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Abstract. Let G denote a finite group and let S be a finite G-set. It is well known that the Burnside

ring Ω(G) of G has its elements as the formal differences of isomorphism classes of finite G-sets. In

[8], the category (G,S,Ω(G))-gr, which consists of Ω(G)-modules graded by S as objects and the degree

preserving Ω(G)-linear maps as morphisms, was introduced. Using this category as a springboard, some

interesting results in the structure theory of graded Burnside rings are brandished.
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1. Introduction

It is well known that module theory is usually adopted when we study the structure

theory of rings or the Clifford theory for graded rings (see [1], [2], [5], [6], [10], and several

others). When we consider a ring R graded by a group G, we usually work with G-graded

modules. A typical example of this arises when we consider G-graded modules over a

group algebra kG as modules over kH by means of restriction of scalars, where H is a

subgroup of G (see for instance [2], [5]). In this paper, we review the concept of graded

Burnside module as in [8] and investigate the structure of graded Burnside ring. For the
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balance of this section, we give a brief description of the Burnside ring and describe the

organisation of this paper.

Now let G be a finite group. Recall that a G-set is a set S on which G acts from the left

by permutation; that is we have a map f : G × S → S : (g, s) → gs such that es = s (e

is the identity element of G) and g(hs) = (gh)s for all g, h in G and s in S. Furthermore

G-sets form a category G∧ with an obvious notion of morphisms. For any two G-sets

S1 and S2, there exist the sum S1 ∪ S2 (disjoint union) and product S1 × S2 (cartesian

product with diagonal action). In this way the isomorphism classes of G-sets form a semi

ring Ω+(G). The Grothendieck ring of Ω+(G) is called the Burnside ring of G, denoted

by Ω(G). Also recall that for two finite groups G and H, any group homomorphism

µ : H → G, gives rise to a functor µ∗ : Gset → Hset, from the category Gset of G-sets into

the category Hset of H-sets, obtained by restricting the action of G on a G-set S (via µ) to

H. Obviously µ∗ commutes with sums and products and so defines a ring homomorphism

µ∗ : Ω(G) → Ω(H), from the Burnside ring Ω(G) of G into the Burnside ring Ω(H) of

H. Furthermore µ∗ has a left adjoint µ∗ : Hset → Gset, from H-sets to G-sets, which

commutes with sums and thus defines an additive map µ∗ : Ω(H) → Ω(G), which by

adjointness, turns out to be an Ω(G)-module homomorphism (see [9]). By the Frobenius

reciprocity law Ω(H) is considered as a Ω(G)-module via µ∗. In this paper, we denote

such modules by M.

In section 2 we start with the basic theory of (G,S,Ω(G))-gr, which is the category

consisting of the Ω(G)-module M graded by a G-set S as objects and the degree preserving

Ω(G)-linear maps as morphisms. Theorem 2.8 is the first significant result in this section,

namely that the category (G,S,Ω(G))-gr is a Grothendieck category. In section 3, we

introduce the notion of smash product for finite G-set denoted by Ω(G)#S. This notion

has recently been used extensively to obtain duality results and category equivalences that

provide a neat approach to categorical properties of modules studied in the theory of group

actions as well as group gradings. We demonstrate here a sort of generalization of the

notion of smash product from groups to finite G-sets. In theorem 3.2, we demonstrate that

the category (G,S,Ω(G))-gr is isomorphic to the category Ω(G)#S-mod. This implies
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that we can always consider (G,S,Ω(G))-gr as a module category isomorphic to Ω(G)#S-

module. We conclude the study of the smash product in section 4 by considering a

characterization of smash products in terms of matrix rings and derive a glossary of some

interesting corollaries; for instance, we demonstrate that Ω(G)#G/H is Morita anti-

equivalent to the ring (Ω(G)#G) ∗H, the skew group ring of H over the ring Ω(G)#G.

In section 5, we extend the applicability of some functors considered by Dade in [2]

for homogenous G-sets and a ring R, to arbitrary G-sets and the Burnside ring Ω(G).

Given a morphism φ : S → S ′ of G sets we associate the functor Tφ : (G,S,Ω(G))-gr

−→ (G,S ′,Ω(G))-gr. Tφ has an exact right adjoint denoted by Uφ. Furthermore Uφ is a

left adjoint for Tφ if for every s′ ∈ S ′ the set φ−1(s′) is finite. With this simple observation,

we can infer that if S is finite and Q ∈ (G,S,Ω(G))-gr is an injective object then Q is

injective in Ω(G)-module. If S is a G-set and B is a subset of S fixed by some subgroup

H of G, then we may define a functor

TB : (G,S,Ω(G))-gr −→ (H,B,Ω(G)(H))-gr,

where (Ω(G))(H) =
⊕
h∈H

Ω(G)h, by setting TB(M) =
⊕
s∈B

Ms. In theorem 5.6, we demon-

strate that TB has a left adjoint, denoted by UB; which is an extension of the case

considered by Dade in [2]. The same result tells us that TB has also a right adjoint, and

it will be denoted by UB. We say that UB and UB are the induction and the coinduction

functor, respectively. Particular cases of these functors have been used in many literature

(see for instance [6]) and it is well known (see [5]) that for strongly graded rings induction

and coinduction are isomorphic. The case where B = {s} and H = Gs is the stabilizer

subgroup of s lead to the functors:

T s : (G,S,Ω(G))-gr −→ Ω(G){Gs}-mod, T s(M) = Ms.

U s : Ω(G){Gs}-mod −→ (G,S,Ω(G))-gr, U s(N) = Ω(G)
⊗

Ω(G)(Gs)

N.

If Ω(G) is strongly G-graded and S is a transitive G-set then (G,S,Ω(G))-gr is equivalent

to (Ω(G))(Gs)-mod and the equivalence is given by T s and U s (or Us). Furthermore,



4 KENNETH K. NWABUEZE

for any subgroup H of G, we have that (Ω(G))(H)-mod is equivalent to (G,G/H,Ω(G))-

gr. For a detailed treatment of the application of the induction and coinduction we

refer the reader to [6]. For the balance of this paper, G is a multiplicative group with

identity element 1. Ω(G) is said to be G-graded if Ω(G) =
⊕
g∈G

Ω(G)g, where each Ω(G)g

is an additive subgroup of Ω(G) and Ω(G)gΩ(G)h ⊂ Ω(G)gh for all g, h ∈ G; when

Ω(G)gΩ(G)h = Ω(G)gh we say that Ω(G) is strongly graded. We shall write Ω(G)-mod

for the category of Ω(G)-modules and Ω(G)-gr for the category of graded Ω(G)-modules.

2. Preliminaries

We begin this section with the following definition.

Definition 2.1. An Ω(G)-module M such that M =
⊕
s∈S

Ms, and for all g ∈ G and s ∈ S

we have that Ω(G)gMs ⊂Mgs, where each Ms is an additive subgroup of M, is said to be

a (left) graded Ω(G)-module of type S.

Suppose M =
⊕
s∈S

Ms and N =
⊕
s∈S

Ns are graded Ω(G)-modules of type S, then a

morphism f : M → N is a Ω(G)-linear map such that f(Ms) ⊂ Ns for all s ∈ S.

The category (G,S,Ω(G))-gr consists of objects as the graded Ω(G)-modules of type

S and morphisms as the Ω(G)-linear maps just defined. Now consider M =
⊕
s∈S

Ms

in (G,S,Ω(G))-gr and an m (6= 0) in M. Then m has a unique decomposition m =∑
s∈S

ms, with ms ∈ Ms, and the ms( 6= 0) are called the homogenous components of m. A

submodule N of M is called a graded submodule (of type S) if for any element n ∈ N,

each homogenous component of n also belongs to N ; this means that N =
⊕
s∈S

(N ∩Ms).

Observe that if N is a graded submodule of M, then M/N is a graded module of type

S by setting (M/N)s = (Ms + N)/N for all s ∈ S. In the category (G,S,Ω(G))-gr it is

easy to see that direct sums and products exist (indeed if (Mi)i∈I is a family of objects

of (G,S,Ω(G))-gr , then the module
⊕
s∈S

(
⊕
i∈I

(Mi)s) is a direct sum, and
⊕
s∈S

(
∏
i∈I

(Mi)s) is a

direct product of the family in the category (G,S,Ω(G))-gr, respectively). For M,N in

(G,S,Ω(G))-gr the set Hom(G,S,Ω(G))−gr(M,N) is a subgroup of HomΩ(G)(M,N). Because

for any morphism f in Hom(G,S,Ω(G))−gr(M,N) both ker(f) and coker(f) are objects of
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(G,S,Ω(G))-gr, we have that (G,S,Ω(G))-gr is an abelian category. When G = S with

the natural left action of G on itself, then the category (G,G,Ω(G))-gr coincides with

the category Ω(G)-gr. For a subgroup H of G, and S = G/H, where G acts by left

translation, we write (G/H,Ω(G))-gr for the category (G,G/H,Ω(G))-gr. Furthermore,

when H is normal then (G/H,Ω(G))-gr may be identified with Ω(G)-grG/H , the category

of all graded left Ω(G)-modules of type G/H (here Ω(G) is considered as a G/H-graded

ring). If S is a singleton with G acting trivially on it, then the category (G,S,Ω(G))-gr

coincides with Ω(G)-mod. The elementary properties of (G,S,Ω(G))-gr considered in

this section are similar to those of R-gr (where R is an arbitrary ring) and the proofs are

similar to those in [5]. Therefore we shall omit proofs to most results in this section.

Proposition 2.2. Suppose M,N,P ∈ (G,S,Ω(G))-gr is fixed to satisfy the following

commutative diagram of Ω(G)-linear maps

M
γ−→ N

α

↘
β

↙

P

If β, resp. γ is a morphism in (G,S,Ω(G))-gr, then there exists a morphism γ′, resp.

β′ in this category, such that α = β ◦ γ′ resp α = β′ ◦ γ. More especially, we have that

if M ∈ (G,S,Ω(G))-gr is projective, resp. injective in Ω(G)-mod, then M is projective,

resp. injective, in (G,S,Ω(G))-gr.

Proof. Follow similar argument of the proof of lemma 1.2.1 of [5].

Proposition 2.3. Let G be a finite group and let S be a G-set such that each stabilizer

Gs (s ∈ S) is normal (this condition holds if for example S is a free G-set or if G is

abelian) in G. If N is a graded submodule of M ∈ (G,S,Ω(G))-gr, then N is essential

in M as an object of (G,S,Ω(G))-gr, if and only if N is essential in M as an object of

Ω(G)-module.

Proof. Because we have that (G,S,Ω(G))-gr is equivalent to a product of categories of

the type (G/Gs,Ω(G))-gr (see [5]), it suffices to restrict our attention to the case where

S = G/H, for a normal subgroup H of G. In which case (G/H,Ω(G))-gr is a category of
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graded modules in the classical sense, and so we invoke lemma 1.2.8 of [5] to complete

the proof.

For a morphism of G-sets ρ : S → S ′, we may associate a canonical covariant functor

Tρ : (G,S,Ω(G))-gr→ (G,S ′,Ω(G))-gr, defined as follows: Tρ(M) is the Ω(G)-module M

with S ′-gradation given by Ms′ =
⊕
{Ms | s ∈ S, ρ(s) = s′ for s′ ∈ S ′}, where we set

Ms′ = 0 if s′ 6∈ ρ(S). Clearly for any λg ∈ Ω(G)g, we have

λgMs′ = λg(
⊕
{Ms | s ∈ ρ−1(s′)}) ⊂

⊕
{Mgs | s ∈ ρ1(s′)} = Mgs′ .

That M =
⊕
s′∈S′

Ms′ , is obvious. For a morphism f ∈ Hom(G,S,Ω(G))−gr(M,N), we set

Tρ(f) = f. Note that Tρ is an exact functor.

Proposition 2.4. If S
ρ−→S ′

ρ′−→S ′′ is a morphism of G-sets, then

(1) Tρ′◦ρ = Tρ′ ◦ Tρ.

(2) If ρ is an isomorphism, then Tρ ◦ Tρ−1 = Tρ−1 ◦ Tρ = Id; more especially Tρ is an

isomorphism of categories.

Proof. Easy verifications.

Let S be a G-G′-set, where G and G′ are groups. For h ∈ G′ we may define a morphism

of G-sets: ρh : S → S, s → xh for s ∈ S. Because we have that ρ is an isomorphism of

G-sets, the functor Th = Tρh is an isomorphism of categories. It is a folklore to verify the

following:

1. T1 = Id.

2. Th ◦ Th′ = Th′h for all h, h′ ∈ G′.

3. Th ◦ Th−1 = Id for all h ∈ G′.

If M ∈ (G,S,Ω(G))-gr, then denote Th(M) by M(h) for each h ∈ G′, so M(h) = M as

Ω(G)-modules and for each s ∈ S we have M(h)s = Msh. We call the object M(h) the

h-suspension of M. For some specific examples see [5]. For S a G-G′-set, we say that

Ω(G)-linear map f : M → N, where M,N ∈ (G,S,Ω(G))-gr is a graded morphism of

degree h ∈ G′ if f(Ms) ⊂ Nsh for all s ∈ S. Graded morphisms of degree h ∈ G′ form an

additive subgroup HOMΩ(G)(M,N)h, of HomΩ(G)(M,N). We denote by HOMΩ(G)(M,N)

the subgroup of HomΩ(G)(M,N) generated by all HOMΩ(G)(M,N)h, (h ∈ G′). It is clear
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that HOMΩ(G)(M,N) =
⊕
h∈G′

HOMΩ(G)(M,N), is a graded abelian group of type G′. If

f : M → N and e : N → P are graded morphisms of degree h, h′ ∈ G′ respectively then

e ◦ f has degree hh′. Consequently, we may view ENDΩ(G)(M) = HOMΩ(G)(M,M) as a

graded ring of type G′ if we define the multiplication by f · e = e ◦ f.

Proposition 2.5. If Ω(G) is G graded then for a family of G-sets (Si)i∈I , the categories

(G,
∐
i∈I
Si, Ω(G))-gr and

∏
i∈I

(G,Si,Ω(G))-gr are equivalent.

Proof. We assume that the sets Si are mutually disjoint; in which case, S = ∪
i∈I
Si is a

direct sum. Let T : (G,S,Ω(G))-gr→
∏
i∈I

(G,Si,Ω(G))-gr be a functor defined by T (M) =

(Mi)i∈I , where Mi =
⊕
s∈Si

Ms, and for a morphism in (G,S,Ω(G))-gr, f : M → N say, we

put T (f) = (fi)i∈I , where fi is the restriction of f to Mi. Now let U :
∏
i∈I

(G,Si,Ω(G))-gr

→ (G,S,Ω(G))-gr, be a functor defined by U((Mi)i∈I) =
⊕
i∈I
Mi = M as Ω(G)-modules,

and for s ∈ S, Ms = (Mi)s, where i is such that Si is the unique one containing s so that

M is clearly a graded Ω(G)-module of type S. Furthermore, if (fi)i∈I is a morphism in∏
i∈I

(G,Si,Ω(G))-gr, then U((fi)i∈I) = f, where f =
⊕
i∈I
fi. It is obvious that U ◦ T is the

identity of (G,S,Ω(G))-gr and T ◦ U is the identity of
∏
i∈I

(G,Si,Ω(G))-gr.

Corollary 2.6. Let Ω(G) =
⊕
g∈G

Ω(G)g be a G graded and let S be a G-set. Then

(G,S,Ω(G))-gr is equivalent to the product of the (G/Gs,Ω(G))-gr, where s varies over

a set of representatives for the G-orbits in S. More especially, if S is a free G-set, then

(G,S,Ω(G))-gr is a product of copies of Ω(G)-gr over the G-orbits in S.

Proof. One has S = ∪
s
Gs and Gs ' G/Gs, so the assertion follows from the foregoing

proposition.

To state the next theorem we need the following definition.

Definition 2.7. Let Ω(G) =
⊕
g∈G

Ω(G)g be G-graded and S a G-set. For each s ∈ S the

s-suspension Ω(G)[s] of Ω(G) is defined to be the object of (G,S,Ω(G))-gr which coincides

with Ω(G) as an Ω(G)-module, but with gradation defined by Ω(G)[s]t =
⊕
{Ω(G)g | g ∈

G, gs = t, t ∈ S}.
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Theorem 2.8. The object V =
⊕
s∈S

Ω(G)[s] is a projective generator of the category

(G,S,Ω(G))-gr and it is free of rank |S| as an Ω(G)-module. In particular, (G,S,Ω(G))-

gr is a Grothendieck category.

Proof. Obviously V is a free Ω(G)-module, and so we can fix a canonical basis {es | s ∈

S}. Let N ⊂ M in (G,S,Ω(G))-gr be such that N 6= M ; say M =
⊕
s∈S

Ms, N =
⊕
s∈S

Ns.

Then there exist s ∈ S, ms ∈Ms such that ms 6∈ Ns. Now we may define a morphism in

(G,S,Ω(G))-gr by setting f(es) = ms, f(es) = 0 for s′ 6= s in S, and clearly Im(f) 6⊂ N.

Consequently, V is a generator for (G,S,Ω(G))-gr and a projective object of (G,S,Ω(G))-

gr by Proposition (2.2).

Corollary 2.9. Let M ∈ (G,S,Ω(G))-gr. Then M is a projective object in (G,S,Ω(G))-

gr if and only if M is a projective left Ω(G)-module.

Proof. Proposition (2.2), concludes the ”if” part, and the converse follows from Theorem

(2.8) by observing that any projective object M in (G,S,Ω(G))-gr is isomorphic to a

direct summand of some direct sum of copies of V which is a projective generator in

(G,S,Ω(G))-gr.

Let gr − p dim(M) denote the projective dimension of an M in (G,S,Ω(G))-gr. Then

corollary (2.9) yields:

Corollary 2.10. gr-p dim(M) = p dim(M) for any M in (G,S,Ω(G))-gr.

3. Smash Product

Let Ω(G) =
⊕
g∈G

Ω(G)g be G-graded, and let S be a finite G-set. We define the smash

product Ω(G)#S as the free Ω(G)-module with basis {ps | s ∈ S} and multiplication

defined by

(1) (agps)(bhpt) :=

 (agbh)pt if ht = s

0, if ht 6= s

for any g, h ∈ G, ag ∈ Ω(G)g, bh ∈ Ω(G)h, and s, t ∈ S. We may extend this by

Z-bilinearity to a product on all of Ω(G)#S =
⊕
{Ω(G)gps | g ∈ G, s ∈ S}.
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Proposition 3.1. The multiplication defined by equation (1) above turns Ω(G)#S into

a ring with identity 1 =
∑
s∈S

ps and {ps | s ∈ S} is a set of orthogonal idempotents. The

following properties also hold:

(i) The map θ : Ω(G)→ Ω(G)#S, a→ a · 1 =
∑
s∈S

aps is an injective ring morphism.

(ii) For all ag ∈ Ω(G)g, s ∈ S one has that: psag = agpg−1s, where psag is the product

Psθ(ag) in the ring Ω(G)#S.

(iii) The set {ps | s ∈ S} is a basis for Ω(G)#S as an Ω(G)-module.

(iv) For s ∈ S, ps centralizes Ω(G)(Gs) =
⊕
t∈Gs

Ω(G)t.

(v) H := ∩{Gs | s ∈ S} is a normal subgroup of G such that for any b ∈ Ω(G)(H) =⊕
h∈H

Ω(G)h, s ∈ S, we have bps = psb.

(vi) AutG(S) acts on Ω(G)#S by (aps)
α = ap−1

α(s), for α ∈ AutG(S), a ∈ Ω(G), and s ∈ S.

Proof. Associativity of equation (1) is the only difficult thing to show in the first claim.

To show this, let l, g, h ∈ G, al ∈ Ω(G)l, bg ∈ B(G)g, ch ∈ Ω(G)h, and let s, t, u ∈ S. Then

one has that

(2) [(alps)(bgpt)](chpu) :=

 (albgch)pu, if gt = s and hu = t

0, otherwise

and

(3) (alps)[(bgpt)(chpu)] :=

 (albgch)pu, if hu = t and ghu = s

0, otherwise.

If hu = t, then the equation gt = s and ghu = s are equivalent, and so associativity follows.

Because aps(
∑
t∈S

pt) =
∑
t∈S

(aps)pt = aps and (
∑
s∈S

ps)bpt =
∑
s∈S

ps(bpt) = (
∑
s∈S

(
∑
gt=s

bg))pt =

bpt, it follows that
∑
s∈S

ps is the identity of Ω(G)#S, the claim follows since b =
∑
s∈S

(
∑
gt=s

bg).

The assertions (i) and (ii) are obvious, and one can easily check properties (iv) and (v).

We now verify (iii) and (vi).
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(iii) From (ii) it is clear that Ω(G)gps = pgsΩ(G)g ' Ω(G)g. So we have

Ω(G)#S =
⊕
{Ω(G)gps | g ∈ G, s ∈ S} =

⊕
{pgsΩ(G)g | g ∈ G, s ∈ S}

=
⊕
{ptΩ(G)g | s ∈ S}

= {ptΩ(G) | t ∈ S},

with each ptΩ(G) =
⊕
{ptΩ(G)g | g ∈ G} '

⊕
{Ω(G)g | g ∈ G} = Ω(G). Hence (iii)

holds.

(vi) Suppose α ∈ AutG(S). Then we calculate for ag ∈ Ω(G)g, bh ∈ Ω(G)h, and s, t ∈ S :

(4) [(agps)(bhpt)]
α =

 [(agbh)pt]
α = (agbh)pα−1(t) if ht = s

0, if ht 6= 0

and

(5) (agpα−1(s)(bhpα−1(t)) =

 (agbh)pα
−1(t) if hα−1(t) = α−1(s)

0, otherwise.

Because we have that ht = s if and only if hα−1(t) = α−1(g), it follows that

[(agps)(bhpt)]
α = (agps)

α(bhpt)
α.

So AutG(S) acts on the ring Ω(G)#S as described; in view of the fact that aps 7→ (aps)
α =

apα−1(s) is a bijective map.

Note that if S = G and G acts on S by left translation, then the multiplication in

Ω(G)#S becomes (aps)(bpt) = (abst−1)pt for a, b ∈ Ω(G), and s, t ∈ G; in which case

Ω(G)#G coincides with the smash product defined by Cohen and Montgomery in [1] for

arbitrary rings. Moreover if S =
∐
i∈I
Si is a finite direct sum of finite G-sets, then the ring

Ω(G)#S is isomorphic to the direct product
∏
i∈I

Ω(G)#Si. Consequently, we obtain the

following result, which extends theorem 2.2 of [1] for arbitrary G-sets.

Theorem 3.2. Let S be a finite G-set and let Ω(G) =
⊕
g∈G

Ω(G)g be G-graded. Then the

category (G,S,Ω(G))-gr is isomorphic to the category Ω(G)#S-mod.
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Proof. By proposition 3.1(i), Ω(G) may be viewed as a subring of Ω(G)#S via the

morphism θ. By restriction of scalars, M ∈ Ω(G)#S-mod has an Ω(G)-module structure.

For s ∈ S, we set Ms = psM. Because we have that 1 =
∑
s∈S

ps and {ps | s ∈ S} is a

family of orthogonal idempotents we have that M =
⊕
s∈S

Ms. Moreover, if ag ∈ Ω(G)g

then agMs = agpsM = (pgsag)M is an element of pgsM = Mgs; implying that M is

an object of (G,S,Ω(G))-gr. For a morphism f : M → N in Ω(G)#S-mod we have

f(Ms) = f(psM) = psf(M) ⊂ psN = Ns. In this way we obtain a functor ()gr : Ω(G)#S-

mod −→ (G,S,Ω(G))-gr, where (M)gr is the graded structure of type S defined on M as

illustrated above, and (f)gr = f.

Conversely, take an object M in (G,S,Ω(G))-gr. For ag ∈ Ω(G)g, and s ∈ S, put

(agps)m = agms, where m ∈ M is given by m =
∑
s∈S

ms. Since 1 =
∑
s∈S

ps we have that

1 · m = (
∑
s∈S

ps)m =
∑
s∈S

ms = m. If g, h ∈ G, ag ∈ Ω(G)g, bh ∈ Ω(G)h, s, t ∈ S then we

calculate

(6) [(agps)(bhpt)]m =

 [(agbh)pt]m = agbhmt, if ht = s

0, if ht 6= s

On the other hand:

(7) (agps)[(bhpt)m] =

 (agps)(bhmt) = agbhmt, if ht = s

0, if ht 6= s.

This implies that we can consider M as an Ω(G)#S-module. For a morphism f : M → N

in (G,S,Ω(G))-gr, one has that f [(aps)m] = f(ams) = af(ms) = apsf(m), because

f(Ms) ⊂ Ns. Therefore we arrive at a functor (−)# : (G,S,Ω(G))-gr −→ Ω(G)#S-

mod, where M# is the Ω(G)-module M equipped with the structure of Ω(G)#S-module

defined above, and f# = f for each morphism in the category (G,S,Ω(G))-gr. If M ∈

(G,S,Ω(G))-gr, then

am = (a · 1)m = (
∑
s∈S

aps)m =
∑
s∈S

ams = a(
∑
s∈S

ms) = am

holds in M#. Therefore (−)gr ◦ (−)# is the identity.



12 KENNETH K. NWABUEZE

Conversely, suppose we considerM ∈ Ω(G)#S-mod as an object of (G,S,Ω(G))-gr with

the grading M
⊕
s∈S

Ms, where Ms = PsM, then (aps)m = ams holds for a ∈ Ω(G), s ∈ S,

and m ∈M. Because m =
∑
s∈S

psm, we have ms = psm and so (aps)m = a(psm). It follows

that (−)# ◦ (−)-gr is the identity functor.

4. Matrix Ring

Here we obtain a characterization of smash products in terms of matix rings and study

the properties thereto. If S is a finite G-set, then one has that V =
⊕
s∈S

Ω(G)(s) is

a projective generator of (G,S,Ω(G))-gr by theorem 2.8. Furthermore, (G,S,Ω(G))-gr

is equivalent to the category of U -modules in view of a result of Mitchell [3], where

U = End(G,S,Ω(G))−gr(V ). On the other hand, by theorem 3.2, the category (G,S,Ω(G))-

gr is equivalent to the category Ω(G)#S-mod. This implies that U is Morita equivalent

to the opposite ring (Ω(G)#S)opp. We demonstrate a stronger result in the next theorem.

Theorem 4.1. Let Ω(G) be G-graded and let S = {s1, . . . , sn} be a finite G-set. The

rings (Ω(G)#S)opp, U = End(G,S,Ω(G))−gr(V ) and T are isomorphic, where

T =



Ω(G)(s1)s1 Ω(G)(s1)s2 Ω(G)(s1)s3 · · · Ω(G)(s1)sn

Ω(G)(s2)s1 Ω(G)(s2)s2 Ω(G)(s2)s3 · · · Ω(G)(s2)sn

· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·

Ω(G)(sn)s1 Ω(G)(sn)s2 Ω(G)(sn)s3 · · · Ω(G)(sn)sn


.

Proof. Recall that for each s ∈ S, one has that Ω(G)(s) is the object of (G,S,Ω(G))-gr

equal to Ω(G) as an Ω(G)-module. Furthermore, it has gradation given by

Ω(G)(s)t =
⊕
{Ω(G)g | g ∈ G, gs = t}.

Theorem 3.2 garantees an equivalence Ω(G)#S −mod ≈ (G,S,Ω(G))-gr. We apply this

equivalence to the regular Ω(G)#S-module Ω(G)#S. As a left Ω(G)#S-module this is

the direct sum of its submodules (Ω(G)#S)ps = Ω(G)ps, each of which is a regular left
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Ω(G)-module. The S-grading of (Ω(G)#S)ps is given by:

((Ω(G)#S)ps)t = pt(Ω(G)#S)ps = ps = ptΩ(G)ps =
∑
g∈G

ptΩ(G)gps

=
⊕
{Ω(G)gps | g ∈ G, gs = t}.

This implies that (Ω(G)#S)ps ∼= Ω(G)(s) as objects of (G,S,Ω(G))-gr. Therefore we

have

Ω(G)#S =
⊕
s∈S

(Ω(G)#S)ps ∼=
⊕
s∈S

Ω(G)(s) = V

as objects of (G,S,Ω(G))-gr. By theorem 3.2, this means that

U = End(G,S,Ω(G))−gr(V ) ∼= End(G,S,Ω(G))−gr(Ω(G)#S) ∼= EndΩ(G)#S(Ω(G)#S)

∼= (Ω(G)#S)opp.

Now suppose M ∈ (G,S,Ω(G))-gr, M =
n⊕
i=1

Mi, then End(G,S,Ω(G))−gr(M) ∼=



Hom(G,S,Ω(G))−gr(M1,M1) Hom(G,S,Ω(G))−gr(M2,M1) · · · Hom(G,S,Ω(G))−gr(Mn,M1)

Hom(G,S,Ω(G))−gr(M1,M2) Hom(G,S,Ω(G))−gr(M2,M2) · · · Hom(G,S,Ω(G))−gr(Mn,M2)

· · · · · · · · · · · ·

· · · · · · · · · · · ·

Hom(G,S,Ω(G))−gr(M1,Mn) Hom(G,S,Ω(G))−gr(M2,Mn) · · · Hom(G,S,Ω(G))−gr(Mn,Mn)


the isomorphism sending each u ∈ End(G,S,Ω(G))−gr(M) to the matrix (ui,j)1≤i,j≤n, uij =

qi ◦ u ◦ pj, where qi : M → Mi denotes the canonical projections and pj = Mj → M

denotes the canonical injections. But because

Hom(G,S,Ω(G))−gr(Ω(G)(si),Ω(G)(sj)) ∼= Ω(G)(sj)si ,

as one can easily check, the desired isomorphism between U and T follows.

Theorem 4.1 has many useful applications. To give one application, let S = G/H, where

H is a subgroup of G of finite index. To the canonical G-set morphism τ : G→ G/H we

associate the canonical functor Tτ : Ω(G)-gr → (G/H,Ω(G))-gr, as defined earlier. For

M ∈ Ω(G)-gr, we put ENDΩ(G)(M) =
⊕
g∈G

ENDΩ(G)(M)g, where

ENDΩ(G)(M)g = {f ∈ HOMΩ(G)(M,M) | f(Md) ⊂Mdg for all d ∈ G}.
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It is clear that ENDΩ(G)(M) is a G-graded ring with multiplication given by f · g = g ◦ f

for f, g ∈ ENDΩ(G)(M). Put M∗ = Tτ (M). Then M∗ is an object of (G/H,Ω(G)-gr

which is equal to M as an Ω(G)-module but graded as follows: M∗ =
⊕

c∈G/H
Mc, where

Mc =
⊕
g∈c

Mg. Now we state:

Proposition 4.2. If an object M ∈ Ω(G)-gr is finitely generated or G is finite, then

ENDΩ(G)(M)(H) = END(G/H,Ω(G))−gr(M
∗).

Proof. For g ∈ H, and any c ∈ G/H, let f ∈ ENDΩ(G)(M)g. Then

f(Mc) = f(
⊕
d∈c

Md) ⊂
⊕
d∈c

Mdg = Mc;

and this yields ENDΩ(G)(M)(H) ⊂ END(G/H,Ω(G))gr(M
∗).

Now let f ∈ END(G/H,Ω(G)−gr(M
∗). For the cases we have at hand here, we invoke

corollary 1.2.11 of [5] which asserts that ENDΩ(G)(M) = EndΩ(G)(M); and this implies

that End(G/H,Ω(G)−gr(M
∗) ⊂ ENDΩ(G)(M). Therefore we can decompose f = fg1 + fg2 +

· · · + fgn , where fgi is a non-zero morphism of degree gi. We claim that g1, . . . , gn ∈ H.

Indeed, because fg1 6= 0, there exists c ∈ G/H (put this c = gH) such that fgi(Mc) 6= 0.

Also, there exists an element m ∈ Mgh, h ∈ H, m 6= 0, such that fg1(m) 6= 0. But

f(m) = fg1(m) + fg2(m) + · · · + fgn(m), and fgi(m) ∈ Mghgi , for i = 1, . . . , s. Since

ghgi 6= ghgj, for i 6= j and f(m) ∈ f(Mc) ⊂Mc, we have fg1(m) ∈Mgh′ , for some h′ ∈ H.

Hence ghg1 = gh′ and therefore g1 = h−1h′ ∈ H. In a similar way g2, . . . , gn ∈ H; therefore

f ∈ ENDΩ(G)(M)(H).

Now for H ≤ G a subgroup of G of finite index n <∞, suppose {g1, . . . , gn} is a set

of representatives for the left cosets of H in G, and V =
n⊕
i=1

Ω(G)(giH); then

Ω(G)(giH)gjH =
⊕
{Ω(G)g | g ∈ G, ggiH = gjH} = Ω(G)(gjHg

−1
i ) = Ω(G)(g−1

i )(gjH).

Therefore Ω(G)(giH) =
n⊕
j=1

Ω(G)(g−1
i )(gjH) = Tτ (Ω(G)(g−1

i )), and so

V ∼= Tτ

(
n⊕
i=1

Ω(G)(g−1
i )

)
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is a small projective generator of (G/H,Ω(G))-gr, by theorem 2.8; in which case, theorem

4.1 becomes:

Corollary 4.3. The rings (Ω(G)#G/H)opp, U = END(G/H,Ω(G))−gr(V ) and T are iso-

morphic, where

T =



Ω(G)(g1Hg
−1
1 ) Ω(G)(g2Hg

−1
1 ) · · · Ω(G)(gnHg

−1
1 )

Ω(G)(g1Hg
−1
2 ) Ω(G)(g2Hg

−1
2 ) · · · Ω(G)(gnHg

−1
2 )

· · · · · · · · · · · ·

· · · · · · · · · · · ·

Ω(G)(g1Hg
−1
n ) Ω(G)(g2Hg

−1
n ) · · · Ω(G)(gnHg

−1
n )


.

Let G be a finite group, and put K =
⊕
g∈G

Ω(G)(g). We have that TΦ(K) is another

small projective generator of (G/H,Ω(G))-gr, and by a theorem of Mitchell [[3], p.17],

(G/H,Ω(G))-gr is equivalent to mod-U ′, where U ′ = End(G/H,Ω(G))−gr(TΦ(K)). However,

by proposition 4.2, U ′ = ENDΩ(G)(K)(H), and ENDΩ(G)(K) ∼= (Ω(G)#G) ∗ G, where

Ω(G)#G is the usual smash product [7]. Thus ENDΩ(G)(K)(H) ∼= (Ω(G)#G)H, where

(Ω(G)#G)H is the skew group ring of H over the ring Ω(G)#G. Hence we have the

following corollary:

Corollary 4.4. For a subgroup H of a finite group G, the rings (Ω(G)#G/H)opp and

(Ω(G)#G) ∗H are Morita equivalent.

More information on the ring (Ω(G)#G) ∗H is given by the next corollary:

Corollary 4.5. Let G be a finite group and H a subgroup of G. Then (Ω(G)#G) ∗H ∼=

M(H)(Ω(G)#G/H).

Proof. Keeping the notations above, we at once see that TΦ(Ω(G)(g)) ∼= TΦ(Ω(G)(h))

whenever g, h ∈ H is in the same coset gH = hH of H. This implies that TΦ(K) is isomor-

phic to a direct sum of |H| copies of V = TΦ

(
n⊕
i=1

Ω(G)(g−1
i )

)
. Therefore (Ω(G)#G) ∗H

is anti-isomorphic to ENDΩ(G)(K), which in turn is isomorphic to

M|H|

(
ENDΩ(G)

(
n⊕
i=1

Ω(G)(g−1
i )(H)

))
.
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However, M|H|

(
ENDΩ(G)

(
n⊕
i=1

Ω(G)(g−1
i )(H)

))
∼= M|H| (Ω(G)#G/H) by theorem 4.1

and proposition 4.2.

Corollary 4.6. Let Ω(G) =
⊕
g∈G

Ω(G)g be strongly G-graded and let H be a subgroup of

finite index in G. Then Ω(G)#G/H and Ω(G) are Morita equivalent.

Proof. Because we have that Ω(G) is strongly graded, it follows from theorem 1.3.4c of

[5] that Ω(G)Ω(G) is a generator in Ω(G)-gr. So TΦ(Ω(G)Ω(G)) is a projective generator in

(G/H,Ω(G))-gr. Consequently, (G/H,Ω(G))-gr is equivalent to mod-U , where

U = End(G/H,Ω(G))−gr(TΦ(Ω(G)Ω(G))) = ENDΩ(G)(Ω(G)Ω(G))(H).

Since ENDΩ(G)(Ω(G)Ω(G)) is anti-isomorphic to Ω(G) as graded rings, it follows that U

is anti-isomorphic to (Ω(G))(H), and thus Ω(G)#G/H is Morita equivalent to (Ω(G))(H).

Corollary 4.7. Let Ω(G) be a crossed product and let H has finite index n = [G : H] <∞,

then Ω(G)#G/H ∼= Mn(Ω(G))(H).

Proof. Suppose {g1, . . . , gn} is a left transversal for H in G. By theorem 4.1 we have that

(Ω(G)#G/H)(opp) ∼= T, T ∼= End(G/H,Ω(G))−gr(V ), V = TΦ

(
n⊕
i=1

Ω(G)(g−1
i )

)
. Since Ω(G)

is a crossed product, we have that Ω(G) = Ω(G)(g) in Ω(G)-gr for all g ∈ G. Therefore
n⊕
i=1

Ω(G)(g−1
i ) ∼= Ω(G)n. So V ∼= (TΦ(Ω(G)Ω(G)))n and it follows also that

T ∼= End(G/H,Ω(G))−gr((TΦ(Ω(G)Ω(G)))n) ∼= Mn(End(G/H,Ω(G))−gr(TΦ(Ω(G)Ω(G)))). But

End(Ω(G),G/H)−gr(TΦ(Ω(G)Ω(G))) = EndΩ(G)(Ω(G))H

is anti-isomorphic to (Ω(G))(H) and so Mn((Ω(G))(H)) is anti isomorphic to T. Therefore

Ω(G)#G/H ∼= Mn(Ω(G)(H)).

5. Functors

Dade [2] constructed several functors associated with homogenous G-sets S (that is

the set of the form G/H, where H is a subgroup of G). Here, we extend the ideas

in [2] along with the functor G(−) constructed in ([5], p.4) to arbitrary G-sets. So let

Ω(G) = ⊕
g∈G

Ω(G)g be G-graded and let Φ : S → S ′ be a morphism of G-sets. As in the
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previous section, consider the canonical functor TΦ : (G,S,Ω(G))-gr −→ (G,S ′,Ω(G))-gr.

Our first result in this section is the following:

Theorem 5.1. TΦ has a right adjoint UΦ. Moreover UΦ is an exact functor. Furthermore,

if Φ−1(s′) is a finite set for all s′ ∈ S ′, then UΦ is also a left adjoint for TΦ.

Proof. Let N [S] denote the additive group which is the direct sum
⊕
s∈S

sN of copies sN

of an Ω(G)-module N. If s ∈ S and n ∈ N, then sn will denote the natural image of n

in the subgroup sN of N [S]. We turn N [S] into an S-graded Ω(G)-module by putting

N [S]s = sN for all s ∈ S and λg ·sn = gs(λgn) for all s ∈ S, g ∈ G, λg ∈ Ω(G)g and n ∈ N.

Let N ∈ (G,S ′,Ω(G))-gr. Then N is also an Ω(G)-module and N [S] ∈ (G, . . .Ω(G))-gr.

We define an additive subgroup UΦ(N) of N [S] by UΦ(N) =
⊕
s∈S

sNΦ(s).

Note that UΦ(N) is a subobject of N [S] in (G,S,Ω(G))-gr. More especially UΦ(N) ∈

(G,S,Ω(G))-gr with UΦ(N)s = s(NΦ(s)), for all s ∈ S. We check this by looking at

λg ∈ Ω(G)g, n ∈ NΦ(s) and calculating λg · sn = gs(λgn). Doing this is easy because

since λgs ∈ λgNΦ(s) ⊂ NgΦ(s) = NΦ(gs), we have that gs(λgs) = λg ·s n ∈ gs(NΦ(gs)),

hence UΦ(N) is a subobject of N(S) in (G,S,Ω(G))-gr, as claimed. If N → N ′ is a

morphism in (G,S ′,Ω(G))-gr, we define f [S] : N [S] → N ′[S], sn → s(f(n)), and it is

clear that the latter is a morphism in (G,S,Ω(G))-gr. From f(NΦ(s)) ⊂ N ′Φ(s) it follows

that f [S](UΦ(N)) ⊂ UΦ(N ′) and so we may define UΦ(f) to be the restriction of f [S]

to UΦ(N). Exactness of the functor UΦ is clear. We now demonstrate that UΦ is a right

adjoint for TΦ. Let M ∈ (G,S,Ω(G))-gr, N ∈ (G,S,Ω(G))-gr, and define the canonical

morphism α : Hom(G,S′,Ω(G))−gr(TΦ(M), N) −→ Hom(G,S′,Ω(G))−gr(M,UΦ(N)) as follows:

for u : TΦ(M)→ N we have u(TΦ(M)s′) ⊂ Ns′ for all s′ ∈ S ′; so u(
⊕
{Ms | Φ(s) = s′}) ⊂

NΦ(s) or u(Ms) ⊂ NΦ(s) for all s ∈ S. So we may define α(u)(m) =
∑
s∈S

su(ms) in UΦ(N),

where m =
∑
s∈S

ms ∈M.

Conversely, let ψ : N [S] → N denote the natural Ω(G)-morphism sending sn to n for

any n ∈ N. Define the canonical morphism

β : Hom(G,S,Ω(G))−gr(M,UΦ(N)) −→ Hom(G,S′,Ω(G))−gr(TΦ(M), N)
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as follows: for v ∈ Hom(G,S′,Ω(G))−gr(M,UΦ(N)) we have v(Ms) ⊂ (UΦ(N))s = sNΦ(s),

therefore ψv(Ms) = ψv(
⊕
{Ms | Φ(s) = s′}) ⊂ NΦ(s) = Ns′ . Thus we set β(v) = ψ ◦ v.

One can easily verify that α and β are inverse to each other.

Now suppose that Φ−1(s′) is a finite set for all s′ ∈ S ′, and let us show that in this

case UΦ is also a left adjoint for TΦ. Let M ∈ (G,S,Ω(G))-gr, and N ∈ (G,S ′,Ω(G))-gr

, M =
⊕
s∈S
Ms, N =

⊕
s∈S
Ns′ . We can define the morphisms:

ψ : Hom(G,S,Ω(G))−gr(U
Φ(N),M) −→ Hom(G,S′,Ω(G))−gr(N, TΦ(M))

by setting for each u ∈ Hom(G,S,Ω(G))−gr(U
Φ(N),M) and ns′ ∈ Ns′

ψ(u)(ns′) = u

 ∑
{s∈S | Φ(s)=s′}

sns′


and δ : Hom(G,S′,Ω(G))−gr(N, TΦ(M)) −→ Hom(G,S,Ω(G))−gr(U

Φ(N),M) by setting for

each v ∈ Hom(G,S,Ω(G))−gr(N, TΦ(M)) and snΦ(s) ∈ (UΦ(N))s, δ(v)(snφ(s)) = v(nΦ(s))s.

Now let v ∈ Hom(G,S′,Ω(G))−gr(N, TΦ(M)) and ns′ ∈ Ns′ . Then (ψ◦δ)(v)(ns′) = ψ(δ(v))(ns′)

= δ(v)

( ∑
{s∈S | Φ(s)=s′}

sns′

)
=

∑
{s∈S | Φ(s)=s′}

δ(v)(sns′) =
∑

{s∈S | Φ(s)=s′}
v(ns′)s = v(ns′).

Hence ψ ◦ δ = 1Hom(G,S′,Ω(G))−gr
(N, TΦ(M)).

Let u ∈ Hom(G,S,Ω(G))−gr(U
Φ(N),M) and snΦ(s) ∈ sNΦ(s) = (UΦ(N))s. Then

(δ ◦ ψ)(u)(snΦ(s)) = (ψ(u)(nΦ(s)))s =

 ∑
{t∈S | Φ(t)=Φ(s)}

u(tnΦ(s))


s

= u(snΦ(s)).

Therefore δ ◦ ψ = 1Hom(G,S,Ω(G))−gr
(UΦ(N),M).

Corollary 5.2. Let S be a finite G-set. Then Q ∈ (G,S,Ω(G))-gr is an injective object

in this category if and only if Q is an injective Ω(G)-module.

Proof. The “if”-part is immediate from proposition 2.2. Now for the converse, let s ∈ S

and Φ : S → {s},Φ(t) = s for all t ∈ S. Then TΦ : (G,S,Ω(G))-gr → (G, {s},Ω(G))-gr

≈ Ω(G)-mod is the functor which ”‘forgets” the graded structure. This functor has an

exact left adjoint,by theorem 5.1 and so it preserves injectivity.
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We also have the following corollaries. For similar proofs, we refer the reader to [4].

Corollary 5.3. Let G be a finite group. Then Q ∈ Ω(G)-gr is gr-injective if and only if

Q is injective in Ω(G)-mod.

Corollary 5.4. Let H ⊂ G be a subgroup of finite index. Then Q ∈ (G/H,Ω(G))-gr is

injective in this category if and only if Q is an injective Ω(G)-module.

Corollary 5.5. Let K ⊂ H ⊂ G be subgroups of G, and Φ : G/K −→ G/H, gK 7−→ gH,

be the canonical morphism of G-sets, K has finite index in H, and Q ∈ (G/K,Ω(G))-gr

be an injective object. Then TΦ(Q) is an injective object in the category (G/K,Ω(G))-gr.

Now let S be a G-set, H a subgroup of G. Assume that B is a subset of S such that

gB ⊂ B for all g ∈ H. Define the functor TB : (G,S,Ω(G))-gr → (H,B,Ω(G)(H))-gr by

setting TB(M) = M (B) =
⊕
s∈B

Ms. If f : M → N is a morphism in (G,S,Ω(G))-gr, we set

TB(f) = f (B) = f |M(B) .

Theorem 5.6. TB possesses a left adjoint UB and a right adjoint UB. If B ⊂ S and H

is a subgroup of G such that gs = t with s, t ∈ B implies that g ∈ H, then TB ◦ UB =

TB ◦ UB = 1(H,B,Ω(G))−gr, where 1(H,B,Ω(G))−gr is the identity of (H,B,Ω(G))-gr.

Proof. First we show the existence of a left adjoint for TB. To N in (N,B,Ω(G)(H))-

gr we associate Ω(G) ⊗Z N ∈ Ω(G)-mod where the Ω(G)-module structure is given by:

r(λ
⊗

s) = rλ ⊗ n, for r ∈ Ω(G), λ ∈ B, n ∈ N As additive groups: Ω(G)
⊗

Z N ≈⊕
g∈G

⊕
t∈B

Ω(G)g
⊗

Nt. Put (Ω(G)
⊗

Z N)s =
⊕
{Ω(G)g

⊗
Nt | g ∈ G, t ∈ B, gt = s} (where

by convention direct sum of an empty family is zero). It is clear that Ω(G)
⊗

Z N =⊕
s∈S

(Ω(G)
⊗

Z N)s as additive groups. If λh
⊗

nt ∈ (Ω(G) ⊗Z N)s, then ht = s. If rg ∈

Ω(G)g, then rg(λh
⊗

nt) = rgλh
⊗

nt and (gh)t = g(ht) = gs. Therefore

Ω(G)g(Ω(G)
⊗

Z N)s ⊂ (Ω(G)
⊗

Z N)gs and so Ω(G)
⊗

Z N is an object of (G,S,Ω(G))-

gr.

Next consider the natural epimorphism φ : Ω(G) ⊗Z N → Ω(G)
⊗

Ω(G)(H) N, where

K = Ker(φ) is the Ω(G)-submodule generated by the elements {aλ
⊗

n− a
⊗

λn | a ∈
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Ω(G), λ ∈ Ω(G)(H), n ∈ N}. Each such generator may be decomposed as a sum of ele-

ments of the same form, with a, λ, n being homogeneous; soK is a graded Ω(G)-submodule

of Ω(G)
⊗

Z N and therefore Ω(G)
⊗

Ω(G)(H) N is S-graded by setting (Ω(G)
⊗

Z N)s =

φ((Ω(G)
⊗

Z N)s). We can define UB : (H,B,Ω(G)(H))-gr→ (G,S,Ω(G))-gr by UB(N) =

Ω(G)
⊗

Ω(G)(H) N. To a morphism f : N → N ′ in (H,B,Ω(G)(H))-gr we associate the

Ω(G)-morphism 1
⊗

f and because the latter acts well on the generators of K, it in-

duces a unique morphism: UB(f) : Ω(G)
⊗

Ω(G)(H) N → Ω(G)
⊗

Ω(G)(H) N, such that

UB(f)(λ
⊗

n) = λ
⊗

f(n). To establish that UB is a left adjoint for TB, consider

M ∈ (G,S,Ω(G))-gr and N ∈ (H,B,Ω(G)(H))-gr, and define

α : Hom(G,S,Ω(G))−gr(U
B(N),M)→ Hom(H,B,Ω(G)(H))−gr(N, T

B(M))

and

β : Hom(H,B,Ω(G)(H))−gr(N, T
B(M))→ Hom(G,S,Ω(G))−gr(U

B(N),M)

as follows: to u ∈ Hom(G,S,Ω(G))−gr(U
B(N),M) we associate α(u) given by α(u)(n) =

u(1
⊗

n). If λ ∈ Ω(G)(H), we have α(u)(λn) = u(1
⊗

λn) = u(λ
⊗

n) = u(λ(1
⊗

n)) =

λu(1
⊗

n) = λα(u)(n).

On the other hand, if n ∈ Nt, t ∈ B, then 1
⊗

n ∈ (Ω(G) ⊗Ω(G)(H) N)t and hence

α(u)(n) ∈ Mt, that is, α(u)(Nt) ⊂ TB(M)t. Therefore α is well-defined. To v ∈

Hom(H,B,Ω(G)(H))−gr(N, T
B(M)) we associate β(v) : Ω(G) ⊗Ω(G)(H) N → M given by

β(v)(λ
⊗

n) = λv(N). If s ∈ S and there are no t ∈ B, g ∈ G such that gt = s,

then (Ω(G)
⊗

Ω(G)(H) N)s = 0. Otherwise, let t ∈ B, g ∈ G be such that gt = s and let

λ ∈ Ω(G)g, n ∈ Nt. Then v(n) ∈ TB(M)t = Mt, and λv(n) ∈ Ω(G)gMt ⊂ Mgt = Ms.

Therefore β is well defined too. Now if u ∈ Hom(G,S,Ω(G))−gr(U
B(N),M) then we have:

β(α(u))(λ
⊗

n) = λα(u)(n) = λu(1
⊗

n) = u(λ
⊗

n) hence β ◦ α is the identity on

Hom(G,S,Ω(G))−gr(U
B(N),M). If v ∈ Hom(H,B,Ω(G)(H))−gr(N, T

B(M)) then we get

α(β(v))(n) = β(v)(1
⊗

n) = v(n),

hence α ◦ β is the identity of Hom(H,B,Ω(G)(H))−gr(N, T
B(M)). Assume now that H is as

in the last part of the statement and let N ∈ (H,B,Ω(G)(H))-gr. We have the functorial

morphism ψ(N) : N → (TB ◦ UB)(N), ψ(N(n) = α(1UB(N))(n) = 1
⊗

n. But (TB ◦
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UB)(N) = (Ω(G)
⊗

Ω(G)(H) N)(B) =
⊕
s∈B

(Ω(G)
⊗

Ω(G)(H) N)s. Since

(Ω(G)
⊗

Ω(G)(H) N)s is an image (Ω(G)
⊗

Z N)s, the former is generated by elements of

the form λ
⊗

n, where λ ∈ Ω(G)g, n ∈ Nt, and gt = s. By our hypothesis g ∈ H

follows, and therefore (Ω(G)
⊗

Ω(G)(H) N)s ⊂ Ω(G)(H)
⊗

Ω(G)(H) N. This clearly yields that

(TB ◦ UB)(N) is isomorphic to N, and ψ(N) is an isomorphism.

We now show that the right adjoint for TB exits. To do this, let N ∈ (H,B,Ω(G)(H))-

gr, N =
⊕
t∈B

Nt and define for each s ∈ S,

UB(N)s = {f ∈ HomΩ(G)(H)(Ω(G), N) | f(Ω(G)θ) = 0 if there are no h ∈ H, g ∈ G and

t ∈ B such that gt = s and θ = hg−1, and f(Ω(G)hg−1) ⊆ Nht for all h ∈ H if there

exist g ∈ G and t ∈ B such that gt = s}. We set UB(N) =
∑
s∈S

UB(N)s. Let us show that

the sum is direct. Let f ∈ UB(N)s ∩
∑
s′ 6=s

UB(N)s′ . Then f =
k∑
i=1

fsi , si 6= s, i = 1, . . . k.

Let rθ ∈ Ω(G)θ. If there are no h ∈ H, t ∈ B, g ∈ G such that gt = s and θ = hg−1,

then f(rθ) = 0. Suppose there are h ∈ H, g ∈ G, t ∈ B such that gt = s and θ = hg−1,

and hi ∈ H, gi ∈ G, ti ∈ B such that giti = si, θ = hig
−1
i , i = 1, . . . , l. We have that

f(rθ) = f(rhg−1) ∈ Nht. On the other hand, f(rθ) =
l∑

i=1

fsi(rθ) =
l∑

i=1

fsi(rhig−1
i

) ∈
l∑

i=1

Nhiti .

Suppose there exists i such that ht = hiti. Then s = gt, so g−1s = t, that is hg−1s = ht,

that is hig
−1
i s = hiti and so g−1

i s = ti, hence s = giti = si, a contradiction. Therefore

f(rθ) ∈ Nhiti ∩
l∑

i=1

Nhiti = 0, that is f = 0. Now we check that UB(N) =
⊕
s∈S

UB(N)s ∈

(G,S,Ω(G))-gr. Let rλ ∈ Ω(G)λ, f ∈ UB(N)s. We set (rf)(a) = f(ar) for all a, r ∈ Ω(G),

and show that rλf ∈ UB(N)λs. Let rθ ∈ Ω(G)θ. Then (rλf)(rθ) = f(rθrλ) If there are

h ∈ H, g ∈ G, t ∈ B such that λgt = λs, and θ = hg−1λ−1, then rθrλ ∈ (Ω(G))hg−1 and

gt = s, so (rλf)(rθ) ∈ Nλt. If not, then (rλf)(rθ) = 0. Thus UB(N) ∈ (G,S,Ω(G))-gr.

If N,N ′ ∈ (H,B,Ω(G)(H))-gr and φ : Hom(H,B,Ω(G)(H))−gr(N,N
′), then we put UB(ϕ) :

UB(N)→ UB(N ′), UB(ϕ)(f) = ϕ ◦ f. Then UB(ϕ) ∈ Hom(G,S,Ω(G))−gr(UB(N)0, UB(N ′)),

as one can easily check. So we have defined a functor UB(−) : (H,B,Ω(G)(H))-gr →

(G,S,Ω(G))-gr. We now show that UB(−) is a right adjoint for TB(−). To show this,

define for all M ∈ (G,S,Ω(G))-gr, N ∈ (H,B,Ω(G)(H))-gr, M =
⊕
s∈S

Ms, N =
⊕
t∈B

Nt,

the morphisms γ : Hom(H,B,Ω(G))−gr(T
B(M), N) → Hom(G,S,Ω(G))−gr(M,UB(N)) and δ :

Hom(G,S,Ω(G))−gr(M,UB(N))→ Hom(H,B,Ω(G))−gr(T
B(M), N) as follows:
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to u ∈ Hom(H,B,Ω(G))−gr(T
B(M), N) we associate γ(u) given by (using where necessary,

the convention that a sum indexed by an empty family is zero)

γ(u)(ms)(a) = u

( ∑
h∈H,g∈G;t∈B,gt=s

ahg−1ms

)
, ms ∈Ms, a ∈ Ω(G).

It is easy to check that γ(u)(ms) ∈ UB(N)s, and so γ is well defined. Now to v ∈

Hom(G,S,Ω(G))−gr(M,UB(N)) we associate δ(v) given by δ(v)(mt) = v(mt)(1), t ∈ B, mt ∈

Mt. Because v(mt) ∈ UB(N)t, we take h ∈ H, g = h, h−1t ∈ B and we have h(h−1t) = t,

thus v(mt)(Ω(G)1) = v(mt)(Ω(G)hh−1) ⊂ Nh(h−1t) = Nt, and so δ is also well defined.

Now let v ∈ Hom(G,S,Ω(G))−gr(M,UB(N)), ms ∈Ms, a ∈ Ω(G). Then

γ(δ(v))(ms)(a) = δ(v)

( ∑
h∈H,g∈G;t∈B,gt=s

ahg−1ms

)
= v

( ∑
h∈H,g∈G;t∈B,gt=s

ahg−1ms

)
(1)

=
∑

h∈H,g∈G;t∈B,gt=s

ahg−1v(ms)(1) = v(ms)

( ∑
h∈H,g∈G;t∈B,gt=s

ahg−1

)
= v(ms)(a);

since v(ms) ∈ UB(N)s, and hence v(ms)(aλ) = 0 if there are no h ∈ H, g ∈ G, t ∈ B such

that gt = s and λ = hg−1. So γ ◦ δ = id.

Conversely, let u ∈ Hom(H,B,Ω(G))−gr(T
B(M), N), mt ∈ Mt and t ∈ B. We have

δ(γ(u))(mt) = γ(u)(mt)(1) = u(mt), so δ ◦ γ = Id. Now suppose that H is again as

in the last part of the statement, and let N ∈ (H,B,Ω(G)(H))-gr. Then TB(UB(N)) =⊕
t∈B

UB(N)t. We have the canonical morphism φ(N) :
⊕
t∈B

UB(N)t −→ N =
⊕
t∈B

(N)t de-

fined by φ(N)(f) = f(1) ∈ Nt for each f ∈ UB(N)t. From the condition gt = t′, , t′ ∈ B

implies g ∈ H, it follows that for all t ∈ B and each f ∈ UB(N)t, we have that f is zero

outside Ω(G)(H). It is clear that φ(N) is an isomorphim in (H,B,Ω(G)(H))-gr.
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