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Abstract: QS-algebras was derived from KUS-algebras. In this paper, we discussed some of the relationships and
characteristics. We introduce a new idea of fuzzy QS-ideal of fuzzy point on QS-algebras and give some properties
and theorems of it. We introduce the concept of the normal fuzzy QS-ideal of fuzzy point on QS-algebra and study
some of the properties related thereto.

Keywords: QS-ideal; fuzzy QS-ideal; fuzzy QS-ideal of fuzzy point.

2010 AMS Subiject Classification: 06F35, 03G25, 08A72.

1. Introduction

In 1999, S.S. Ahn and Kim H.S. introduced the class of QS-algebras and give some properties of
QS-algebras [6] and described connections between such sub-algebra and congruences, see [4].
In 2006, A.B. Saeid considered the fuzzification of QS-sub-algebra to QS-algebras [1].

Now, we introduced a definition of the QS-ideal fuzzy QS-ideal and fuzzy QS-ideal of fuzzy
point. We study some of the related properties, homomorphism fuzzy QS-ideal on fuzzy point,
normal fuzzy QS-ideal on fuzzy point, homomorphism normal fuzzy QS-ideal of fuzzy point on
QS-algebras.

2. Preliminaries

In this subsection, we study the definition of QS-algebra and QS-sub-algebra of QS-algebras and
we give some properties of it.

Definition 2.1([4], [6]) :
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Let (X; *, 0) be a set with a binary operation (*) and a constant (0). Then (X;*, 0) is called a

QS-algebra if it satisfies the following axioms: for all x, y, ze X,

1. X*X=0,
2. X*0 =X,
3. (xxy)xz=(x*2)*y,
4. (X*2Z)*(x*xy)=y*2Z.

For brevity we also call X a QS-algebra, we can define a binary relation (<) by putting x<y if
and only if, y*x=0.

Proposition 2.2 ([4].[6]):

Let (X; *,0) be a QS-algebra, then the following hold: for any x, y, z € X,

(1) ifxxy=z,thenx*xz=y.

(2) x*xy=0impliesx=y.

(3) O*(x*y)=y=*x.

(4) xx(0*y)=y=*(0*Xx).

Example 2.3 ([4]):

Let X ={0, a, b, c} in which (*) be defined by the following table:

« | 0]a|b|c
0[O0 fc|b]a
ala|0]|c|b
b|{bja|0]c
c|lc|bja|0

Then (X; *,0) is a QS-algebra.
Definition 2.4 ([1]):
Let (X; *, 0) be a QS-algebra X and S be a nonempty subset of X. Then S is called a

QS-sub-algebra of X if, x*yeS, forany x,y € S.
Definition 2.5:

If C is the family of all fuzzy subsets on X, x,€ { 1is called a fuzzy point if and only if there
exists o € (0,1] suchthatforally e X,

a ifx=y
0 otherwise

X (y)={
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Definition 2.6:

Let (X;*,0) be a QS-algebra , the set of all fuzzy points on X denote by
FP(X) = {x4| X €X, a € (0, 1]}.
Define a binary operation (©) on FP(X) by:
Xq © ¥ = (X* Y)minfa,py » fOrall x4, yge FP(X), then
(QS1): xg O Xq = 0g,
(QS2): xg © 0y =Xq ,
(QS3): (%« O ¥) Oz = (%0 O 2y) O yp,
(QS4): (xa O 2y) O (% © yp) = (V5 O 2zy).
In X we can define a binary relation (<) by : x, < ygifandonlyif yg O X4 = Ominga,p; -
Remark 2.7:
If (X; *,0) is a QS-algebra and FPq(X) denote the set of all fuzzy points of X, then
(FP4(X),®, 0q) is a QS-algebra, which is called a fuzzy point QS-algebra, where the value g, (0<
q=<1).
Definition 2.8 :

For a fuzzy subset p of a QS-algebra X, we define the set FP(p) of all fuzzy points of X covered
by u to be the set FP(p) = {x,€ FP(X) | u(x) > a, 0 <a < 1}, and
FPo(w) = {xq€ FPq(X) | u(x) = q}, forall g € (0, 1], xe X.
Now, we give some properties and theorems of QS-algebras.
Theorem 2.9:
If (X;=,0) isa QS-algebra, then the following hold: for all x,, ys, z, € FP(X),
a) Xq © 0 = Xmin(o,8}-
b) (x4 Oyg) O %y =0, Oyp,
c) (Xa O yp) © 0y =yp O Xq,
d) X, © 0, =0, implies that x,=0,,
e) Xy = (X © 0y) © 0y,
f) Omingop; © (Xa O yp) = (0, O x4) O (05 O yp),
9) z, O%x,=2,Oyp implies that 0, ©x,=0, Oyp.
Proof:
a) It is clear by (QS2).
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b) (x4 O yp) O xe= (X, O %) Oyp=0, Oyp.
c) (%e O ¥p) O 04= (x4 O ¥p) O (x4 O Xo) =yp O X4, by (QS2).
(d), (e) and (f) are clears by (QS>).
0) 0, O%,=(2,02)Ox%=(z,0%) Oz=(0y) Oz =(z,02) Oy
=0,0Oyg. 0

Proposition 2.9:

Let (X; *,0) be a QS-algebra . Then the following holds: for any x,, y,z,eFP(X),
1 X Oypg<z, imply z, ©yp<x,,
2 X,<yp impliesthat z, © yg<z, O x, ,
3. v O [(yp © 2,)O 2] = Omingp3»
4 (X, © z,) O (yp Oz = (v O xp).
Proof:
1. It follows from (QS«).

By (QSx), we obtain [(z, © x,) © (z, © yp)] = (yp O x,), but x, <yg implies
Yg O X = Ominga,py » then we get (z, © x,) © (zy O ¥p) = Ominga,p}-
i.e., zy QO yps 2y O X -
3. It is clear by (QS4) and (QSz) .
4. By (QSs) , (QS#) and (QSy) , we have [(ys O z) O (x, O z)] O (vp O xa)
=[6p Oz) OFp Ox) O (%, O 2y) = (%, O 7)) O (X4 O 2y) = Oingay-
Thus (x, © z,) O (yp O z) < (yp O %,). O

N

3. Main results

3.1. Fuzzy point QS-sub-algebras of QS-algebras

In this section, we introduce the concept of fuzzy point QS-sub-algebra of FP(u) and give some
examples and properties of its.

Definition 3.1.1:

A subset S of FPy(X). FP(X) is called a fuzzy point QS-sub-algebra if x, © yge S whenever

Xq » YBE S.
Example 3.1.2:
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For the QS-algebra X = {0, a, b, c} mentioned in example (1.3), it is routine to check that
(FPo3(X),®, 00.) is a fuzzy point of QS-algebra, and that S = {00.3, bo.3} is a fuzzy point
QS-sub-algebra of FPo3(X).

Proposition 3.1.3:

FPq(X) is a fuzzy point QS-sub-algebra of FP(X), for every q < (0, 1].

Proof. Straightforward. o
Theorem 3.1.4:
Let pn be a fuzzy subset of a QS-algebra X. Then the following are equivalent:

(1) p is a fuzzy QS-sub-algebra of X.

(i) FPq(p) is a fuzzy point QS-sub-algebra of FPq(X), for every q € (0, 1].
(iii) U(y; t) is a QS-sub-algebra of X when it is nonempty, for every t € (0, 1].
(iv) FP(p) is a fuzzy point QS-sub-algebra of FP(X).

Proof.

(i) = (ii) Assume that p is a fuzzy Q-sub-algebra of X and let X, , Y, €FPq(n) where

g € (0, 1]. Then p(x) > q and w(y) > q. It follows that p(x = y) > min{u(x), w(y)} >q

so that (xq © yq) = (x*y)q€FPq(n). Hence FPq(p) is a fuzzy point Q-sub-algebra of FPq(X).
(i) =(iii) Suppose that  FPq(n) is a fuzzy point Q-sub-algebra of FPq(X), for every
g €(0,1]. Letx,y e U(u;t), where t € (0, 1]. Then pu(x) >t and u(y) >t, and so xt, yre FPt (p).
It follows that (x*y); = (x¢ © y) € FPy(p) so that p(x = y) >t,

i.e. (X = y) € U(u; t). Therefore U(y; t) is a Q-sub-algebra of X.

(iif) =>(@iv)  Suppose U(u; t) (#9) is a Q-sub-algebra of X, for every t (0, 1]. Let X, ,
Yq € FP(n) and let t = min{p, q}. Then p(x)=p =t and wy) =q=t and thus

X,y € U(w; t). It follows that (X = y) € U(u; t) because U(u; t) is a Q-sub-algebra of X. Thus
w(x=y) > t, which implies that (x, O yq) = (X * Y)mingp.at = (X © yo)= (X = Y)te FP(u). Hence
FP(u) is a fuzzy point Q-sub-algebra of FP(X).

(iv)=>(1) Assume that FP(p) is a fuzzy point Q-sub-algebra of FP(X). Forany x,y € X, we
have X, yt € FP(1) which imply that (x = y)t= (Xt © yt) € FP(p), that is,

ux = y) > min{p(x), i(y)}. Consequently, p is a fuzzy Q-sub-algebra of X. o
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Proposition 3.1.5:
Let p be a fuzzy subset of a QS-algebra X. If FP(n) is a fuzzy point QS-sub-algebra of FP(X),
then Ope FP() for all p € Im(p).

Proof. Letp e Im(p). Then there exists x € X such that u(x) = p. Hence xpe FP(u), and so
Op = (X * X)p = %O Xpe FP(). O

Corollary 3.1.6:

If w is a fuzzy QS-sub-algebra of a QS-algebra X, then Ope FP(p) for all p € Im(p).

Proposition 3.1.7:
If FPq(p) is a fuzzy point QS-sub-algebra of FP4(X), then Oge FPq(w).

Proof.

For every Xqe FPq(p), we have 0g = Xq O Xq = (X * X)qe FPq(p). o

Corollary 3.1.8:

If u is a fuzzy QS-sub-algebra of a QS-algebra X, then 0qe FPq(w), for all g € (0, 1].

Proposition 3.1.9:

Let p be a fuzzy subset in a QS-algebra X and let p, q € (0, 1] with p > q. If xpe FP(p), then xqe
FP(p).

Proof. Straightforward. o

Definition 3.1.10 ([2]):

Let X be a QS-algebra. A fuzzy subset p of X is said to be a fuzzy QS-sub-algebra of X if it

satisfies: u(x*y)>min{u(x), u(y)}. forall x,y e X.

Example 3.1.11:
Let X ={0, a, b, c} be a set with a binary operation(*) defined by the following table:

* [0 |a|b |cC
0|00 (0 |O
ala |00 |a
b |bla |0 |b
c|iclic|c |0

Then (X; *, 0) is a QS-algebra .Define a fuzzy subset pu : X— [0,1] by:
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Routine calculations give that p is a fuzzy QS-sub-algebras of QS-algebra X.
Definition 3.1.12 ([5]):

Let  be a fuzzy subset of a set X. For te[0,1], the set 44 =U (11,t) ={x € X|u(x) > t}is called a

level set (upper level cut) of .
Proposition 3.1.13:
Let u be a fuzzy subset of QS-algebra X. If FP(p) is a fuzzy point QS-sub-algebra of FP(X) if

and only if, for every t €[0,1], 4, is either empty or a QS-sub-algebra of QS-algebra X.

Proof:

Assume that FP (p) is a fuzzy point QS-sub-algebra of FP (X). = 0, eFP(p) for allA elm(p)
and xeX, therefore £(0)> p(x)>t , for x ep,and so 0 ep, .

Letx,y € g, where t e (0, 1]. Then pu(x) >t and pu(y) > t, and so Xt, yte FP(p). It follows that
(X * Y)t =Xt © yte FP(n) so that p(x * y) >t,i.e. (x * y) € 1. Therefore 4, isa
QS-sub-algebra of X.

Conversely, assume that g, #J is a QS-sub-algebra of X for every t € (0, 1].

Letx, , yq€ FP(w) and lett = min{p, q}. Then p (x) =p >tand p(y) >q=>t, and thus X, y € 1.
It follows that (x * y) € u because g, is a QS-sub-algebra of X. Thus p(x *y) > t, which implies
that Xp © Yq = (X*Y) mingp, 3 = (X * y)t € FP(n). Hence FP(p) is a fuzzy point QS-sub-algebra of
3.2. Fuzzy point QS-ideal

In this section, we introduce the concept of fuzzy point QS-ideal of QS-algebra X and give some
examples and properties of its as [4].

Definition 3.2.1:
Let (X;*, 0) be a QS-algebra and I be a nonempty subset of X. I is called a QS-ideal of X if it

satisfies:
i. Oel,
ii. (zxy)eland (x*y)elimply (z*x)el, forall x,y,z eX.
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Example 3.2.2:

Let X ={0,1,2,3} be a set with a binary operation (*) defined by the following table:

*

w| N =| ©
w| N R o o
w| r| o o] ~
w| o] o o N
o| N o o w

Then (X;*,0) is a QS algebra. It is easy to show that 1:={0,1,2,3},1.={0},1={0,1,2} are QS-
ideals of X.

Definition 3.2.3:

A subset FP(n) of FP(X) is called a fuzzy point QS-ideal of FP(X) if

Qly) 0,€FP(p), for all A eIm(u) and

Ql2) (z*y)g, (x *y)g<€ FP(n) implies that (z * x) mings,«; €FP(), forall x, y,z € Xand p,
ae(0, 1] .

Definition 3.2.4:

Let X be a QS-algebra. A fuzzy subset p of X is said to be a fuzzy QS-ideal of X if it satisfies:

forall x,y, ze X,

L u0)= u(x).

2. u(z=x) =min{u(z=y),u(x*y)}

Proposition 3.2.5:

If wis a fuzzy QS-ideal of a QS-algebra X, then FP(p) is a fuzzy point QS-ideal of FP(X).

Proof. Since p(0) > u(x), for all x € X, we have pu(0) > A, for all A € Im(n). Hence 0, FP(p).

Letx, y,ze Xand B, ae(0, 1] be such that (z*y)g, € FP(wand (x*y),€ FP(n). Then p(z *
y) > B and pw(X*y) > a . Since p is a fuzzy QS-ideal of X, it follows that

W(z#x) = min{p(z* y), p(x*y)} = min{B, o } 50 that (2 * X)mings,e3€ FP(R). O

Proposition 3.2.6:

FPq(X) is a fuzzy point QS-ideal of FP(X), for every q € (0, 1].

Proof. Straightforward. o
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Theorem 3.2.7:

Let pu be a fuzzy subset of a QS-algebra X. Then the following are equivalent:

(1) pis a fuzzy QS-ideal of X.

(i) FPg(p) is a fuzzy point QS-ideal of FP4(X), for every q € (0, 1].

(iii) U(w; t) is a QS-ideal of X when it is nonempty, for everyt € (0, 1].

(iv) FP(p) is a fuzzy point QS-ideal of FP(X).

Proof.

(i) = (ii) Assume that p is a fuzzy QS-ideal of X and letx, y,ze Xand qe(0, 1] .

Then p (z#x) > q and p (Y*x) > q. It follows that pu(z *x) > min{w(z*y), w(X*Yy)} > q so that
(z * X)qeFPq(). Hence FPq(p) is a fuzzy point QS-ideal of FP4(X).

(i) =(iii) Suppose that FP4(p) is a fuzzy point QS-ideal of FP4(X) for every q € (0, 1].

Let x,y, z €eU(y; t), where t € (0, 1]. Then w(z * y)>tand u(x * y)>t,and so (z * Yy ),

(X * y )te FPy(p). It follows that (z * X)te FPy(p) so that p(z * x) >1t, i.e.

(z * X) € U(w; t). Therefore U(y; t) is a QS-ideal of X.

(iii) =(iv) Suppose U(; t) (D) is a QS-ideal of X for every t € (0, 1]. Letx, y,ze X and B,
ae(0, 1] and let t = min{P, a}. Then Wz * y) > B >t and w(X * y) > o >t, and thus (z * y),
(x *y) e U(; t). It follows that (z * X) € U(w; t) because U(y; t) is a QS-ideal of X. Thus (z
*x) > t, which implies that (z* X)minip, oy = (Z * X)te FP(n). Hence FP(n) is a fuzzy point QS-
ideal of FP(X).

(iv)=(i) Assume that FP(p) is a fuzzy point QS-ideal of FP(X). For any X, y, z € X, we have x,
y,ze X and B, ae(0, 1] which imply that (z * y)se FP(n) and (X © y)a€ FP(n), It follows that
(Z * X)mingp .y € FP () so that u(z * x) > min{p, a}, that is,

Wz * x) >min{p(z * y), W(X * y)}. Consequently, p is a fuzzy QS-ideal of X. O
Proposition 3.2.8:

Every fuzzy QS-ideal of QS-algebra X is a fuzzy QS-sub-algebra of X,
Proof. Straightforward. o

Proposition 3.2.9 :

Let { FP(wi) | ieA} be a family of fuzzy point QS-ideal of QS-algebra X , then N;¢,FP(wi) isa
fuzzy point QS-ideal of X.

Proof:
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Since { FP(y;) |ieA} is a family of fuzzy point QS-ideal of QS-algebra X, we have

(1) 0,€ FP(ui), forall i eA and A € Im(wi), then 0; € N;¢,FP(Li)

(2) Forany x,y,zeX, suppose (z * y)g, € Nie,FP(ui) and (x * y)q € N;e,FP(ui) , then
(z*y)peFP(u;) and (x * y)qe FP(u;) , forall i eA. But FP(y;) is a fuzzy point QS-ideal of
QS-algebra X, forall i €A, then (z * X)mingp,a} €FP(1;), foralli eA. Therefore,

(Z * X)mingg,a} € NieaFP(Wi). Hence Ny, FP(pi) is a fuzzy point QS-ideal of QS-algebra X. o
Proposition 3.2.10:

Let { FP(u;)| ie A} be a family of fuzzy point QS-ideal of QS-algebra X, then U;¢,FP(wi) is a

fuzzy point QS-ideal of QS-algebra X, where FP(u;)SFP(u;41), forall i eA .

Proof:

Since { FP(u;)| ie A} is a family of fuzzy point QS-ideal of QS-algebra X, we have

(1) 0, €FP(u;) for somei €A and A eIm(pi), then0, € U;¢,FP(i).

(2) Forany X,y ,z eX, suppose(z * y)g € U;e,FP(pi), and (x * y) g € Uie, FP(u;) = 3i,jeA
suchthat(z = y) g €FP(u;) and(x = y), €FP(u;) . By assumption FP(u;)SFP(uy), and FP(u;)E
FP(uy) , keA, hence(z * y) g eFP(ux) , (x * ¥)o €FP () , but FP(uy) is a fuzzy point QS-
ideal of QS-algebra X, then(z * x) mingg,a} €FP (k). Therefore

(Z * X)mingg,a} € YieaFP(Wi). HeNce Uy, FP(pi) is a fuzzy point QS-ideal of QS-algebra X.0

Note that: The converse of proposition (3.2.10) is not true as seen it the following example.
Example 3.2.11:
Let X ={0,1,2,3} be a set with a binary operation () defined by the following table:

Wl N k| O O
N W O | -
| O W N DN
Ol | N W W

w| N| k| O
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Then (X; *, 0) is a fuzzy point QS-algebra. 1:={0,1} and 1,={0,2} are fuzzy QS-ideal of
QS-algebra X. But 11U 1:={0,1,2} since (1 * 0),=(1), €hU Iz and (2 x 0)g= (2)g<lU I for
all CZ,,B S (0,1] , but (1 * Z)min{ﬁ,a}: (B)min{ﬁ,a}e LU |2 .

Theorem 3.2.12:

Let pu be a fuzzy subset of QS-algebra X. If FP(n) is a fuzzy point QS-ideal of FP(X) if and

only if, for every t €[0,1] , z, is either empty or a QS-ideal of QS-algebra X

Proof:

Assume that FP (p) is a fuzzy point QS-ideal of FP (X). =0, eFP(n), for all A eIm(p) and
xeX, therefore u(0)> u(x)>t , for x ep,and so 0 e, .

LetX,y,z € X besuchthat (z* y)gep, and (x * y) € p, =u(z * y) = t, and

u(x = y) = t which implies that (z * X) min(p, oy € FP(1) and (Z * X)mingp, o} = (Z * X}t = p(z *
X) =t = (Z*X)minip, o} € 1, - HeNce y, is a fuzzy QS-ideal of X.

Conversely, suppose ,#J isa QS-ideal of X foreveryt € (0, 1]. Letx, y,ze X and B, ae(0,
1] and let t = min{P, a}, then w(z * y) > >tand WX * y) > o >t, and thus

(z*y), X *y) ep .Itfollows that (z * X) € 1, because , is a QS-ideal of X. Thus

Wz *x) > t, which implies that (z * X)t = (Z *X) min(p,«; € FP(pt). Hence FP(p) is a fuzzy point QS-

ideal of FP(X). o
Corollary 3.2.13:

Let p be a fuzzy subset of QS-algebra X. If p is a fuzzy QS-ideal, then for everyt eIlm(u), w4, is
a QS-ideal of X when x4, # ¢ .

Proposition 3.2.14:

Every fuzzy point QS-ideal of QS-algebra X is a fuzzy point QS-sub-algebra of X.

Proof:

Since pis fuzzy QS-ideal of a QS-algebra X, then by theorem (3.2.12), for every t €[0,1], g, is
either empty or a QS-ideal of X. By proposition (3.2.8), for every t €[0,1], 4, is either empty

or a QS-sub-algebra of X. Henceptis a fuzzy QS-sub-algebra of QS-algebra X, by theorem
(3.1.13) .o
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Note that: The converse of proposition (3.2.14) is not true as seen it the following example.
Example 3.2.15:
Let X ={0,1,2,3}be a set with a binary operation (x)define a by the following table:

*

w| N | O] O

1
0
0
1
1

| O O O N
o k| O O W

0
1
2
3

Then (X;*,0) is a QS-algebra. Define a fuzzy subset u: X — [0,1] by:

x| 0 1 2 3
L) 08 |07 | 0.6 0.5

Then p is fuzzy point QS-sub-algebra of X, but not fuzzy point QS-ideal of X. since
1={0,3} € FP(). Iet (3 * 0)mingo.5,08; = (30,5) €FP(W) and

((0 * 2)mingo.s,06) = (00.6)€ FP(w) but (3 * 2)mingo5,06 = (Lo.s) 2FP(1)

Theorem 3.2.16:

Let A be a QS-ideal of QS-algebra X. Then for any fixed number (t) in the open interval (0,1),
there exists a fuzzy QS-ideal p of X such that

t if xeA
0 otherwise

Define w: X —)[0,1] by /l(X) :{

Proof:

Where (t) is a fixed number in (0, 1). Clearly, (0)> u(x) , forall x eX. Let x,y,zeX. If
(x*xy)q & A then (x *y)q = 0 and SO u(z * X)minggay = 0 = (2 * X mingg,a3 € FP(W) .
If (z* X)mingj € A thenclearly t = u (z * x) = min{B, a} = [(z * ¥)p, (x * ¥) o] € FP(W)
If (Z * X)minpey €4, (x *y)o € A, then(z *y)g & A, since A is a fuzzy point QS-ideal.
Thus (z * X)mingpey = 0 = min{B,a} =0 = [(z*y)p, (x *¥)o| =0 .
Hence pis a fuzzy QS-ideal of X. Itis clear that x4, = A .o
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3.3. Homomorphism fuzzy point QS-ideal of QS-algebras

In this section, we introduce the definition of homomorphism fuzzy point QS-ideals of QS-algebra and we
study some properties of it.

Definition 3.3.1(]21,[3]):

Let (X; *, 0) and (Y; *',0") be QS-algebras. A mapping f :(X;*,0) — (Y;*',0') is said to be a

homomorphism if f(xxy)=f(x)* f(y) forall x,ye X.

Definition 3.3.2(]21,[3]) :

For any homomorphism f : (X;*,0) — (Y;*',0'), the set {x € X| f(x) =0%}is called the kernel of f,
denoted by Ker(f).

Proposition 3.3.3:
Let (X; *,0) and (Y; *',0") be QS-algebras and f : (X;*,0) —» (Y;*',0") be ahomomorphism,

then Ker(f)is fuzzy point QS-ideal of QS-algebra X .

Proof:
(1) Since £(0,), then 0, e Ker(f) and Aelm(p)

(2) Foranyx,y,ze X, let(zxy)g (x*y)cKer(f) and f(z*xy)g=f(x*y)e=10
fE*y)p* f(x*y)e=0+0 =0

fl[z*y)p*x*Y)a] = F(Z* Ominggagy = 0

That is (z * X)min(g,ay € Ker(f) thenKer(f)is afuzzy point QS-ideal of X. o

Proposition 3.3.4:
Let (X; *,0)and (Y; *',0") be QS-algebras, f :(X;*,0)— (Y;*',0") be a homomorphism , onto

and A be a fuzzy point QS-ideal of X, then f (A) is fuzzy point QS-ideal of QS-algebra Y.
Proof:

(1) Since A is a fuzzy point QS-ideal of X = 0,€ A =f(0;)ef(A) forall Aelm(p) .
(2) Letx,y,zeXand «a,Be(01], f(zxy)pef(A),f(x*y)acf(4)

= (z*y)peA, (x*y)q €A, Since A is a fuzzy point QS-ideal of X = (z * X) mingg o} €A=
f(Z* X)minggay€f (A). Hence f(A)is fuzzy point QS-ideal of QS-algebra Y. o

Proposition 3.3.5:
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Let (X; *,0)and (Y; *',0") be QS-algebras, f :(X;*,0)— (Y;*',0") be a homomorphism and B
be a fuzzy point QS-ideal of Y, then f ™ (B)is fuzzy point QS-ideal of QS-algebra X.

Proof:

(1) SinceBisa fuzzy point QS-ideal of Y =(0' ))eB= f~*(0',)ef*(B) since 0;=
f7(0,) then 0,ef~*(B) for all Aelm(p).

(2) Letx,y,zeXand a,Be(0,1], (z*y)ge f'(B) . (x*y)q.ecf'(B) =f(z*

y)peB, f(x *y),€B, Since B is a fuzzy point QS-ideal of Y =(f(z*y)g* f(x *y)a) =
f(@*)p*&*y)e) =F((Z*Ominga)€B =@ * XDmingay T (B) -

Hence f *(B)is fuzzy point QS-ideal of QS-algebra X. o

Definition 3.3.6([1]):
fuzzy subset p of X has sup property if for any subset T of X, there exist to €T such that

u(to) =sup z(t).

teT

Definition 3.3.7 ([1]):
Let f:(X;*,0)— (Y;*,0") be amapping nonempty sets X and Y respectively . If pis a fuzzy

subset of X, then

f (/L[)(y) :{SupXEf_l(y)M(X) f—l(y)z {XGX/f(x)zy}¢¢

0 other wise

is said to be the image of p under f.
Definition 3.3.8 ([1]):
If B is a fuzzy subset of Y, then the fuzzy subset u=pof in X (i.ethe fuzzy subset defined

by: u(x)=p (f (x)), for all x € X) is called the pre-image of  under f.
Theorem 3.3.9:

A homomorphic pre-image of a fuzzy point QS-ideal is also a fuzzy point QS-ideal .

Proof:
Let f:(X;*,0)—(Y;*',0") beahomomorphism of QS-algebras, B be a fuzzy point QS-ideal of

Y and p the pre-image of P underf = £(f(x))=u(x), forall x € X.Since f(x)eY and B
is a fuzzy point QS-ideal of Y, it follows that 8(0' )= B(f(x)) = u(x), forevery  x eX,

where (0',) is the zero element of Y. We get
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(1) Since B(0',) = B(f(0,)) = u(0;) and B(0',) = u(x) = u(0;) = u(x) , for xeX and
delm(p).. '
(2) Letx,y,ze Xand (B,a)e(0,1], then we get
Uz * Ominga; = B (@ * Dmingpay) = B (f (@ minggay) * f ((X)min{ﬁ,a}))
= {BU(@min.a) * f(Dming.a)) BE @ming.a) * f D mings.a)}
= {BU @z * Y mingga) BUE X * Ymings.a))}
= (Z*Y)minBa} » E* Y)min(gaj -
Hence p is a fuzzy point QS-ideal of X. o

Theorem 3.3.10:
Let f:(X;*,0)— (Y;*,0") be a homomorphism of QS-algebras. For every fuzzy point

QS-ideal pof X with sup property, f () is a fuzzy point QS-ideal of Y.

Proof:

By definition A(y") = f ()(y") =sup{u(x): x=f *(y")}, forall y'e Y (sup ¢ =0).
We have to prove that B is a fuzzy point QS-ideal of Y .

15

Let f:(X;*,0)—(Y;*',0") be an homomorphism of QS-algebras, | is a fuzzy point QS-ideal of

X with sup property and [ the image of p under f.
(1) Since p is a fuzzy point QS-ideal of X , we have 1©(0;)> u(x) forall x € X, and
A € Im(y) . Note that 0 e f*(0') , where (0) and (0") are the zero elements of X and Y

respectively. Thus #(0')> sup u(t) = x(0) > u(x'), forall x' € Y, which implies that

tef (07

7(0)> sup u(t)=y(x'),forany x'eY

tef 2(x)
(2) Foranyx,y,z'eY,let x,e f*(x),y,ef(y)and z, e f*(z') we have
1(zo * X0 Iming,ay = B(f (Zo * %o Iming.ay) = BUZ * X Imings,ap)
= SUP[(zo x0 Imin(p,a}€f " @ Imin(p.ay] W2 * 2 ) min(p.a)
And u(x*y)g = B(f(x*¥)a) = BX*Y)g = SUD[(x(x+y)ay)a EF "1 (032)q] U(X * y)q, then
B(z'*x) = Sup[rep-1(s'wni)] H(t)
= u(zo * xo)

> min{u(zy * yo), u(xo * o)}
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= min {SUP[t ef 12| u(t), SUP[t ef 1 (249)] ll(t)}
= min{B(Z * y), B(x * y)}. Hence B is a fuzzy QS-ideal of Y. O
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