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1. INTRODUCTION

Algebra and graph theory are incredibly useful in many contexts. Group theory studies sym-

metry, found in crystals, art, architecture and music. Many other algebraic structures are used

in theoretical computer science. Lattice theory is used in the development of semantics. Uni-

versal algebra is used for defining algebraic specifications of data types. Category theory is the

foundation for type theory. Graph theory is applied in different fields of computer science like

image segmentation, data mining, image capturing, clustering, and networking etc. The concept
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coloring of graph is used in scheduling and resource allocation. Also, paths, walks and circuits

are used in database design concepts, traveling salesman problem, and resource networking.

Cayley’s Theorem from group theory motivates the study of algebraic combinatorics. Group

action is a dynamical process that partition the elements of an object into orbits. The study

of the structure and quantity of these orbits implies important combinatorial results. Algebraic

combinatorics and graph theory are applicable in different areas of computer science such as

complexity theory, automata theory, and polya enumeration theory.

The automorphism group of a graph and Cayley graph of a group motivates to study the

interplay between groups and graphs. The Cayley graph Cay(X : G) of a finite group G with

generating set X is a directed graph in which each element of G is a vertex and there exists an

arc from vertex a to b iff ax = b for some x ∈ X . The set acquiring all the automorphisms of

a graph is a group under the operation of composition of functions, called the automorphism

group of a graph. Some important readings related to these topics are [13, 15, 16, 19, 20].

There are many ways to associate a graph with a given group. There exists a large amount

of literature devoted to study the graphs associated to finite groups, for instance commuting

graphs [2, 4, 6, 10, 21, 27], non-commuting graphs [3, 23], intersection graphs[1], prime graphs

[5, 17, 18], conjugacy class graphs [7], power graphs [11, 12, 22] , inverse graphs [30], and

order divisor graphs [28].

In this paper, we associate a simple graph Ω(G) to a finite group G, called by us the general-

ized order divisor graph associated with finite group G, in which the elements of G are vertices

and two distinct vertices a and b are adjacent if |a| divides |b| or |b| divides |a|. Our main

objective here is to study the interplay of group-theoretic properties of G with graph-theoretic

properties of Ω(G). This newly associated graph Ω(G) is a generalization of the order divisor

graph OD(G), introduced and studied in [28]. The definition of OD(G) is slightly different than

Ω(G). In OD(G) the adjacent vertices must have different orders, however this condition is not

imposed in Ω(G). We find that Ω(G) better illustrates the coaction between groups and graphs

as compared to OD(G).

For the convenience of readers we provide a brief explanation here for the notions used. A

group G is known as a p-group if ∀a∈G, |a|= pα , for some prime p. The group of symmetries
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of a regular n-gon (n≥ 3) is known as dihedral group that have 2n elements. The dihedral group

can be presented by Dn =< r,s | rn = s2 = (rs)2 = e >. We symbolize the group of units of Zn

by U(n), i.e., U(n) = {ā ∈ Zn | (a,n) = 1}. An undirected graph that have no multiple edges

and loops is known as simple graph. A complete bipartite graph is a bipartite graph (i.e., a graph

in which vertices are decomposed into two disjoint sets such that no two vertices are adjacent

if they belong to the same set) such that every vertex in one set is connected with every vertex

in other set. The star graph Sn with order n is a tree such that degree of one vertex is n−1 and

all remaining vertices have degree 1, i.e., Sn ∼= K1,n. The chromatic number χ(G) of a graph G

is the least number of colors required for coloring its vertices. Girth of a graph G, denoted by

g(G), is the length of smallest cycle within G. The graph G has girth infinity if there does not

exist any cycle in G. The clique number ω(G) of a graph G is the order of maximal clique in G.

In Section 2, we prove that Ω(G) is a connected graph with diam(Ω(G)) ≤ 2 and Ω(G)

contains a cycle if |G| > 2 and g(Ω(G)) = 3. We conclude that for |G| > 2, Ω(G) cannot be

a bipartite graph and hence it cannot be a tree, star or path. In Section 3, we obtain some

characterizations about Ω(G) to be complete and regular. As a consequence, we investigate the

completeness of Ω
(
U(n)

)
, Ω(Zn) and Ω(Dn). Moreover, we obtain that Ω(Dn) is one-vertex

union of Kn and Kn+1 if and only if n = pm for some odd prime p and positive integer m. In

Section 4, we determine the clique number of Ω(Dn) and Ω(Zn).

Throughout this paper, all groups and graphs will be finite. See [8, 14, 29] for basic refer-

ences.

2. MAIN RESULTS

2.1. Properties of Ω(G). In this section, we initiate with few examples and later show that

Ω(G) is connected always and has small girth and diameter. We also determine that a bipartite

graph with more than two vertices cannot be realized as Ω(G).

Example 2.1. The generalized order divisor graphs for several groups are given below.
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Remark 2.2. Above examples show that generalized order divisor graph may be same for non-

isomorphic groups.
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Theorem 2.3. Let G be a group with |G|<∞. Then Ω(G) is always connected and diam(Ω(G))≤

2. Moreover, if |G|> 2 then Ω(G) contains a cycle and g(Ω(G)) = 3.

Proof. The vertex which is associated with identity is adjacent to all other vertices, so Ω(G)

is always connected. If two distinct vertices a,b of G are adjacent then d(a,b) = 1. If they

are not adjacent, then a− e− b is a path of length 2. Hence diam(Ω(G)) ≤ 2. Now suppose

|G| > 2. If every element other than identity has order 2, then Ω(G) is complete and hence

contain a cycle of length 3. If G contains and element a of order more than 2, then a 6= a−1 and

so a− e−a−1−a is a cycle of length 3. �

Corollary 2.4. Following assertions are true for a finite group G.

(a) Ω(G) is a cycle iff |G|= 3.

(b) Ω(G) is bipartite iff |G|= 2.

Proof. The proof of (a) is straightforward. For the proof of (b), note that a graph is bipartite iff

it does not have a cycle of odd length, cf. [29, Theorem 1.2.18]. �

Remark 2.5. Note that the family of bipartite graphs include trees, star graphs, and path graphs,

so if |G|> 2, then Ω(G) cannot be a tree, star or path.

2.2. Certain Characterizations of Ω(G). In this section we retrieve some characterizations

about Ω(G). We find out when Ω(G) is complete and when Ω(G) is regular. As a consequence,

we determine those values of n for which Ω
(
U(n)

)
, Ω(Zn) and Ω(Dn) are complete. We also

determine that for specific values of n, the Ω(Dn) is one-vertex union of two complete graphs.

Theorem 2.6. The following assertions are equivalent for a group G with |G|< ∞.

(a) G is a p-group for some prime p.

(b) Ω(G) is complete.

(c) Ω(G) is regular.

Proof. (a)⇒ (b): Let |G| = pn for some positive integer n. Then order of every element of G

is a power of p. Moreover, for each pair pi and p j with i ≤ j, we have pi|p j. Hence Ω(G) is

complete.
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(b)⇒ (a): Deny. Then |G| has at least two distinct prime divisors, say, p and q. According to

Cauchy’s theorem, G must have an element with order p and an element with order q. Therefore,

the vertex associated to p and q are not adjacent, which is a contradiction

(b)⇒(c): Every complete graph is regular.

(c)⇒(b): The graph Ω(G) is regular and the vertex associated to the identity element has

degree |G|−1. �

Recall that the integers Fn = 22n
+1 are called Fermat numbers. Note that not all Fermat num-

bers are prime. It is known only from n = 0 to n = 4. The first non-prime Fermat number is

when n = 5. A Fermat prime is a Fermat number that is also a prime number, cf. [26, Section

3.6].

Corollary 2.7. The following assertions are equivalent.

(a) Ω
(
U(n)

)∼= Kφ(n).

(b) U(n) is a 2-group.

(c) n = 2k p1 p2 · · · ps, where pi are distinct Fermat primes and k ∈ Z+∪{0}.

(d) A regular polygon of n sides can be constructed using a ruler and compass.

Proof. (a) ⇔ (b): As φ(n) is even for n > 2, so by Theorem 2.6 Ω(U(n)) is complete iff

|U(n)|= φ(n) = 2m for some positive integer m.

(b) ⇔ (c): Suppose U(n) is a 2-group. This implies that, if n = pa1
1 pa2

2 · · · p
at
t is the prime

power decomposition of n, then each factor pai−1
i (pi− 1) should be some power of 2. This

implies that either pi = 2 or ai = 1 and pi−1 = 2ki and thus pi will be a Fermat prime. Hence

U(n) is a 2-group iff n = 2k p1 p2 · · · ps, where pi are distinct Fermat primes and k ∈ Z+∪{0}.

(c)⇔ (d): See [26, Theorem 3.22] or [24]. �

Corollary 2.8. Ω(Zn)∼= Kn iff n = pm, where p is a prime and m is an integer greater than or

equal to 1.

Corollary 2.9. Ω(Dn)∼= K2n iff n = 2m for some integer m≥ 1.

Recall that one-vertex union of finite number of connected graphs can be grabbed by identifying

one vertex from each graph.
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Theorem 2.10. Ω(Dn) is one-vertex union of Kn and Kn+1 iff n = pm for some odd prime p and

m ∈ Z+.

Proof. We have Dn =< a,b | an = b2 = (ab)2 = e >. Since, |aib|= 2 for each i; 0≤ i≤ n−1,

therefore the vertices associated to e,b,ab,a2b, ...,an−1b forms a complete subgraph Kn+1 in

Ω(Dn). Moreover, the vertices associated to elements in < a >= {e,a,a2, ...,an−1} forms a

complete subgraph Kn in Ω(Dn) iff n = |< a > |= pm, where p is prime and m is some positive

integer. Hence Ω(Dn) is one-vertex union of Kn and Kn+1 iff n = pm for some odd prime p and

positive integer m. �

Example 2.11.

2.3. Clique number of Ω(G). Recall that the clique number ω(G ) of a graph G is the order

of a maximal clique of G . In this section we determine the clique number of Ω(G), where G is

a dihedral group or a cyclic group.

Theorem 2.12. ω(Ω(Dn)) = 1+n iff n is odd positive integer.

Proof. (⇒:) Let n be even. Then the subgroup < a >= {e,a,a2, ...,an−1} in Dn =< a,b |

an = b2 = (ab)2 = e > has an element of order 2, say, x. This implies that the elements e, x,

b,ab,a2b, ...,an−1b forms a clique of order n+2, a contradiction.

(⇐:) The subgroup < a > in Dn =< a,b | an = b2 = (ab)2 = e > has no element of order 2.

So, e, b,ab,a2b, ...,an−1b forms a largest clique in Ω(Dn). �
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Theorem 2.13. Let n = 2k pα , where p is odd prime and k,α be positive integers. Then the

clique number of Ω(Dn) is given by

ω(Ω(Dn)) = 1+n+ pα−1 +(2k−1)φ(pα),

where φ denotes the Euler’s Phi function.

Proof. We have Dn =< a,b | an = b2 = (ab)2 = e >. The largest clique in Ω(Dn) consists of

{e,b,ab,a2b, ...,an−1b}∪{x∈< a> | |x| ∈A}, where A= {2,2p,2p2, ...,2pα−1,2pα ,22 pα , ...,2k pα}.

Since for every positive divisor d of n, the subgroup < a >= {e,a,a2, ...,an−1} has φ(d) ele-

ments with order d, cf. [14, Theorem 4.4], the clique number of Ω(Dn) is given by

ω(Ω(Dn)) =n+1+φ(2)+φ(2p)+φ(2p2)+ · · ·+φ(2pα−1)

+φ(2pα)+φ(22 pα)+ · · ·+φ(2k pα)

=n+2+φ(p)+φ(p2)+ · · ·+φ(pα−1)

+φ(pα)+2φ(pα)+ · · ·+2k−1
φ(pα)

=n+1+ pα−1 +(2k−1)φ(pα)

�

Example 2.14. ω(Ω(D36)) = ω(Ω(D2232)) = 1+36+32−1 +(22−1)φ(32) = 58.

Theorem 2.15. Let n = 2k p1 p2 · · · pm, where p1 < p2 < · · · < pm are distinct odd primes and

k ≥ 1. Then

ω
(
Ω(Dn)

)
= n+2+φ(pm)+φ(pm−1 pm)+ · · ·+φ(p2 p3 · · · pm)+(2k−1)φ(p1 p2 · · · pm).

Proof. We have Dn =< a,b | an = b2 = (ab)2 = e >. The largest clique in Ω(Dn) consists of

{e,b,ab,a2b, ...,an−1b}∪{x∈< a>| |x| ∈A}, where A= {2,2pm,2pm−1 pm, ...,2p2 p3 · · · pm−1 pm,

2p1 p2 · · · pm,22 p1 p2 · · · pm, ...,2k p1 p2 · · · pm}. Since for every positive divisor d of n, there are

φ(d) elements with order d in the subgroup < a >= {e,a,a2, ...,an−1}, cf. [14, Theorem 4.4],

the clique number of Ω(Dn) is given by
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ω(Ω(Dn)) =n+1+φ(2)+φ(2pm)+φ(2pm−1 pm)+ · · ·+φ(2p2 p3 · · · pm)

+φ(2p1 p2 · · · pm)+φ(22 p1 p2 · · · pm)+ · · ·+φ(2k p1 p2 · · · pm)

=n+2+φ(pm)+φ(pm−1 pm)+ · · ·+φ(p2 p3 · · · pm)

+φ(p1 p2 · · · pm)(1+2+22 + · · ·+2k−1)

=n+2+φ(pm)+φ(pm−1 pm)+ · · ·+φ(p2 p3 · · · pm)

+φ(p1 p2 · · · pm)(2k−1)

�

Example 2.16.

ω(Ω(D840)) = ω(Ω(D23·3·5·7)) = 840+2+φ(7)+φ(5 ·7)+φ(3 ·5 ·7)(23−1) = 1208.

Theorem 2.17. If n = 2k for some integer k ≥ 2, then ω(Ω(Dn)) = 2k+1.

Proof. If n = 2k, then Dn is a 2-group. Now apply Theorem 2.6. �

Remark 2.18. Note that Ω(D3) has clique number 22, which shows that converse of above

result is false.

Theorem 2.19. Let n = p1 p2 · · · pm, where p1 < p2 < · · · < pm are distinct primes. Then

ω
(
Ω(Zn)

)
= φ(n)+φ(p2 p3 · · · pm)+φ(p3 p4 · · · pm)+ · · ·+φ(pm)+1.

Proof. The largest clique in Ω(Zn) consists of {x ∈ Zn | |x| ∈ A}, where A = {n, p2 p3 · · · pm,

p3 p4 · · · pm, ..., pm−1 pm, pm,1}. Hence, by using the fact that for every positive divisor d of

n, there are φ(d) elements with order d in Zn, we get ω
(
Ω(Zn)

)
= φ(n)+ φ(p2 p3 · · · pm)+

φ(p3 p4 · · · pm)+ · · ·+φ(pm−1 pm)+φ(pm)+1. �

Example 2.20.

ω
(
Ω(Z210)

)
= ω

(
Ω(Z2·3·5·7)

)
= φ(2 ·3 ·5 ·7)+φ(3 ·5 ·7)+φ(5 ·7)+φ(7)+1 = 127.

Theorem 2.21. Let n = pα1
1 pα2

2 · · · pαm
m , where p1 < p2 < · · ·< pm are distinct primes and

α1 ≤ α2 ≤ ·· · ≤ αm. Then

ω
(
Ω(Zn)

)
=

α1

∑
i=0

φ(pα1−i
1 pα2

2 pα3
3 · · · p

αm
m )+

α2

∑
i=0

φ(pα2−i
2 pα3

3 · · · p
αm
m )+ · · ·+

αm

∑
i=0

φ(pαm−i
m )
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Proof. The largest clique in Ω(Zn) consists of {x ∈ Zn | |x| ∈ A}, where A = {pα1−i
1 pα2

2 · · · pαm
m ,

pα2−i
2 pα3

3 · · · pαm
m , ..., pαm−i

m | 0 ≤ i ≤ m}. Since, for every positive divisor d of n the group Zn

has φ(d) elements with order d, therefore

ω
(
Ω(Zn)

)
=

α1
∑

i=0
φ(pα1−i

1 pα2
2 pα3

3 · · · pαm
m )+

α2
∑

i=0
φ(pα2−i

2 pα3
3 · · · pαm

m )+ · · ·+
αm
∑

i=0
φ(pαm−i

m ). �

Corollary 2.22. If p1 < p2 are distinct primes, then ω(Ω(Zp1 p2)) = p1 p2− p1 +1.
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