ideal of a regular semigroup S is soft prime if and only if the set of

SU-ideals of S is totally ordered under inclusion.

Proof. It follows from Corollary 7.3., Definition 7.9. and Definition 7.10.

As is known a semigroup S is regular if and only if B = BSB for all bi-ideals B of S. Now, we

shall give a characterization of a regular semigroup by SU-bi-ideals.

Theorem 7.13. For a semigroup S, the following conditions are equivalent:

1) S is regular.

2) fS = fS ∗ θ̃ ∗ fS for every SU-bi-ideal fS of S over U.

Proof. First assume that (1) holds. Let fS be any SU-bi-ideal fS of S over U and s be any

element of S. Then, since S is regular, there exists an element x ∈ S such that s = sxs. Thus, we

have;

( fS ∗ θ̃ ∗ fS)(s) = [( fS ∗ θ̃)∗ fS](s)

=
⋂

s=ab

[( fS ∗ θ̃)(a)∪ fS(b)]

⊆ ( fS ∗ θ̃)(sx)∪ fS(s)

=
⋂

sx=mn
{( fS(m)∪ θ̃(n)}∪ fS(s)

⊆ ( fS(s)∪ θ̃(x))∪ fS(s)

= ( fS(s)∪ /0)∪ fS(s)

= fS(s)
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and so, we have fS∗ θ̃ ∗ fS⊆̃ fS. Since fS is an SU-bi-ideal of S, fS∗ θ̃ ∗ fS⊇̃ fS. Thus, fS∗ θ̃ ∗ fS =

fS which means that (1) implies (2).

Conversely assume that (2) holds. In order to show that S is regular, we need to illustrate that

B = BSB for every bi-ideal B of S. It is obvious that BSB ⊆ B. Therefore, it is enough to show

that B ⊆ BSB. On the contrary, let there exists a ∈ B such that a /∈ BSB. By Theorem 6.4., the

soft characteristic function SBc is an SU-bi-ideal of S. Since a ∈ B, thus,

SBc(a) = /0

On the other hand, since a /∈ BSB, this implies that there do not exist x,z ∈ B and y ∈ S such

that a = xyz. Thus,

(SBc ∗SSc ∗SBc)(a) = (SBc ∗ θ̃ ∗SBc)(a) =U

But this contradicts our hypothesis. Thus, B⊆ BSB and so B = BSB. It follows that S is regular,

so (2) implies (1).

Theorem 7.14. Let fS be a soft set of a regular semigroup S. Then, the following conditions are

equivalent:

1) fS is an SU-bi-ideal of S.

2) fS may be presented in the form fS = gS ∗ hS, where gS is an SU-right ideal and hS is an

SU-left ideal of S over U.

Proof. First assume that (1) holds. Since S is regular, it follows from Theorem 7.13. that

fS = fS ∗ θ̃ ∗ fS. Thus, we have

fS = fS ∗ θ̃ ∗ fS

= fS ∗ θ̃ ∗ ( fS ∗ θ̃ ∗ fS)

= [ fS ∗ (θ̃ ∗ fS)]∗ (θ̃ ∗ fS)

⊇̃ ( fS ∗ θ̃)∗ (θ̃ ∗ fS) (since θ̃ ∗ fS⊇̃θ̃)
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Similarly,

( fS ∗ θ̃)∗ (θ̃ ∗ fS) = fS ∗ (θ̃ ∗ θ̃)∗ fS)

⊇̃ fS ∗ θ̃ ∗ fS (since θ̃ ∗ θ̃⊇̃θ̃)

= fS

Namely, fS = ( fS ∗ θ̃)∗ (θ̃ ∗ fS). Here, we can easily show that fS ∗ θ̃ is an SU-right ideal of S

and θ̃ ∗ fS is an SU-left ideal of S. In fact

( fS ∗ θ̃)∗ θ̃ = fS ∗ (θ̃ ∗ θ̃)⊇̃ fS ∗ θ̃

Similarly

θ̃ ∗ (θ̃ ∗ fS) = (θ̃ ∗ θ̃)∗ fS⊇̃θ̃ ∗ fS

implying that θ̃ ∗ fS is an SU-left ideal of S.

Conversely assume that (2) holds. It means that there exists an SU-right ideal gS and SU-left

ideal hS of S such that fS = gS ∗hS. By Theorem 6.5., every SU-left (right) ideal of S is an SU-

bi-ideal of S. Thus, gS and hS are SU-bi-ideals of S. Moreover, gS ∗hS = fS is an SU-bi-ideal of

S by Theorem 6.6. Therefore, we obtain that (2) implies (1). This completes the proof.

Theorem 7.15. For a semigroup S, the following conditions are equivalent:

1) S is regular.

2) fS∪̃gS = fS ∗gS ∗ fS for every SU-bi-ideal fS of S and SU-ideal gS of S over U.

Proof. First assume that (1) holds. Let fS be any SU-bi-ideal and gS be SU-ideal of S over U.

Then,

fS ∗gS ∗ fS⊇̃ fS ∗ θ̃ ∗ fS⊇̃ fS

and

fS ∗gS ∗ fS⊇̃θ̃ ∗ (gS ∗ θ̃)⊇̃θ̃ ∗gS⊇̃gS

so fS ∗gS ∗ fS⊇̃ fS∪̃gS. To show that fS∪̃gS⊇̃ fS ∗gS ∗ fS holds, let s be any element of S. Since S

is regular, there exists an element x in S such that

s = sxs (s = sx(sxs))
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Since gS is an SU-ideal of S, we have

gs(xsx) = gS(x(sx))⊆ gS(sx)⊆ gS(s)

Therefore, we have

( fS ∗gS ∗ fS)(s) = [ fS ∗ (gS ∗ fS)](s)

=
⋂

s=mn
[ fS(m)∪ (gS ∗ fS)(n)]

⊆ fS(s)∪ (gS ∗ fS)(xsxs)

= fS(s)∪{
⋂

xsxs=yz
[gS(y)∪ fS(z)]}

= fS(s)∪ (gS(xsx)∪ fS(s))

⊆ ( fS(s)∪gS(s)∪ fS(s)

⊆ fS(s)∪gS(s)

= ( fS∪̃gS)(s)

so we have fS∪̃gS⊇̃ fS ∗gS ∗ fS. Thus we obtain that fS∪̃gS = fS ∗gS ∗ fS, hence (1) implies (2).

Conversely assume that (2) holds. In order to show that S is regular, it is enough to show that

fS = fS ∗ θ̃ ∗ fS for all SU-bi-ideals of S over U by Theorem 7.13. Since θ̃ is an SU-ideal of S,

we have fS = fS∪̃θ̃ = fS ∗ θ̃ ∗ fS Thus, (2) implies (1). This completes the proof.

Theorem 7.16. For a semigroup S, the following conditions are equivalent:

1) S is regular.

2) hS∪̃ fS∪̃gS⊇̃hS ∗ fS ∗ gS for every SU-right ideal hS, every SU-bi-ideal fS and every SU-left

ideal gS of S.

Proof. Assume that (1) holds. Let hS, fS and gS be SU-right, SU-bi-ideal and SU-left ideal of

S, respectively. Let a be any element of S. Since S is regular, there exists an element x in S such
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that a = axa. Hence, we have:

(hS ∗ fS ∗gS)(a) = [hS ∗ ( fS ∗gS)](a)

=
⋂

a=yz
[hS(y)∪ ( fS ∗gS)(z)]

⊆ hS(ax)∪ ( fS ∗gS)(a)

= hS(ax)∩{
⋂

a=pq
[ fS(p)∪gS(q)]}

⊆ hS(a)∪ ( fS(a)∪gS(xa))

⊆ hS(a)∪ ( fS(a)∪gS(a))

= (hS∪̃ fS∪̃gS)(a)

so we have hS ∗ fS ∗gS⊇̃hS∪ fS∪gS. Thus, (1) implies (2).

Conversely assume that (2) holds. Let hS and gS be any SU-right ideal and SU-left ideal of

S, respectively. It is obvious that

hS ∗gS⊇̃hS∩̃gS.

Since θ̃ itself is an SU-bi-ideal of S by Theorem 6.2., by assumption we have:

hS∪̃gS = hS∪̃θ̃ ∪̃gS⊇̃hS ∗ θ̃ ∗gS = hS ∗ (θ̃ ∗gS)⊇̃hS ∗gS

It follows that hS∪̃gS⊇̃hS ∗ gS for every SU-right ideal hS and SU-left ideal gS of S. It follows

by Theorem 7.2. that S is regular. Hence, (2) implies (1). This completes the proof.

Theorem 7.17. For a regular semigroup S, the following conditions are equivalent:

1) Every bi-ideal of S is a right (left, two-sided) ideal of S.

2) Every SU-bi-ideal of S is an SU-right (left, two-sided) ideal of S.

Proof. We give the proof for the SU-right ideals. First assume that (1) holds. Let fS any SU-bi-

ideal of S and a,b any elements in S. One easily show that aSa is a bi-ideal of S. By assumption,

aSa is a right ideal of S. Since S is regular,

ab ∈ (aSa)S = a((Sa)S)⊆ aSa
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This implies that there exists an element x ∈ S such that

ab = axa.

Then, since fS is an SI bi-ideal of S, we have

fS(ab) = fS(axa)⊆ fS(a)∪ fS(a) = fS(a).

This means that fS is an SU-right ideal of S and that (1) implies (2).

Conversely, assume that (2) holds. Let B be any bi-ideal of S. Then, by Theorem 6.4., the soft

characteristic function SBc is an SU-bi-ideal of S. Thus, by assumption, SBc is an SU-right

ideal of S. Again, by Theorem 6.4., B is a right ideal of S. Therefore, (2) implies (1). This

completes the proof.

8. Intra-regular semigroups

In this section, we characterize an intra-regular semigroup in terms of SU-ideals. A semi-

group S is called intra-regular if for every element a of S there exist elements x and y in S such

that

a = xa2y

Proposition 8.1. [32] For a semigroup S, the following conditions are equivalent:

1) S is intra-regular.

2) L∩R⊆ LR for every left ideal L and every right ideal R of S.

Theorem 8.2. For a semigroup S, the following conditions are equivalent:

1) S is intra-regular.

2) gS∪̃ fS⊇̃gS ∗ fS for every SU-right ideal fS of S and SU-left ideal gS of S over U.

Proof. First assume that (1) holds. Let fS be any SU-right ideal and gS be SU-left ideal of S

over U and a be any element of S. Then, since S is intra-regular, there exist elements x and y in
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S such that a = xa2y. Thus,

(gS ∗ fS)(a) =
⋂

a=bc

(gS(b)∪ fS(c))

⊆ (gS(xa)∪ fS(ay))

⊆ (gS(a)∪ fS(a))

= (gS∪̃ fS)(a)

Thus, gS∪̃ fS⊇̃gS ∗ fS, which means that (1) implies (2).

Conversely assume that gS∪̃ fS⊇̃gS ∗ fS for every SU-right ideal fS and SU-left ideal gS of S

over U. In order to show that S in intra-regular, it suffices to illustrate L∩R⊆ LR for every left

ideal L and for every right ideal R of S. Let L be a left ideal and R be a right ideal of S. On the

contrary, let there exists a ∈ L∩R such that a /∈ LR. Since the soft characteristic functions SLc

and SRc is an SU-left ideal and SU-right ideal of S, respectively and since a ∈ L∩R, we have

SLc(a) = SRc(a) = /0

and so SLc∪̃SLc = /0. On the other hand, since a /∈ RL, this implies that there do not exist x ∈ L

and y ∈ R such that a = xy. Thus,

(SLc ∗SRc)(a) =U

But this contradicts our hypothesis. Thus, L∩R ⊆ LR. It follows that S is intra-regular, so (2)

implies (1).

The following characterization of a semigroup is both regular and intra-regular.

Proposition 8.3. [32] For a semigroup S, the following conditions are equivalent:

1) S is both regular and intra-regular.

2) B2 = B for every bi-ideal B of S. (That is, every bi-ideal of S is idempotent).

Theorem 8.4. For a semigroup S, the following conditions are equivalent:

1) S is both regular and intra-regular.

2) fS ∗ fS = fS for every SU-bi-ideal fS of S. (That is, every SU-bi-ideal of S is idempotent).

3) fS∪̃gS⊇̃( fS ∗gS)∪̃(gS ∗ fS) for every SU-bi-ideals fS and gS of S.
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4) fS∪̃gS⊇̃( fS ∗gS)∪̃(gS ∗ fS) for every SI bi-ideal fS and for every SU-left ideal gS of S.

5) fS∪̃gS⊇̃( fS ∗gS)∪̃(gS ∗ fS) for every SI bi-ideal fS and for every SU-right ideal gS of S.

6) fS∪̃gS⊇̃( fS ∗gS)∪̃(gS ∗ fS) for every SU-right ideal fS and for every SU-left ideal gS of S.

Proof. First assume that (1) holds. In order to show that (3) holds, let fS and gS be SU-bi-ideals

of S and a ∈ S. Since S is intra-regular, there exist elements y and z in S such that a = ya2z for

every element a of S. Thus,

a = axa = (axa)xa = ax(ya2z)xa = (axya)(azxa)

Since fS and gS be SU-bi-ideals of S, we have;

fS(a(xy)a)⊆ fS(a)∪ fS(a) = fS(a)

gS(a(zx)a)⊆ gS(a)∪gS(a) = gS(a)

Then, we have:

( fS ∗gS)(a) =
⋂

a=bc

( fS(b)∪gS(c))

⊆ ( fS(axya)∪gS(azxa))

⊆ fS(a)∪gS(a)

= ( fS∪̃gS)(a)

and so we have fS ∗gS⊆̃ fS∪̃gS. One can similarly show that gS ∗ fS⊆̃gS∪̃ fS, which means that

fS∪̃gS⊇̃( fS ∗gS)∪̃(gS ∗ fS). This shows that (1) implies (3).

It is obvious that (3) implies (4), (4) implies (6) , (3) implies (5) and (5) implies (6).

Assume that (6) holds. Let fS and gS be any SU-right ideal and SU-left ideal of S, respectively.

Then, we have

fS∪̃gS = gS∩̃ fS⊇̃( fS ∗gS)∪̃(gS ∗ fS)⊇̃gS ∗ fS

It follows by Theorem 8.2. that S is intra-regular. On the other hand,

fS∪̃gS⊇̃( fS ∗gS)∪̃(gS ∗ fS)⊇̃ fS ∗gS
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Since, the inclusion fS ∗ gS⊇̃ fS∪̃gS always hold, we have fS∪̃gS = fS ∗ gS. It follows that S is

regular. Hence, (6) implies (1).

It is clear that (3) implies (2). In fact, by taking gS as fS in (3), we get

fS∪̃ fS = fS = ( fS ∗ fS)∪̃( fS ∗ fS) = fS ∗ fS

Finally assume that (2) holds. In order to show that (1) holds, it is enough to show that B2 = B

for every bi-ideal B of S. Let B be any bi-ideal of S. Then, BB⊆ B always holds. We show that

B ⊆ BB. On the contrary, let there exists b ∈ B such that b /∈ BB. By Theorem 6.4., the soft

characteristic function SBc is an SU-bi-ideal of S. Since b ∈ B,

SBc(b) = /0

On the other hand, since b /∈ BB, this implies that there do not exist x,y ∈ B such that b = xy.

Thus,

(SBc ∗SBc)(b) =U

But this contradicts our hypothesis. Thus, B ⊆ BB and so B = BB = B2 . It follows that S is

both regular and intra-regular, so (2) implies (1).

Theorem 8.5. For a semigroup S, the following conditions are equivalent:

1) S is both regular and intra-regular.

2) fS∪̃gS∪̃hS⊇̃ fS ∗gS ∗hS for every SU-bi-ideals fS, gS and hS of S.

3) fS∪̃gS∪̃hS⊇̃ fS ∗gS ∗hS for every SI bi-ideals fS and hS of S and for every SU-right ideal gS

of S.

4) fS∪̃gS∪̃hS⊇̃ fS ∗ gS ∗ hS for every SU-left ideals fS and hS of S and for every SU-right ideal

gS of S.

Proof. First assume that (1) holds. In order to show that (4) holds, let fS and hS be any SU-left

ideals of S and gS be any SU-right ideal of S and a be any element in S. Since S is regular, there

exists element x in S such that a = axa. Since S is intra-regular, there exist elements y,z in S

such that a = ya2z. Thus, we have

a = axa = (axa)x(axa) = (ax(yaaz))x((yaaz)xa) = (axya)(azxya)(azxa)
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Therefore, we have

( fS ∗gS ∗hS)(a) = [ fS ∗ (gS ∗hS)](a)

=
⋂

a=pq
[ fS(p)∪ (gS ∗hS)(q)]

⊆ fS(axya)∪ (gS ∗hS)(azxyaazxa)

= fS(a)∪{
⋂

azxyaazxa=uv
(gS(u)∪hS(v))}

⊆ fS(a)∪ (gS(azxya)∪hS(azxa))

⊆ fS(a)∪gS(a)∪hS(a)

= ( fS∩̃gS∪̃hS)(a)

so we have fS∩̃gS∪̃hS⊇̃ fS ∗gS ∗hS. Thus, (1) implies (4). Assume that (4) holds. Let fS and gS

be SU-left and SU-right ideal of S, respectively. Since θ̃ , itself is an SU-left ideal of S,

gS∪̃ fS = gS∪̃θ̃ ∪̃ fS⊇̃gS ∗ θ̃ ∗ fS⊇̃gS ∗ fS

Since the inclusion gS ∗ fS⊇̃gS∪̃ fS always hold, gS∪̃ fS = gS ∗ fS. Hence, it follows that S is

regular. Now, let fS and gS be any SU-left ideal and SU-right ideal of S, respectively. Since θ̃

itself is an SU-left ideal of S, by assumption we have:

fS∪̃gS = fS∪̃gS∩̃θ̃⊇̃ fS ∗gS ∗ θ̃ = fS ∗ (gS ∗ θ̃)⊇̃ fS ∗gS

Thus, it follows by Theorem 8.2. that S is intra-regular. So, (4) implies (1). It is obvious that (2)

implies (3) and (3) implies (4). Thus, the proof is completed.

Now we give a new characterization for an intra-regular semigroup: First, we have the

following definition:

Definition 8.6. A soft set fS over U is called soft union semiprime if for all a ∈ S,

fS(a)⊆ fS(a2).

Theorem 8.7. For a nonempty A of S, the following conditions are equivalent:

1) A is semiprime.

2) The soft characteristic function SAc is soft union semiprime.
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Proof. First assume that (1) holds. Let a be any element of S. We need to show that SAc(a)⊆

SAc(a2) for all a ∈ S. If a2 ∈ A, then since A is semiprime, a ∈ A. Thus,

SAc(a) = /0 = SAc(a2)

If a2 /∈ A, then

SAc(a)⊆U = SAc(a2)

In any case, SAc(a) ⊆ SAc(a2) for all a ∈ S. Thus, SAc is soft union semiprime. Hence (1)

implies (2).

Conversely assume that (2) holds. Let a2 ∈ A and a /∈ A. Since SAc is soft union semiprime,

we have

SAc(a) =U ⊆SAc(a2) = /0

But, this is a contradiction. Hence, a ∈ A and so A is semiprime. Thus, (2) implies (1).

Theorem 8.8. For any SU-semigroup fS, the following conditions are equivalent:

1) fS is soft union semiprime.

2) fS(a) = fS(a2) for all a ∈ S.

Proof. (2) implies (1) is clear. Assume that (1) holds. Let a be any element of S. Since fS is an

SU-semigroup, we have;

fS(a)⊆ fS(a2) = fS(aa)⊆ fS(a)∪ fS(a) = fS(a)

So, fS(a2) = fS(a) and (1) implies (2). This completes the proof.

Theorem 8.9. For a semigroup S, the following conditions are equivalent:

1) S is intra-regular.

2) Every SU-ideal of S is soft union semiprime.

3) fS(a) = fS(a2) for all SU-ideal of S and for all a ∈ S.

Proof. First assume that (1) holds. Let fS be any SU-ideal of S and a any element of S. Since S

is intra-regular, there exist elements x and y in S such that a = xa2y. Thus,

fS(a) = fS(xa2y)⊆ fS(xa2)⊆ fS(a2) = fS(aa)⊆ fS(a)
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so, we have fS(a) = fS(a2). Hence, (1) implies (3).

Conversely, assume that (3) holds. It is known that J[a2] is an ideal of S. Thus, the soft

characteristic function S(J[a2])c is an SU-ideal of S. Since a2 ∈ J[a2], we have;

S(J[a2])c(a) = S(J[a2])c(a2) = /0

Thus, a ∈ J[a2] = {a2}∪ Sa2 ∪ a2S∪ Sa2S ⊆ Sa2S. Here, one can easily show that S is intra-

regular. Hence (3) implies (1).

It is obvious that (3) implies (2). Now, assume that (2) holds. Let fS be an SU-ideal of S.

Since fS is a soft union semiprime ideal of S,

fS(a)⊆ fS(a2) = fS(aa)⊆ fS(a)

Thus, fS(a) = fS(a2). Hence (2) implies (3). This completes the proof.

Theorem 8.10.Let S be an intra-regular semigroup. Then, for every SU-ideal fS of S,

fS(ab) = fS(ba)

for all a,b ∈ S.

Proof. Let fS be an SU-ideal of an intra-regular semigroup S. Then, by Theorem 8.8., we have;

fS(ab) = fS((ab)2) = fS(a(ba)b)⊆ fS(ba) = fS((ba)2) = fS(b(ab)a)⊆ fS(ab)

so, we have fS(ab) = fS(ba). This completes the proof.

9. Completely regular semigroups

In this section, we characterize a completely regular semigroups in terms of SU-ideals. An

element a of S is called a completely regular if there exists an element x ∈ S such that

a = axa and ax = xa

A semigroup S is called completely regular if every element of S is completely regular. A semi-

group is called left (right) regular if for each element a of S, there exists an element x ∈ S such

that a = xa2 (a = a2x).
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Proposition 9.1. [30] For a semigroup S, the following conditions are equivalent:

1) S is completely regular.

2) S is left and right regular, that is, a ∈ Sa2 and a ∈ a2S for all a ∈ S.

3) a ∈ a2Sa2 for all a ∈ S.

Theorem 9.2. For a left regular semigroup S, the following conditions are equivalent:

1) Every left ideal of S is a two-sided ideal of S.

2) Every SU-left ideal of S is an SU-ideal of S.

Proof. Assume that (1) holds. Let fS be any SU-left ideal of S and a and b be any elements of

S. Then, since the left ideal Sa is a two-sided ideal by assumption and since S is left regular, we

have

ab ∈ (Sa2)b⊆ (Sa)bS⊆ Sa

This implies that there exists an element x ∈ S such that ab = xa. Thus, since f S is an SU-left

ideal of S, we have

fS(ab) = fS(xa)⊆ fS(a).

Hence, fS is an SU-right ideal of S and so fS is an SU-ideal of S. Thus (1) implies (2).

Assume that (2) holds. Let A be any left ideal of S. Then, the soft characteristic function SAc

is an SU-left ideal of S. Then, by assumption, SAc is an SU-right ideal of S and so A is a right

ideal of S and so A is a two-sided ideal of S. Hence (2) implies (1).

Theorem 9.3. For a semigroup S, the following conditions are equivalent:

1) S is left regular.

2) For every SU-left ideal fS of S, fS(a) = fS(a2) for all a ∈ S.

Proof. First assume that (1) holds. Let fS be any SU-left ideal of S and a be any element of S.

Since S is left regular, there exists an element x in S such that a = xa2. Thus, we have

fS(a) = fS(xa2)⊆ fS(a2)⊆ fS(a)

implying that fS(a) = fS(a2). Hence (1) implies (2).
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Conversely, assume that (2) holds. Let a be any element of S. Since L[a2] is a left ideal of S,

the soft characteristic function S(L[a2])c is an SU-left ideal of S. Since a2 ∈ L[a2], we have

S(L[a2])c(a) = S(L[a2])c(a2) = /0

implying that a ∈ L[a2] = {a2}∪Sa2. This obviously means that S is left regular. So (2) implies

(1). This completes the proof.

Theorem 9.4. For a semigroup S, the following conditions are equivalent:

1) S is right regular.

2) For every SU-right ideal fS of S, fS(a) = fS(a2) for all a ∈ S.

Theorem 9.5. For a semigroup S, the following conditions are equivalent:

1) S is completely regular.

2) Every bi-ideal of S is semiprime.

3) Every SU-bi-ideal of S is soft union semiprime.

4) fS(a) = fS(a2) for every SU-bi-ideal fS of S and for all a ∈ S.

Proof. First assume that (1) holds. Let fS be any SU-bi-ideal of S. Since S is completely regular,

there exists an element x ∈ S such that a = a2xa2. Thus, we have

fS(a) = fS(a2xa2)⊆ fS(a2)∪ fS(a2) = fS(a2) = fS(aa) = fS(a(a2xa2) =

fS(a(a2xa)a)⊆ fS(a)∪ fS(a) = fS(a)

and so, fS(a) = fS(a2). Thus (1) implies (4). (4) implies (3) is clear by Theorem 8.9. Assume

that (3) holds. Let B be any bi-ideal of S and a2 ∈ B and a /∈ B . Since the soft characteristic

function SBc of B is an SU-bi-ideal of S, it is soft union semiprime by hypothesis. Thus,

SBc(a) =U ⊆SB(a2) = /0.

But this is a contradiction. Hence, a ∈ B and so B is semiprime. Thus (3) implies (2).

Finally assume that (2) holds. Let a be any element of S. Then, since the principal ideal B[a2]

generated by a2 is a bi-ideal and so by assumption semiprime and since a2 ∈ B[a2],

SB[a2](a) = SB[a2](a
2) =U
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implying that

a ∈ B[a2] = {a2}∪{a4}∪a2Sa2 ⊆ a2Sa2.

This implies that S is completely regular. Thus (2) implies (1). This completes the proof.

10.Weakly Regular Semigroups

In this section, we characterize a weakly regular semigroup in terms of SU-ideals. A semi-

group S is called weakly-regular if for every x ∈ S, x ∈ (xS)2.

Proposition 10.1. [30] A monoid is weakly regular if and only if I∩ J = IJ for all right ideal I

and all two-sided ideal J of S.

Theorem 10.2. For a monoid S, the following conditions are equivalent:

1) S is weakly regular.

2) fS∪̃gS⊇̃ fS ∗gS for every SU-right ideal fS of S and for every SU-ideal gS of S.

Proof. First assume that (1) holds. Let fS be an SU-right ideal of S, gS be an SU-left ideal of S

and x ∈ S. Then, since S is weakly regular, x ∈ (xS)2. Thus, x = xsxt for some s, t ∈ S. Hence,

( fS ∗gS)(x) =
⋂

x=xsxt
( fS(xs)∪gS(xt))

⊆ fS(x)∪gS(x)

= ( fS∪̃gS)(x)

Since fS∪̃gS⊆̃ fS∗gS always holds for every SU-right ideal fS and SU-left ideal gS of S, fS∪̃gS =

fS ∗gS. Thus, (1) implies (2).

Conversely assume that (2) holds. In order to show that S is weakly regular, we show that

R∩L = RL for every right ideal R and left ideal L of S. It is obvious that RL ⊆ R∩L always

holds. In order to see that R∩L ⊆ RL, let a be any element in R∩L and a /∈ RL. Then a ∈ R

and a ∈ L . Since the soft characteristic functions SRc and SLc is SU-right and SU-left ideal of

S, respectively, we have:

SRc(a) = SRc(a) = /0
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and since a /∈ RL, there do not exist b ∈ R and c ∈ L such that a = bc. Thus,

(SRc ∗SLc)(a) =U

but this is a contradiction. So, a ∈ RL. Thus, R∩L ⊆ RL and R∩L = RL. It follows that S is

weakly-regular. Hence (2) implies (1).

Theorem 10.3. For a monoid S, the following conditions are equivalent:

1) S is weakly regular.

2) fS∩̃gS∪̃hS⊇̃ fS ∗gS ∗hS for every SU-bi-ideal fS of S, for every SU-ideal gS of S and for every

SU-right ideal hS of S.

Proof. First assume that (1) holds. Let x ∈ S. Then, x ∈ (xS)2. Thus, x = xsxt for some s, t ∈ S.

Hence,

( fS ∗gS ∗hS)(x) = [ fS ∗ (gS ∗hS)](x)

=
⋂

x=xsxt
[ fS(x)∪ (gS ∗hS)(sxt)]

⊆ fS(x)∪{
⋂

sxt=pv
(gS(p)∪hS(v))}

⊆ fS(x)∪gS(sxs)∪hS(xt2)

⊆ fS(x)∪gS(x)∪hS(x)

= ( fS∪̃gS∪̃hS)(x)

since sxt = s(xsxt)t = (sxs)(xt2). Thus, (1) implies (2).

Now, assume that (2) holds. Let fS be an SU-right ideal of S, gS be an SU-ideal of S and let

hS = θ̃ . Then, we have

fS∪̃gS∪̃hS = fS∪̃gS∪̃θ̃ = fS∪̃gS

and

fS ∗gS ∗hS = fS ∗gS ∗ θ̃ = fS ∗ (gS ∗ θ̃)⊇̃ fS ∗gS

Then, fS∪̃gS = fS∪̃gS∪̃hS⊇̃ fS ∗ gS ∗ hS⊇̃ fS ∗ gS that is, fS∪̃gS⊇̃ fS ∗ gS for every SU-right ideal

fS of S and SU-ideal gS of S. Thus, S is weakly regular. Hence (2) implies (1). This completes

the proof.



42 ASLIHAN SEZGIN

Theorem 10.4. For a monoid S, the following conditions are equivalent:

1) S is weakly regular.

2) fS∪̃gS⊇̃ fS ∗gS for every SU-bi-ideal fS of S and for every SU-ideal gS of S.

Proof. Similar to the the proof of Theorem 10.3.

11. Quasi-regular semigroups

In this section, we study a semigroup whose SU-left (right, two-sided) ideals are all idempo-

tent. A semigroup S is called left (right) quasi-regular if every left (right) ideal of S is idempo-

tent, and is called quasi-regular if every left ideal and right ideal of S is idempotent ([29]). It is

easy to prove that S is left (right) quasi-regular if and only if a ∈ SaSa (a ∈ aSaS), this implies

that there exist elements x,y ∈ S such that a = xaya (a = axay).

Theorem 11.1. A semigroup S is left (right) quasi-regular if and only if every SU-left (right)

ideal is idempotent.

Proof. Assume that fS is an SI-left ideal. Then, there exist x,y ∈ S such that a = xaya. So, we

have;

( fS ∗ fS)(a) =
⋂

a=xaya
( fS(xa)∪ fS(ya))

⊆ fS(xa)∪ fS(ya)

⊆ fS(a)∪ fS(a)

= fS(a)

and so, fS ∗ fS⊆̃ fS. Thus, fS ∗ fS = fS and fS is idempotent.

Conversely, assume that every SU-left ideal of S is idempotent. Let a ∈ S. Then, since L[a] is

a principal left ideal of S, the soft characteristic function S(L[a])c is an SU-left ideal of S. It is

known that a ∈ L[a] and let a /∈ L[a]L[a] and so there do not exist y,z ∈ L[a] such that a = yz.

Then,

S(L[a])c(a) = /0
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and

(S(L[a])c ∗S(L[a])c)(a) =U,

but this is a contradiction. So

a ∈ L[a]L[a] = ({a}∪Sa)({a}∪Sa) = {a2}∪aSa∪Sa2∪SaSa⊆ SaSa

Hence, S is left quasi-regular. The case when S is right quasi-regular can be similarly proved.

Theorem 11.2. Let S be a semigroup. If fS = ( fS ∗ θ̃)2∪̃(θ̃ ∗ fS)
2 for every SU-ideal fS of S,

then S is quasi-regular.

Proof. Let fS be any SU-right ideal of S. Thus, we have

fS = ( fS ∗ θ̃)2∪̃(θ̃ ∗ fS)
2⊇̃( fS ∗ θ̃)2⊇̃ fS ∗ fS⊇̃ fS ∗ θ̃⊇̃ fS

and so fS = ( fS)
2. It follows that S is right quasi-regular by Theorem 11.1. One can similarly

show that S is left quasi-regular.

Theorem 11.3. For a semigroup S, the following conditions are equivalent:

1) S is both intra-regular and left quasi-regular.

2) gS∪̃hS∪̃ fS = gS ∗ hS ∗ fS for every SU-bi-ideal fS, for every SU-left ideal gS and every SU-

right ideal hS of S.

Proof. Assume that (1) holds. Let fS be any SU-bi-ideal, gS be any SU-left ideal and hS be any

SU-right ideal of S. Let a be any element of S. Since S is intra-regular, there exist elements

x,y ∈ S such that a = xa2y. Since S is left quasi-regular, there exist elements u,v ∈ S such that

a = uava. Hence

a = uava = u(xaay)va = ((ux)a)((a(yv)a)
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Thus,

(gS ∗hS ∗ fS)(a) = [gS ∗ (hS ∗ fS)](a)

=
⋂

a=((ux)a)((a(yv)a)

[gS((ux)a))∪ (hS ∗ fS)(a(yv)a))]

⊆ gS((ux)a))∪ (hS ∗ fS)(a(yv)a))

⊆ gS(a)∪ (
⋂

(a(yv))a=mn)

hS(m)∪ fS(n))

⊆ gS(a)∪ (hS(a(yv))∪ fS(a))

⊆ gS(a)∪hS(a)∪ fS(a)

= (gS∪̃hS∪̃ fS)(a)

and so gS ∗ hS ∗ fS ⊆ gS∪̃hS∪̃ fS. Thus, (1) implies (2). Assume that (2) holds. Let gS be any

SU-left ideal and fS be any SU-right ideal of S. Then, since SU-left ideal gS is a bi-ideal of S,

and since θ̃ itself is an SU-right ideal of S, we have

gS = gS∪̃θ̃ ∪̃gS = gS ∗ θ̃ ∗gS = gS ∗ (θ̃ ∗gS)⊇̃gS ∗gS⊇̃θ̃ ∗gS⊇̃gS

Hence gS = gS ∗gS. Thus, by Theorem 11.1, S is left quasi-regular.

Now, since SU-right ideal fS is an SU-bi-ideal of S, and since θ̃ itself is an SU-right ideal of

S, we have:

gS∪̃ fS = gS∪̃θ̃ ∪̃ fS = gS ∗ θ̃ ∗ fS = gS ∗ (θ̃ ∗ fS)⊇̃gS ∗ fS

Thus, by Theorem 8.2., S is intra-regular. Hence (2) implies (1). This completes the proof.

12. Conclusion

Throughout this paper, we have studied the concepts of soft union product of soft sets, soft

characteristic function, soft union semigroup, soft union left (right, two-sided) ideals, soft union

bi-ideals and soft union semiprime ideals. Moreover, we have characterized regular, intra-

regular, completely regular, weakly regular and quasi-regular semigroups by the properties of

these ideals. Based on these results, some further work can be done on the properties of soft
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union semigroups, which may be useful to characterize the classical semigroups in the following

studies.
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