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Abstract. A group G satisfies Syskin’s condition if elements of same order are conjugates. If a group G satisfies

Syskin’s condition, then each element and its inverse are conjugate to each other, i.e., for all x ∈ G, xG = (x−1)G,

but not conversely. Thus, the class of those groups satisfying Syskin’s condition forms a proper subclass of groups

satisfying xG = (x−1)G. In this note, it is proved that if a group G meets the condition xG = (x−1)G, then G cannot

be of odd order. As the main result, it is shown that if xG = (x−1)G holds for a centreless and non-solvable group

G of order 120 such that G 6= G
′
, then G∼= S5.
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1. INTRODUCTION

A group G satisfies Syskin’s condition if elements of same order lie in same conjugacy class.

Equivalently, these elements are conjugate to each other. Fiet, Sietz [2] and Zhang[4] proved

that if a finite group G meet this condition, then G∼= Si, i = 1,2,3. Furthermore, You, Qian and

Shi [3] generalised Syskin’s problem and proved that if all non-cental elements of a finite group

G are conjugate to each other, then G is either abelian or isomorphic to S3. It is straightforward

to see that if a group G meets Syskin’s condition, then for all x ∈ G, xG and (x−1)G coincide,
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but not conversely. Thus, the class of those groups satisfying Syskin’s condition forms a proper

subclass of groups satisfying xG = (x−1)G. Berggren, J.L.[1] proved that the class ℑ of all finite

groups whose irreducible characters over C are real, is equivalent to those finite groups in which

xG and (x−1)G coincides. He proved that alternating group An ∈ ℑ if n ∈ {1,2,5,6,10,14} and

conversely. In this paper, it is shown that if xG = (x−1)G for each x ∈G, then G must be of even

order. As a main result it is shown that if G is a centreless, non-perfect, non-solvable group of

order 120 and xG concides with (x−1)G for each x ∈ G, then G∼= S5.

2. MAIN RESULTS

Lemma 2.1. If G is a finite group with each element conjugate to its inverse, then G can not be

of odd order.

Proof. Let G be a finite group with xG = (x−1)G for every x ∈ G. If G is abelian, then the

given condition implies that x = x−1 for each x ∈ G and hence G turns out to be an elementary

abelian 2-group. Suppose Gis non-abelian. Because xG = (x−1)G, for some u∈G, x−1 = u−1xu.

Now

u−2xu2 = u−1(u−1xu)u

= u−1x−1u

= (x−1)−1 = x.

An easy induction shows that u−kxuk = x, if k is even, and u−kxuk = x−1 if k is odd. If |G|= m,

where m is an odd positive integer, then u−mxum = x−1. Since um = 1, x = x−1 for each x ∈ G.

This results in G being an elementary abelian 2-group, which is a contradiction. Thus, unless

G = 1, G cannot be of odd order.

Theorem 2.2. Let G be a meta-cyclic group with a finite centre such that for any x ∈ G, xG =

(x−1)G. In that case, G is a finite group.

Proof. Assume that G is a meta-cyclic group.Then there is a normal subgroup H of G for

which both G/H and H are cyclic. Assume G/H=< xH > and H=< y>, for some x∈G and y∈

H. Each element of G can now be expressed as xiy j, for some integers i, j. Because, for all xH ∈
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G/H, (xH)G/H = (x−1H)G/H , there exists some bH ∈G/H such that xH = b−1Hx−1HbH. But

then xH = x−1H. This shows that x2 ∈ H =< y >. Hence, x2 = yt , for some t ∈ Z. Since

x ∈ (x−1)G, x = g−1x−1g, for some g ∈ G. Let g = xrys. Then x = y−sx−1ys and x2 = y−sx−2ys.

Since x−2 ∈ H =< y >, x4 = 1. If t 6= 0, then x2 = yt ⇒ y2t = x4 = 1, i.e., |y| < ∞. Hence, in

this case G is finite. But, x2 = 1 if t = 0, and in this case, x = x−1. Now

x = y−sx−1ys,

x = y−sxys.

Thus, ys ∈ Z(G) . Because Z(G) is finite, order of y must be finite. But then G is a finite group.

Theorem 2.3. Let G be a non-solvable group of order 120 with the property that for all x ∈ G,

xG coincides with (x−1)G. If G 6= G
′
and center of G is trivial, then G∼= S5.

Proof. To prove the theorem, we use the fact that every group of order < 60 is solvable and

if a subgroup H with index n exists within a group G, then then there exists a homomorphism

f : G→ Sn, whose kernel is contained in H. Since (xG
′
)G/G

′
= (x−1G

′
)G/G

′
holds for each

xG
′ ∈ G/G

′
, G/G

′
turns out to be an elementary abelian 2-group. As a result, |G/G

′| has order

2m, for some m≥ 1. Because Z(G) = {e}, G can no longer be a 2-group. Consequently, m≥ 2,

and hence |G/G
′ |< 60 and 2 < |G′|< 60. However, since both G

′
and G/G

′
are solvable, G is

solvable as well, which is a contradiction. Thus, |G/G
′|= 2 and |G′|= 60. Now |G|= 23.3.5.

Let np(G) represents the number of Sylow p-subgroups of G. Since |G|= 23.3.5, n2(G)= 1,3,5

or 15. If n2(G) = 1, then G posseses a unique Sylow 2-subgroup, say H of order 8, which is

normal in G. Now |G/H| = 15 indicates that G is a solvable group, which is a contradiction.

Assume n2(G) = 3 and H ∈ Syl2(G). As n2(G) is the number of conjugates of H in G, G has a

subgroup of order 40, which is precisely NG(H). Let A = NG(H). A homomorphism f : G→ S3

now exists such that ker( f ) ⊆ A. Since |A| = 40 and |S3| = 6, 20 ≤ |ker( f )| ≤ 40. But then G

is solvable, a contradiction.

Similarly, if n2(G) = 5, there exists a subgroup A of order 24 in G and hence we can find a

homomorphism f : G→ S5. Let K = Ker( f ). Then 1 ≤ |K| ≤ 24. If |K| > 2, then both K

and G/K are solvable, and thus G is solvable; this is a contradiction. If |K| = 2, then K ⊆ G′,

otherwise G = K⊕G′, and finally K ⊆ Z(G) = 1, resulting in another contradiction. Hence,
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K = {e}. But then, G∼= S5. Now suppose that n2(G) = 15. As |G′|= 22.3.5 and G
′
is a normal

subgroup of G, G and G
′

have identical Sylow 3- and Sylow 5-subgroups. Clearly n3(G) =1,4

or 10. As before, if n3(G) = 1 or 4, then G is solvable. Hence n3(G) = 10. Let P ∈ Syl3(G).

Then |NG′ (P)|= 6. A similar argument shows that n5(G) = 6. Since n3(G) = n3(G
′
) = 10 and

n5(G) = n5(G
′
) = 6, G and G

′
have 44 elements of order 3 or 5.

Let Hi (1≤ i≤ 15) be Sylow 2-subgroups of G. Let A=Hi∩H j. If for some i 6= j, |Hi∩H j|= 4,

then A∆Hi, A∆H j, as [Hi : A] = [H j : A] = 2. Thus HiH j ⊆ NG(A). From this it follows that,

|NG(A)| ≥ 16.Hence either |NG(A)| = 24 or 40. If |NG(A)| = 40, then G is solvable; again a

contradiction. So, |NG(A)|= 24, but then G∼= S5.

Now n2(G
′
) = 1 or 3 or 5 or 15. Suppose n2(G

′
) = 15 and let Ki, 1 ≤ i ≤ 15 be Sylow 2-

subgroups of G
′
. Suppose there exist two Sylow 2-subgroups, say K1 and K2, of G

′
such that

|K1 ∩K2| = 2. (note that |K1 ∩K2| 6= 4, as |Ki| = 4, for all i). Let K = K1 ∩K2 and A be

the normalizer of K in G
′
, i.e., A = NG′ (K). Then K is a normal subgroup of K1 and K2.

Thus, K1K2 ⊆ NG′ (K) = A. Since |K1K2| = 8, |A| ≥ 12. If |A| > 12, then |A| = 20 or 60 and

therefore G
′

is solvable; a contradiction. Hence |A| = 12 = 22.3. Now K1,K2 ∈ Syl2(A), and

thus n2(A) = 3. But then A has a unique Sylow 3-subgroup, say P̂ of order 3. Now P̂∆A

and hence A ⊆ NG′ (P̂). But then |NG′ (P̂)| ≥ 12; a contradiction.Thus |NG′ (P̂)| = 6. Hence

Ki∩K j = {e}, for all i 6= j. But then G
′
has at least 20+24+45+1=90 elements; a contradiction.

Hence, n2(G
′
) = 5, i.e., Ki, 1 ≤ i ≤ 5 are Sylow 2-subgroup of G

′
. Now Hi ∈ Syl2(G) and

G
′
∆G, therefore Hi ∩G

′ ∈ Syl2(G
′
). Since 1 ≤ i ≤ 15 and n2(G

′
) = 5, there are two Sylow

2-subgroups of G, say H1 and H2, respectively such that H1∩G
′
= H2∩G

′
= K1 (say). But then

H1∩H2 = K1, i.e., |H1∩H2|= 4. Finaly, using the same argument as above, G∼= S5.
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