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Abstract. In this paper, we introduce the notion of y-injective modules where ) denotes a collection of right ideals
of aring R. We establish various important properties of this module.
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1. Introduction

The notion of injective modules was first introduced by Baer in 1940 in [2] in the form of
divisible abelian groups. A right R-module M is said to be injective if it satisfies Baer’s criteria
of injectivity: every homomorphism from any right ideal I of R to M can be extended to whole
of R. Since then many researchers have embarked on to determine a class of ideals of a ring R
such that an R-module M is injective if and only if it satisfies Baer’s criteria of injectivity for
such a class. For instance, Smith [11] showed that if R is a commutative Noetherian ring, then
the collection of all prime ideals of R is such a class. Later on, Vamos [12] termed such a class
Tesponding author

E-mail address: sau.pur @rediffmail.email

Received March 13, 2018



2 SAUGATA PURKAYASTHA, HELEN K. SAIKIA

as a test set for injectivity of a module. Beachy et. al. [3] finally showed that for a piecewise
Noetherian ring a set of prime ideals is a test set if and only if it contains all essential prime
ideals. In the same spirit, in our present work, we introduce the notion of Y-injective module.
Let R be a ring and y be a collection of right ideals of R. A right R module M is said to be
x-injective if for every ideal I € ), every homomorphism f : I — M can be extended to whole
of R. Unlike the authors listed above, we study the properties of such a module rather than
emphasizing on the collection ¥.

We have also related various other notions like pure-exact sequence, multiplication module with

the notion of y-injective module in [8] and [9].
2. Preliminaries

Definition 1.1. An essential (large) submodule of a module B is any submodule A which
has non-zero intersection with every non-zero submodule of B. We write A <, B to denote the
situation. Moreover we say that B is an essential extension of A.

Definition 1.2. A ring R is said to be Baer if the left annihilator of any subset of R is generated
as a left ideal by an idempotent of R.

Definition 1.3. For a ring R a right R module M is called semisimple (or completely reducible)
if it is a direct sum of simple modules. Thus, a ring R is said to be left (right) semisimple if it is
semisimple as a left (right) R module.

Definition 1.4. A short exact sequence is an exact sequence of the form 0 — A L> B-%

C — 0. A short exact sequence 0 — A i> B-5Cc—0is split if 3 a homomorphism
j:C—Bwithgj=1¢.

Definition 1.5. A ring R is said to be von-Neumann regular if for each r € R, 3 ¥ € R with
rrr=r.

Definition 1.6. A right R module P is said to be projective if whenever p is a surjective homo-
morphism from A to B and 4 is any homomorphism from P to B, there exists another homomor-

phism g from P to A such that pg = h.
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Definition 1.7. An R module M is said to be divisible if for any u € M and a € R such that
ann,(a) C ann(u), u is divisible by a, i.e. Iv € M such that u = va, where ann,(a) denotes the
right annihilator of the element a.

Any other terminology or result relevant to the present work can be found in [4], [5],[6], [7]

and [10].

3. Main results

Definition 3.1. Let M be a right R module and y be a collection of right ideals of R. Then M is
said to be y-injective if every homomorphism f : I — M, I € ¥ can be extended to whole of R.
Example 3.1.Let M be a right R module where R is a commutative Noetherian ring. If we let x
to be collection of all prime ideals of R, then by [11] it follows that M is x-injective.

Theorem 3.1.Let M be a right R module and )} be a collection of right ideals of R. Then the

following are equivalent:

(1) M is x-injective.
(2) for any I € ) and for every homomorphism f : I — M, there exists m € M such that

fla) =ma.

Proof.(1) = (2) Let i be a natural embedding from / to R and f : I — M be any homomorphism
such that there exists another homomorphism ¢ : R — M such that f = @i. As f, ¢ are module

homomorphisms, for a € I, we have,

where ¢ (1) = m for m € M. Thus, (2) follows.

(2) = (1). Let for a right ideal € x and for a homomorphism f : I — M, there exists m € M
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such that f(a) = ma. If we define ¢ : R — M by ¢(a) = ma for a € R, then clearly ¢ is a module

homomorphism and ¢, = f. This shows that M is x -injective.

From the definition of )-injective modules, it is clear that an injective module is ) -injective.
However a x-injective module need not be injective. We consider the following example.
Example 3.1.We recall from [1] that a right ideal of a ring R is said to be pure if and only if for
every x € I, dy € I such that x = xy. We consider the ring of integers Z as a module over itself.
If x denotes the collection of all non-zero proper pure ideals, then Z as a module over itself is
x-injective. Infact Z does not possess any non-zero proper pure ideal in this case as Z is free
from non-zero one sided zero divisors. But Zz is not injective.

We now establish a condition under which a y-injective module is injective.

Theorem 3.2.Let O be a yx-injective module, where ) is the collection of all essential right
ideals of R. Let M, N be right R modules. Then Q is injective if M <, N and any homomorphism
¢ : M — Q can be extended to N.

Proof.Let a module Q be y-injective, and let us consider the following diagram, where M <, N

O->M >N

e

We now consider a set k of extensions,i.e. the set of all pairs (C,h) where M < C<,N and
h:C — Q such that h|~ = ¢. Then clearly x # ¢ as (M, ¢) € k. We now introduce an ordering
relation by setting (C1,h;) < (Cp,hy) if and only if C; C C, and hy extends A;. This can be eas-
ily verified to be a partial ordering on k. Every non-empty increasing chain {(C;,h;)|i € I} in Kk
has a upper bound (C', /), where C' = |J;;C; and /| ¢ = hi. Thus, in view of Zorn’ lemma, 3
a maximal element (C*,4*) in k. By construction, M < C*<,N. We need to show C* = N i.e.
NCcC*

Suppose 3 a non-zero b € N such that b ¢ C*. We set = {a € R: ba € C*}. Then I is
an essential right ideal of R and hence I € }¥. Thus 3 a homomorphism f : I — R defined
by f(a) = h*(ba). By assumption, 3g € Q such that f(a) = gqa = h*(ba)(as Q is x-injective)
Va € I. Then we can define a homomorphism g : C* + bR — Q by setting g(c+ba) = h*(c) +qa

Ve € C* and a € R. It extends to a homomorphism A* and is well defined. For suppose,
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c1+bay = ¢y + bay for ¢j,¢cp € C* and aj,ap € R. Then a; —ap € I and hence f(a; —ap) =
fla1) — f(a2) = ga; — qay. On the other hand f(a;) — f(a2) = h*(ba;) — h*(bay) = h*(ba; —
bay) = h*(cy —¢1) = h*(c2) — h*(c1). Hence we have h*(cy) — h*(c1) = qa; — qap. Thus
g(c1+bay) =h*(c1)+qay = h*(c2) + gaz = g(cp + bay), as required i.e. the function is well-
defined.

Thus we have (C*,h*) < (C* + bR, g) i.e. we have obtained a contradiction regarding the max-

imality of (C*,h*). This completes the proof.

Remark 3.1.At this point, we note that in Theoem 3.2, the condition of essentiality is a sufficient
condition for a -injective module to be injective. However, the condition is not necessary. For
instance, let us consider the Z/ < 2 > as a module over Z/ < 6 >. 7Z/ < 6 > has two non-
trivial ideals, < 3 >={0,3} ~¥Z/ <2 > and <2 >={0,2,4} ~7Z/ < 3 >. Since there is no
non-zero homomorphism from Z/ < 3 > to Z/ < 2 > so the only ideal at stake is Z/ < 2 >.
The homomorphism f from Z/ < 2 > to itself is determined by f(1). Also, the inclusion map
i:7)<2>-7/<6>canbe defined as f(1) = 3. Thusif f:Z/ < 6 >— Z/ < 2 > then we
have foi(1) = f(3) =3f(1) = f(1). Thus if we define (1) = f(1) then f is an extension of
f. Consequently Z/ < 2 > is injective over Z/ < 6 > but none of < 3 > or < 2 > is essential
inZ/ <6>.

Theorem 3.3.Let R be a semisimple ring. Let M be a y-injective right R module. Then the

following hold:

(1) any submodule K of M is x-injective.
(2) the homomorphic image of M is )-injective module.

(3) the quotient of M is x-injective module.

Proof.(1) Since R is semisimple, we have K, M and M /K all are projective. So, the short exact
sequence 0 — K — M — M /K — 0O splits. Thus, if i : K — M be the inclusion, then there
exists a homomorphism k : M — K such that ki = idg. Let ] € x and f : I — K a homomorphism.
Then the composite if : I — M extends to a homomorphism g : R — M as M is x-injective.lf
we take & : R — K to be the composite kg, then the restriction of 4 on / is equal to the composite
k(restriction of g on I)=kif = f. So. h is an extension of f. This proves that K is )-injective.

(2) Let M’ be the homomorphic image of M and we consider the following diagram
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i

Using the x-injectivity of M, we get
gi=f (1)
Again R being semisimple and / as a module over R is projective. Thus, we have
hf=f (2)
By similar arguments, we have
hg=g (3)
Then, (1) gives;
(87) =hf
(hg)i=hf
gi = f (using (2) and (3))

as required.

(3) Let M be x-injective and K be a submodule of M. Then to show that M = % is also

x-injective. We consider the following diagram

e
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where 7 denotes the natural homomorphism. Using the fact that,

i

gi=

and that the homomorphic image of a y-injective module is x-injective, we get the desired

result.
Theorem 3.4.The direct sum of two x-injective modules is again ) -injective.

Proof.Let M| and M; be x-injective modules. Then to show that M; € M, is x-injective. Since
M, and M, are x-injective, so given I € ¥ and homomorphisms fj : I — M and f> : [ — M>,
we have extensions g1 : R — M| and g; : R — M, respectively. Again any homomorphism

f:1— M@ M, can be written as f = (f1, f2), where fi = pif and f>» = paf, p1 and p, being
the projections of M| and M, to M| @ M, respectively. Now if we take (g1,£2) : R — M| DM,
then (g1,g2) extends f = (f1, f2). Consequently, M M, is x-injective.

Theorem 3.5.Let R be a right Noetherian Von-Neumann regular ring. Then a right R module /
is x-injective if and only if it is divisible, ¥ being the collection of all right ideals of R of the

type {aR : a € R}.

Proof.Let / be divisible. Let f : aR — I be a homomorphism where aR € ¥. Let

u=f(a)el

. Then by definition

x € ann,(a)

ax=0
flax)=0
flax=0

ux=20

x € ann(u)
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Then, by definition u = va for some v € I Then, if we take g : Rg — I defined by g(1) =v

Then;
g(l)a=va
gla)=va
=u
= f(a) ,Ya € aR
1e.
8lap =/

or that f extends Rg. Consequently I is y-injective.
Conversely, let I be x-injective. Then any homomorphism f : aR — I, aR € ) extends to Rg.
We now show that / is divisible, i.e. ann!(ann,(a)) = Ia, where ann’(ann,(a)) denotes the

annihilator of ann,(a) taken in I. We first show that
Ia C ann' (ann,(a))

Let x € Ia. Then x = ra for some r € I. Then, we have,
anny(a)-a=10
r-anny(a)-a=0
anny(a)-ra=0
anny(a)-x=0

x € ann(ann,(a))

Since x € I, we have

x € ann' (ann,(a))
Le.
Ia C ann' (ann,(a)).

Now to show that
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ann! (ann,(a)) C Ia
Let

x € ann! (ann,(a)).
As I is x-injective, the homomorphism f : aR — I extends g : Rg — I. Then f(aR) = xR is a
well-defined homomorphism as for

ar = as
a(r—s)=0
r—s € ann.(a)
x(r—s)=0

Xr = X§

Again,

for some g(1) = v Thus
ann (ann,(a)) C Ia
consequently,
ann! (ann,(a)) = Ia
or that, [ is divisible.
Corollary 3.10ver a Baer ring R, a right R module is x-injective if and only if it is divisible.

Proof.We need to establish that a right Noetherian von Neumann regular is Baer, since in that
case the result will follow from proposition 5. If R is right Noetherian, it follows that the ideals
of R are finitely generated [6]. Also if R is von-Neumann regular, every finitely generated ideal

is principal and is generated by an idempotent [10]. Thus, we may conclude that R is Baer.
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