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1. INTRODUCTION

A matrix is a rectangular arrangement of scalar numbers in the form of rows and columns. The
size of the matrices is determined by the number of rows and columns, and a matrix with m rows
and n columns is named mxn. Matrices are generally used to solve systems of equations with n
unknowns and m equations. In addition, matrices are used for mathematical transformations.
Therefore, for computer programmers, the use of matrices in program writing provides a much
easier way to solve the problem. In order to solve the systems of equations with n unknown
equations and having m equations, the reduction system (Gaus Reduction Method or Gaus
Jordan Reduction Method) or the inverse of the matrices, if any, are used on the coefficient
matrix and the attached matrix of the equation system. For these methods, in general, the matrix
can be reduced by using elementary row operations on the attached matrix of the equation
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system or vice versa. In this study, inverse matrix finding method which is developed for the
matrix of coefficients matrix in systems with n equations with n unknowns and used in the
solution of linear equation systems is discussed. For this purpose, the methods developed to find
the inverse of a matrix are examined.

We know that there is a unique inverse matrix A~! for any square matrix A if the determinant of
A is different from zero. In the literature [1,2,3,4,5,6] there are some algorithms for constructing
A~!. Nowadays, 3 methods are used to find the inverse of a square matrix. The first is the
Montante’s Method (Bareiss algorithm) [1], the second is the Gauss Jordan Elimination method

and the third is the use of the adjoint matrix. It is generally used elementary row operations or

Adj(A)

-1_
the formula A det(A)

In this paper we introduced a new method and algorithm to find the inverse of a square matrix A
if |A| # 0. Our method is new and it is more easy than others.

2. MAIN RESULTS

A New Method For A~1

11 Q21 Az
z1 Gz2 A3z be a 3x3 matrix and det(A)#+ 0. We know that there
31 Qzz dszz

Theorem 2.1: Let A=

b1y ba1 b3y
is only one unique inverse matrix A~1 =[b21 b,, b32]
b3y byz b33
If i-th row of the matrix Ais R; and i-th column of the matrix A~ is C; (R; and C;
are vectors in R3, R: Real or complex vector spaces) . Then

1
Ci= TotA (R2xR3)

1
Cy= detA (R3xR;)

1
(3= TotA (R1xR3)

where R;xR; is the cross product of two vectors in R3. That is

A_l = [Cl Cz C3] .
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Ry
Proof: Let A= RZ] and A™! = [C; C, C3]. We mustshow that A.A71= A71 A= I5,.
R3
Ry RiCi RiG; RyGy
A.A_l = R2 [C1 Cz C3] = chl RZCZ Rng]

R3 R3C;  R3C; R3(C3
R,Ci= R lAl((szR3))_ = le(szR3) = :i: =1 since R;(R,xR3) is triple product.
R,C,= R I ((R3xR1))_ = le(R3xR1) = I%I = 0 since R3xR; is perpendicular to both
R; and R;.
R,C3= R, IAI((R1XR2))- = le(Rlsz) = % =0 since RyxR, is perpendicular to both
R, and R,.
R,Ci= R, IAI((RZXR3))- = ERZ(szR3) = % = (0 since R,xR; is perpendicular to both
R, and R;.
R,C,= R, IAl((R3xR1))_ = IAle(R3xR1) = % =1 since R,(R3xR;) is triple product.
R,C5= R, IAI((RlxRZ))- = mRz(RﬂCRz) = I%I =0 since R xR, is perpendicular to both
R, and Rz.
R3;Ci= R; b ((szR3))_ = IA|R3(R2xR3) = % = 0 since R,xR; is perpendicular to both
R, and R;.
R3;C,= R; IAI((R3xR1))- = IA|R3(R3xR1) = I%I = 0 since R3zxR; is perpendicular to both
R; and R;.
RyCs= R, lAl((Rlsz))_ = IAl}teg(}elx}ez) = :;‘: = 1 since Rs(RyxR,) s triple product.
Soweobtain  AAT! = I5,,.

R, R,xR5
As a result the inverse of a 3x3 matrix A= |R, isalso A7 = ﬁ[Rngl .
R, R,xR,
R,xR3
(itis also AdjA= R3XR1] )
RixR,
1 -1 2
Example 2.2: Let A= |3 1 4| be 3x3 matrix. We can find the inverse of A by applying the
1 5 7

new algorithm.



NECATI OLGUN AND HUSEYIN TAMER

1 -1 2
a3 1 el e sl Y| @200+ @14+ 205-1)= 13417428 32
5 7174 71l s
1 5 7
Let A_l = [Cl Cz Cg]
where
1 1 l ] k 1 . .
Cl_ E(szR3) = 5 3 1 4 :a('131'17_]+14k)
15 7
1 1 l ] k 1
C= 7 RaxR)= 5|1 5 7|= 5(1745)-6k)
1 -1 2
1 1 l ] k 1
3 1 4
[F13 17 -6
Then A_1=§ —-17 5 2|
14 -6 4
[ o-1 213 17 -6
aAat = 13 1 4l|-17 5 2
1 5 7ll1a -6 4
[F13+17+28 17-5-12 —6-2+8
- 2|-39-17+56 51+5-24 -18+2+16
| 13-65+98 17+25—42 —6+ 10 + 28

1 0 0
=10 1 O
0 0 1

We cannot use the above method to generalize the new method since the cross product of two

vectors is not defined for n>3. We need the following lemma.

Lemma 2.3: Let R™ be vector spaces with dimension n> 3. Let v4,v,,V3, ..., v, € R™ .

Define A:R™xXR"x ...xR™ - R"

viAv,AvsA CADA A, = Vv,
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where K, =(1,0,...,0), K, =(0,1,0...,0), k;=(0,0,1,0,...,0),..., kK, =(0,0,...,0,1) are standart

basis vectors in R™. Then

it i
v . (Vi AvAvgA LATA L AY,) = ]

Vn

0 if 1]
Thatis v; is orthogonal to viAv,AvsA .. AVA ...Av, if 1+].

Proof: It is clear that for n=3 by Theorem 1.1. We obtain
k, k, .. k

n

viA v, AvsA AN A v,= Vv,

= klel - kZMkZ + "‘klel +(_1)n ankn

from the definition of the mapping.
So the following statement

Vi . (VA v AvsA LAVA L AYy) =) Vv,

:vj ( klel - kszz + "'klel +(—1)n ankn)

= v My, = vj My, + - Vflml e (D) vy M)

1s true for n.
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Finally we obtain

i
Vl
~ _ if i)
v . (1AvAvsA LAVA L AYy) =
Vn
0 if 1#]
by the definition of the determinant function.
Vl
VZ
Corollary 2.4: vy (VA v3A LAVIA LA Yy) = V, = |A|
Vn

Theorem 2.5: Let A be nxn matrix and |A| #0 with n=4. If i-th row of the matrix A is R; and
Jj-th column of the matrix A™! is C; (R; and C; arevectorsin R™) then

A_l = [Cl CZ CTL]

o+ 1
where C;i= (R{ARA .ARA ..ARy) .

||
Ry
Proof: Let A= R2 and A™! =[C; C, ..C,] bematrices.
R, ]
[Rq R.C; R.C, .. RC,
AAa=(Rz|[c;, ¢, .. C =] . . .
R, R,C; R,C, .. R,C,

o/ 5
R . C= Ri.[T(RlA R,A ... AR A ...ARn)]

(-1)J+1 ~ ce .
= Ri.(Ri{AR;A ..ARA ..AR;) if i=j.

-1 j+1 .
= = (Al

Ri.(RyAR,A ..ARA ..AR,)=0 (R; is orthogonal to R;AR,A ..ARA ..AR, )
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if i#j byLemmal.2.

1 e
We obtain R, . = { =

0 if i#j
That is
A_l = [C1 Cz Cn]
(GOl
= " [R, AR;A ..AR, R;AR;A ..AR, R,AR,A ...AR,_; ]

Now we can use the new algorithm for constructing A~ for the given some examples.

-1320
Example 2.6: Let A= 21104 oo 4x4 matrix.
1401
0111
-132 -132
|Al=-1] 211 [+1] 211 |=23
011 140
Let A_l = [Cl CZ C3 C4_]
I j kit
_ 1 11211002, 4iiniiz.
Ci= IAI(RZA R3;AR,) 51401 23( 4i+3j+5k-8t)
0111
ij kit
_ -t __11-1 320 =1 g
C,= IAI(RlA R3;AR,) 51 401 23( 9i+j-6k+5t)
0111
i jkt
_ 1 _11-1 320 1,z
Cs= IAI(RlA R,AR,) 5 2110 23(1+5J Tk+2t)
0111
ij kit
-1 1 |— -1,. .
C= T (RiARyA R3)=— 21 3 2 01= —i+15)-7k-211)
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-4 9 1 -1
-1 _ i 3 -1 5 -5 . . .
We find A 5l s 6 -7 7 if the new method is applied.
-8-5 2 21

The result satisfies the following equality

4+9+10+0 -9-3+12+0 -1+15-14+0 0
A A-1— 1 -8+3+5 18-1+6 2+5-7 0
23| —4+12+8 9-4-5 1+20+2 -1-20+21
3+5-8 -1+6-5 5-7+2 -5+7+21
1 000
0100
oo 10
0 0 01

4 -3 2 1 2
1 3 -1 -3 0 3 2
-4 2 0 2 -3 4 3
Example 2.6: LetA=|-2 -1 2 1 3 2 2| bea7x7 matrix. Then |A|=22740.
2 1
1 0
2

Let At =1[C C C C C5 Cq (]
Clzﬁl (RyA RsA RyA RsA RgA R,)

k, k, ki k, k& ki K
1 3 -1-3 0 3 2
4 2 0 2 -3 4 3

=2 -1 2 1 3 2 2
0 2 -1 3 5 2 1
3 1 2 -2 -11 0
2 3 6 5 4 2 -1

1
22740

(924k1—7572k>—3036k3—508k4—488ks+14912 ke—13752 k7)
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Cy= ﬁ (RyA RsA R,A R<A RGAR,)
k, k, k, k, k& ki k
2 4 -3 2 1 2 -1
-4 2 0 2 -3 4 3

=-2 -1 2 1 3 2 2
0 -1 3 5 2 1
-3 1 2 -2 -1 1 0
2 6 5 4 2 -1

== (—2652 k1—2484 ko—1032 k3+2344 k4—76 ks+1204 ke—5124 k7

22740

C3: ﬁ (RlA RzA R4A R5A R6A R7)

k, k, ki Kk, ko ky K
4 -3 2 1 2 -1

3 -1 -3 0 3 2

=2 -1 2 1 3 2 2
0 -1 5 2 1
3 1 2 -2 -11 0
2 3 6 5 4 2 -1

=2 (-789 k111962 ko+156 k3+2378 ka—2192 ks-2077 ket4212 k7)

22740

-1

C4= 7 (RiA R,A RsA R ReA R7)

k, k, ki k, k& ki k,

4 -3 2 1 2 -1

3 -1 -3 0 3 2

=-4 2 0 2 -3 4 3
0 2 -1 3 5 2 1
-3 1 2 -2 -11 0
2 3 5 4 2 -1

= 22_7140 (—1623 ki+13374 ko +1272 k3+1606 ka—964 ks—18539 ke+11604 k)
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Cs= ﬁ (RyA RyA RsA R,A RGAR,)

ki k, k, Kk, ke ki k
2 4 -3 2 1 2 -1
1 3 -1 -3 0 3 2
=4 2 0 2 -3 4 3
2 -1 2 1 3 2 2
3 1 2 -2 -11 0
2 3 6 5 4 2 -1

— L (~3816 ki+10008 ko—456 ks+1212 ka+3492 ks—14628 ke+10428 k7)

22740

C6: ﬁ (RlA RzA R3A R4A R5A R7)

k, k, ki Kk, ko k; k
2 4 -3 2 1 2 -1
1 3 -1 -3 0 3 2
=4 2 0 2 -3 4 3
2 -1 2 1 3 2 2
0 1 3 5 2 1
2 6 5 4 2 -1

= 1 (5148 k1—3204 ko—672 k3+2584 k4—1636 ks+784 ke+4596 k7)

22740

1

C7= o (RiA RyA RsA Ry RsA Re)
k, k, ki k, ki ki k
4 -3 2 1 2 -1

3 -1 -3 0 3 2

=-4 2 0 2 -3 4 3
-2 -1 2 1 3 2 2
0 2 -1 5 2 1
-3 1 2 -2 -1 1 0

= 22;40 (1443 k1+1686 ko+2568 k31+954 ka—516 ks—1101 ke+1116 k7)
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We find
924 2652 —789 1623 —3816 -—5148 1443 ]
— 7572 2484 1962 —13374 10008 3204 1686
—-3036 1032 156  —1272 —456 672 2568
Al = 22;40 —508 —2344 2378 -1606 1212 —2584 954

—488 76 -2192 964 3492 1636 -516
14912 -1204 -2077 18539 -14628 -784 -1101
|—13752 5124 4212 -11604 10428 —4596 1116 |
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