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1. Introduction

In [5], Howie and Isbell have extended Isbell’s Zigzag Theorem, by using free products of commutative

semigroups, for the category of all commutative semigroups. Stenstrom [8], by using tensor product of

monoids, provided a new proof of the celebrated Isbell’s Zigzag Theorem in the category of all semigroups.

In this paper, we provide, based on Stenstrom’s approach, a new algebraic proof of the Howie and Isbell’s

result [6, Theorem 1.1] for the category of all commutative semigroups.

2. Preliminaries

Let U and S be any semigroups with U a subsemigroup of S in a category C of semigroups. We say

that U dominates an element d of S in C if for every semigroup T ∈ C and for all homomorphisms

α, β : S → T , uα = uβ for all u ∈ U implies dα = dβ. The set of all elements of S dominated by U is

called the dominion of U in S, and we denote it by DomC(U, S). It can be easily seen that DomC(U, S)

is a subsemigroup of S containing U . A morphism α : S → T in C is said to be an epimorphism (epi for

short) if for all morphims β, γ, αβ = αγ in C implies β = γ (where β, γ are semigroup morphisms). It
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can be easily checked that α : S → T is epi in C if and only if i : Sα → T is epi in C and the inclusion

map i : U → S is epi in C if and only if DomC(U, S) = S. Note that when C is the category of all

semigroups, the above definitions which have been first given by Hall and Jones [2] are precisely those of

Howie and Isbell [5] and Isbell [6].

Let S be a semigroup with identity 1 and A be any non-empty set. Then A is said to be a right S-

system if there exists a mapping (x, s) 7→ xs from A×S into A such that (xs)t = x(st) for allx ∈ A, s, t ∈ S

and x1 = x for allx ∈ A. Dually, we may define a left S-system B.

Let A be a right S-system and B be a left S-system and let τ be the equivalence relation on A×B

generated by the relation T = {((as, b), (a, sb)) : a ∈ A, b ∈ B, s ∈ S}. Then A×B/τ is called the tensor

product of A and B over S and is denoted by A⊗S B. We also denote an element (a, b)τ of A⊗S B by

a⊗ b.

For any unexplained notations and conventions, one may refer to Clifford and Preston [1] and Howie

[4]. We shall also use the notation Dom(U, S), when it is clear from the context, for the dominion of U

in S both in the category of all semigroups as well as in the category of all commutative semigroups.

A most useful characterization of semigroup dominions is provided by Isbell’s Zigzag Theorem.

Result 2.1([4, Theorem 8.3.4]). Let U be a submonoid of a monoid S and let d ∈ S. Then d ∈ Dom(U, S)

if and only if d ∈ U or there exists a series of factorizations of d as follows:

d = a1s1 = a1t1b1 = a2s2b1 = a2t2b2 = . . . = an−1tn−1bn−1 = snbn−1,

where n ≥ 1, si, ti ∈ U , ai, bi ∈ S and

d = a1s1, s1 = t1b1

aiti = ai+1si+1, si+1bi = ti+1bi+1 (i = 2, . . . , n− 2)

an−1tn−1 = sn, snbn−1 = d.

Such a series of factorization is called a zigzag in S over U with value d, length n and spine s1, . . . , sn, t1, . . . ,

tn−1. We refer to the equations in Result 1.1 as the zigzag equations.

Result 2.2([4, Theorem 8.1.8]). Two elements a ⊗ b and c ⊗ d in A ⊗S B are equal if and only if

(a, b) = (c, d) or there exist a1, a2, . . . , an−1 in A, b1, b2, . . . , bn−1 in B, s1, s2, . . . , sn, t1, t2, . . . , tn−1 in S

such that

a = a1s1, s1b = t1b1

a1t1 = a2s2, s2b1 = t2b2

aiti = ai+1si+1, si+1bi = ti+1bi+1 (i = 2, . . . , n− 2)

an−1tn−1 = csn, snbn−1 = d.
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3. Main Result

Theorem 3.1. Let U be a submonoid of a commutative monoid S, Then d is in Dom(U, S) if and only

if either d ∈ U or there exists a zigzag in S over U with value d.

Proof. To prove the theorem, we, by Result 1.2, essentially show that if d ∈ S, then d ∈ Dom(U, S) if

and only if d⊗ 1= 1⊗ d in A = S ⊗U S, where 1 is the identity of S. So let us suppose first that d ∈ S

and d⊗ 1= 1⊗ d in A = S ⊗U S. Then, by Result 1.2, we have

d = a1s1, s1 = t1b1

a1t1 = a2s2, s2b1 = t2b2

aiti = ai+1si+1, si+1bi = ti+1bi+1 (i = 2, . . . , n− 2)

an−1tn−1 = sn, snbn−1 = d;

where a1, a2, . . . , an−1, b1, b2, . . . , bn−1 ∈ S and s1, s2, . . . , sn, t1, t2, . . . , tn−1 ∈ U.

Let T be a semigroup and let α, β : S → T be homomorphisms agreeing on U ; i.e.

α | U = β | U

Now, by using zigzag equations, we have

α(d) = α(a1s1) = α(a1)α(s1) = α(a1)β(t1b1) = α(a1)β(t1)β(b1) = α(a1t1)β(b1)

= · · · = α(an−1tn−1)β(bn−1) = α(sn)β(bn−1) = β(snbn−1) = β(d)

⇒ d ∈ Dom(U, S).

To prove the converse, we first show that for a commutative monoid, the equivalence relation τ is a

congruence; i.e.

(a, b)τ(c, d)τ = (ac, bd)τ.

For this, we have to show that τ is compatible; i.e.

if (a, b)τ = (c, d)τ and (a′, b′)τ = (c′, d′)τ , then ((a, b)(a′, b′))τ = ((c, d)(c′, d′))τ .

Since a⊗ b = c⊗ d, by Result 1.2, we have

a = a1s1, s1b = t1b1

a1t1 = a2s2, s2b1 = t2b2

aiti = ai+1si+1, si+1bi = ti+1bi+1 (i = 2, . . . , n− 2)

an−1tn−1 = csn, snbn−1 = d; (A)

for some a1, a2, . . . , an−1, b1, b2, . . . , bn−1 ∈ S and s1, s2, . . . , sn, t1, t2, . . . , tn−1 ∈ U .
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Similarly, as a′ ⊗ b′ = c′ ⊗ d′, we have

a′ = a′1s
′
1, s′1b

′ = t′1b
′
1

a′1t
′
1 = a′2s

′
2, s′2b

′
1 = t′2b

′
2

a′it
′
i = a′i+1s

′
i+1, s′i+1b

′
i = t′i+1b

′
i+1 (i = 2, . . . , n− 2)

a′n−1t
′
n−1 = c′s′n, s′nb

′
n−1 = d′; (B)

for some a′1, a
′
2, . . . , a

′
n−1, b

′
1, b
′
2, . . . , b

′
n−1 ∈ S and s′1, s

′
2, . . . , s

′
n, t
′
1, t
′
2, . . . , t

′
n−1 ∈ U .

Now, from equations (A) and (B), we have

aa′ = (a1s1)(a′1s
′
1), (s1b)(s

′
1b
′) = (t1b1)(t′1b

′
1)

(a1t1)(a′1t
′
1) = (a2s2)(a′2s

′
2), (s2b1)(s′2b

′
1) = (t2b2)(t′2b

′
2)

(aiti)(a
′
it
′
i) = (ai+1si+1)(a′i+1s

′
i+1), (si+1bi)(s

′
i+1b

′
i) = (ti+1bi+1)(t′i+1b

′
i+1)

(i = 2, . . . , n− 2)

(an−1tn−1)(a′n−1t
′
n−1) = (csn)(c′s′n), (snbn−1)(s′nb

′
n−1) = dd′.

Since, in the above system of equalities all members belong to S, so, by using commutativity of S, we have

aa′ = (a1a
′
1)(s1s

′
1), (s1s

′
1)(bb′) = (t1t

′
1)(b1b

′
1)

(a1a
′
1)(t1t

′
1) = (a2a

′
2)(s2s

′
2), (s2s

′
2)(b1b

′
1) = (t2t

′
2)(b2b

′
2)

(aia
′
i)(tit

′
i) = (ai+1a

′
i+1)(si+1s

′
i+1), (si+1s

′
i+1)(bib

′
i) = (ti+1t

′
i+1)(bi+1b

′
i+1)

(i = 2, . . . , n− 2)

(an−1a
′
n−1)(tn−1t

′
n−1) = (cc′)(sns

′
n), (sns

′
n)(bn−1b

′
n−1) = dd′;

where a1a
′
1, a2a

′
2, . . . , an−1a

′
n−1, b1b

′
1, b2b

′
2, . . . , bn−1b

′
n−1 ∈ S and s1s

′
1, s2s

′
2, . . . , sns

′
n, t1t

′
1, t2t

′
2, . . . ,

tn−1t
′
n−1 ∈ U .

Thus, by Result 1.2, we have

aa′ ⊗ bb′ = cc′ ⊗ dd′ ⇒ (aa′, bb′)τ = (cc′, dd′)τ⇒ ((a, b)(a′, b′))τ = ((c, d)(c′, d′))τ ⇒ τ is a congruence.

Now define α : S → S ×A and β : S → S ×A

by

α(s) = (s, s⊗ 1), β(s) = (s, 1⊗ s).

Then α, β are, clearly, semigroup morphisms.
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Since, u⊗ 1 = 1⊗ u, we have

α(u) = β(u), for all u ∈ U .

Thereforeα(d) = β(d)

⇒ (d, d⊗ 1) = (d, 1⊗ d)

⇒ d⊗ 1 = 1⊗ d.

This completes the proof of the theorem. �

Thus we have the following:

Theorem 3.2. If U is a submonoid of a commutative monoid S, then d is in Dom(U, S) if and only if

either d ∈ U or there exists a zigzag in S over U with value d. �

It may easily be verified that the arguments employed by Howie[4] in proving Theorems 8.3.4 to

8.3.5 work through to complete the proof for the following Isbell’s Zigzag Theorem for the category of all

commutative semigroups.

Theorem 3.3. Let U be a subsemigroup of a commutative semigroup S. Then d ∈ Dom(U, S) if and

only if either d ∈ U or there exists a zigzag in S over U with value d. �
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