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1. Introduction

Fixed point theory is one of the famous and traditional theories in mathematics and has

large number of applications. The Banach contraction principle is one of the pivotal re-

sults of analysis. It is widely considered as the source of metric fixed point theory. Also,

its significance lies in its vast applicability in a number of branches of mathematics. Gen-

eralization of the above principle has been a heavily investigated branch of mathematics.

Existence of fixed points in partially ordered metric spaces was investigated in 2004 by
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Ran and Reurings [13] and then by Nieto and Lopez [14]. For some other results in par-

tially ordered metric spaces, one can be referred to (cf. [1]-[19]) and the references cited

therein.

In [1], Bhaskar and Lakshmikantham introduced the concept of a mixed monotone map-

ping and proved some coupled fixed point theorems for a mixed monotone mapping in

partially ordered complete metric spaces. Later, various results on coupled fixed point

have been obtained (see, for details, [1]-[11]).

Recently, Imdad et al. [12] introduced the concepts of n-tupled coincidence as well as

n-tupled fixed point and utilize these two definitions to obtain n-tupled coincidence as well

as n-tupled common fixed point theorems for nonlinear mappings satisfying φ-contraction

condition in partially ordered complete metric spaces.

The purpose of this paper is to prove some n-tupled fixed point theorems for mapping

having the mixed monotone property in partially ordered complete metric spaces involving

an ICS map.

2. Preliminaries

We begin with the following definitions and results related to coupled fixed point in

metric spaces.

Definition 2.1. [1] Let (X,�) be a partially ordered set equipped with a metric d such

that (X, d) is a metric space. We endow the product space X × X with the following

partial ordering:

for (x, y), (u, v) ∈ X ×X, define (u, v) � (x, y)⇔ x � u, y � v.

Definition 2.2. Let (X,�) be a partially ordered set and F : X → X be a mapping.

Then F is said to be nondecreasing if for all x1, x2 ∈ X, x1 � x2 implies F (x1) � F (x2)

and nonincreasing if for all x1, x2 ∈ X, x1 � x2 implies F (x1) � F (x2).

Definition 2.3. [1] Let (X,�) be a partially ordered set and F : X × X → X be a

mapping. Then F is said to have mixed monotone property if for any x, y ∈ X, F (x, y) is
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monotonically nondecreasing in first argument and monotonically nonincreasing in second

argument, that is, for

x1, x2 ∈ X, x1 � x2 ⇒ F (x1, y) � F (x2, y),

y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1) � F (x, y2).

Definition 2.4. [1] An element (x, y) ∈ X × X is called a coupled fixed point of the

mapping F : X ×X → X if

F (x, y) = x and F (y, x) = y.

Definition 2.5. [3] Let (X, d) be a metric space. A mapping T : X → X is said to be

ICS if T is injective, continuous and has the property: for every sequence {xn} in X, if

{Txn} is convergent then {xn} is also convergent.

Also Luong et al. [3] proved the following result:

Let Φ be the set of all functions φ : [0,∞)→ [0,∞) such that:

(i) φ(t) < t for all t > 0,

(ii) lim
r→t+

φ(r) < t for all t > 0.

Theorem 2.1. [3] Let (X,�) be a partially ordered set and suppose there exists a metric

d on X such that (X, d) is a complete metric space and T : X → X is an ICS mapping.

Let F : X ×X → X be a mapping having the mixed monotone property on X such that

there exist two elements x0, y0 ∈ X with x0 � F (x0, y0) and y0 � F (y0, x0). Suppose there

exists ϕ ∈ Φ such that

d(TF (x, y), TF (u, v)) ≤ 1

2
ϕ(d(Tx, Tu) + d(Ty, Tv))

for all x, y, u, v ∈ X for which x � u and y � v. Suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a nondecreasing sequence {xn} → x, then xn � x for all n;

(ii) if a nonincreasing sequence {yn} → y, then yn � y for all n.
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Then there exist x, y ∈ X such that x = F (x, y) and y = F (y, x) i.e., F has a coupled

fixed point in X.

Throughout the paper, we consider n to be an even positive integer.

For simplicity we will denote the cross product of n ∈ N copies of the space X by Xn.

Definition 2.6. [12] Let (X,�) be a partially ordered set and F : Xn → X be a mapping.

The mapping F is said to have the mixed monotone property if F is nondecreasing in its

odd position arguments and nonincreasing in its even position arguments, that is, if,

for all x11, x
1
2 ∈ X, x11 � x12 ⇒ F (x11, x

2, x3, ..., xn) � F (x12, x
2, x3, ..., xn)

for all x21, x
2
2 ∈ X, x21 � x22 ⇒ F (x1, x21, x

3, ..., xn) � F (x1, x22, x
3, ..., xn)

for all x31, x
3
2 ∈ X, x31 � x32 ⇒ F (x1, x2, x31, ..., x

n) � F (x1, x2, x32, ..., x
n)

...

for all xn1 , x
n
2 ∈ X, xn1 � xn2 ⇒ F (x1, x2, x3, ..., xn1 ) � F (x1, x2, x3, ..., xn2 ).

Definition 2.7. [12] An element (x1, x2, ..., xn) ∈ Xn is called an n-tupled fixed point of

the mapping F : Xn → X if



F (x1, x2, x3, ..., xn) = x1

F (x2, x3, ..., xn, x1) = x2

F (x3, ..., xn, x1, x2) = x3

...

F (xn, x1, x2, ..., xn−1) = xn.

Example 2.1. Let (R, d) be a partially ordered metric space under natural setting and

let F : Rn → R be a mapping defined by F (x1, x2, x3, ..., xn) = sin (x1.x2.x3...xn), for any

x1, x2, ..., xn ∈ R. Then (0, 0, ..., 0) is an n-tupled fixed point of F.

Remark 2.1. Definition 2.7 with n = 2 yields the definition of coupled fixed point.

3. Main results

Now our main result is as follows:
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Theorem 3.1. Let (X,�, d) be a complete partially ordered metric space and T : X → X

be an ICS mapping. Let F : Xn → X be a map enjoying the mixed monotone property on

X. Suppose that there exists ϕ ∈ Φ such that

d(TF (x1, x2, ..., xn), TF (y1, y2, ..., yn)) ≤ 1
n
ϕ(d(Tx1, T y1) + d(Tx2, T y2)

+...+ d(Txn, T yn)) (3.1)

for all x1, x2, ..., xn, y1, y2, ..., yn ∈ X for which x1 � y1, x2 � y2, x3 � y3, ..., xn

� yn. Suppose either

(a) F is continuous or

(b) X has the following property:

(i) if nondecreasing sequence {xm} → x, then xm � x for all m;

(ii) if nonincreasing sequence {xm} → x, then xm � x for all m.

If there exist x10, x
2
0, x

3
0, ..., x

n
0 ∈ X such that

x10 � F (x10, x
2
0, x

3
0, ..., x

n
0 )

x20 � F (x20, x
3
0, ..., x

n
0 , x

1
0)

x30 � F (x30, ..., x
n
0 , x

1
0, x

2
0)

...

xn0 � F (xn0 , x
1
0, x

2
0, ..., x

n−1
0 ).

Then there exist x1, x2, ..., xn ∈ X such that x1 = F (x1, x2, ..., xn), x2 = F (x2, x3, ..., x1),

...,xn = F (xn, x1, ..., xn−1); that is, F has an n-tupled fixed point in X.

Proof. Let x10, x
2
0, x

3
0, ..., x

n
0 ∈ X such that

x10 � F (x10, x
2
0, x

3
0, ..., x

n
0 )

x20 � F (x20, x
3
0, ..., x

n
0 , x

1
0)

x30 � F (x30, ..., x
n
0 , x

1
0, x

2
0)

...

xn0 � F (xn0 , x
1
0, x

2
0, ..., x

n−1
0 ).

(3.2)
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Choose x11, x
2
1, x

3
1, ..., x

n
1 ∈ X such that

x11 = F (x10, x
2
0, x

3
0, ..., x

n
0 )

x21 = F (x20, x
3
0, ..., x

n
0 , x

1
0)

x31 = F (x30, ..., x
n
0 , x

1
0, x

2
0)

...

xn1 = F (xn0 , x
1
0, x

2
0, ..., x

n−1
0 ).

(3.3)

Continuing this process, we construct sequences {x1m}, {x2m}, ..., {xnm}, (m ≥ 0) such that

x1m+1 = F (x1m, x
2
m, x

3
m, ..., x

n
m)

x2m+1 = F (x2m, x
3
m, ..., x

n
m, x

1
m)

...

xnm+1 = F (xnm, x
1
m, x

2
m, ..., x

n−1
m ).

(3.4)

We are going to divide the proof into several steps in order to make it easily readable.

Step 1. We shall prove that for all m ≥ 0,

x1m � x1m+1, x
2
m � x2m+1, x

3
m � x3m+1, ..., x

n
m � xnm+1. (3.5)

By using (3.2) and (3.3), we have

x10 � F (x10, x
2
0, x

3
0, ....., x

n
0 ) = x11,

x20 � F (x20, x
3
0, ....., x

n
0 , x

1
0) = x21,

x30 � F (x30, ....., x
n
0 , x

1
0, x

2
0) = x31,

...

...

xn0 � F (xn0 , x
1
0, x

2
0, ........, x

n−1
0 ) = xn1 .

So, (3.5) holds for m = 0. Suppose that (3.5) holds for some m > 0. As F has the mixed

monotone property, we have from (3.4) that

x1m+1 = F (x1m, x
2
m, x

3
m, ..., x

n
m) � F (x1m+1, x

2
m, x

3
m, ..., x

n
m)

� F (x1m+1, x
2
m+1, x

3
m, ..., x

n
m)

� F (x1m+1, x
2
m+1, x

3
m+1, ..., x

n
m)
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� F (x1m+1, x
2
m+1, x

3
m+1, ..., x

n
m+1)

= x1m+2,

x2m+1 = F (x2m, x
3
m, ..., x

n
m, x

1
m) � F (x2m+1, x

3
m, ..., x

n
m, x

1
m)

� F (x2m+1, x
3
m+1, ..., x

n
m, x

1
m)

� F (x2m+1, x
3
m+1, ..., x

n
m+1, x

1
m)

� F (x2m+1, x
3
m+1, ..., x

n
m+1, x

1
m+1)

= x2m+2.

Also for the same reason,

x3m+1 = F (x3m, ..., x
n
m, x

1
m, x

2
m) � F (x3m+1, ..., x

n
m+1, x

1
m+1, x

2
m+1) = x3m+2,

...

xnm+1 = F (xnm, x
1
m, x

2
m, ..., x

n−1
m ) � F (xnm+1, x

1
m+1, x

2
m+1, ..., x

n−1
m+1) = xnm+2.

Thus by the mathematical induction we conclude that (3.5) holds for all m ≥ 0. Therefore,

x10 � x11 � x12 � ... � x1m � x1m+1 � ...

x20 � x21 � x22 � ... � x2m � x2m+1 � ...

x30 � x31 � x32 � ... � x3m � x3m+1 � ...

...

xn0 � xn1 � xn2 � ... � xnm � xnm+1 � ....

(3.6)

This completes the proof of our claim.

Step 2. We shall show that

lim
m→∞

(d(Tx1m, Tx
1
m+1) + d(Tx2m, Tx

2
m+1) + ...+ d(Txnm, Tx

n
m+1)) = 0.

Due to (3.1) and (3.4), we have

d(Tx1m, Tx
1
m+1) = d(TF (x1m−1, x

2
m−1, x

3
m−1, ..., x

n
m−1), TF (x1m, x

2
m, x

3
m, ..., x

n
m))

≤ 1

n
ϕ(d(Tx1m−1, Tx

1
m) + d(Tx2m−1, Tx

2
m) + d(Tx3m−1, Tx

3
m) + ...+ d(Txnm−1, Tx

n
m)),

d(Tx2m, Tx
2
m+1) = d(TF (x2m−1, x

3
m−1, ..., x

n
m−1, x

1
m−1), TF (x2m, x

3
m, ..., x

n
m, x

1
m))
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≤ 1

n
ϕ(d(Tx2m−1, Tx

2
m) + d(Tx3m−1, Tx

3
m) + ...+ d(Txnm−1, Tx

n
m) + d(Tx1m−1, Tx

1
m)).

Similarly, we can inductively write

d(Txnm, Tx
n
m+1) = d(TF (xnm−1, x

1
m−1, x

2
m−1, ..., x

n−1
m−1), TF (xnm, x

1
m, x

2
m, ..., x

n−1
m ))

≤ 1

n
ϕ(d(Txnm−1, Tx

n
m) + d(Tx1m−1, Tx

1
m) + d(Tx2m−1, Tx

2
m) + ...+ d(Txn−1m−1, Tx

n−1
m )).

Adding the above inequalities, we obtain

d(Tx1m, Tx
1
m+1) + d(Tx2m, Tx

2
m+1) + ...+ d(Txnm, Tx

n
m+1) ≤ ϕ(d(Txnm−1, Tx

n
m)

+d(Tx1m−1, Tx
1
m) + d(Tx2m−1, Tx

2
m) + ...+ d(Txn−1m−1, Tx

n−1
m )). (3.7)

Set

dm := d(Tx1m, Tx
1
m+1) + d(Tx2m, Tx

2
m+1) + ...+ d(Txnm, Tx

n
m+1). (3.8)

Using (3.7) we have,

dm ≤ ϕ(dm−1). (3.9)

Since ϕ(t) < t for all t > 0, it follows from (3.9) that {dm} is a decreasing sequence of

positive real numbers. Therefore, there exists some d ≥ 0 such that

lim
m→∞

(d(Tx1m, Tx
1
m+1) + d(Tx2m, Tx

2
m+1) + ...+ d(Txnm, Tx

n
m+1)) = lim

m→∞
dm = d+ .

Assume that d > 0, taking m→∞ in both sides of (3.9) and using the property of ϕ, we

have

d = lim
m→∞

dm ≤ lim
m→∞

ϕ(dm−1) = lim
dm−1→d+

ϕ(dm−1) < d

which is a contradiction. Thus d = 0, that is,

lim
m→∞

(d(Tx1m, Tx
1
m+1) + d(Tx2m, Tx

2
m+1) + ...+ d(Txnm, Tx

n
m+1)) = lim

m→∞
dm = 0. (3.10)

This proves our claim.

Step 3. We shall show that {Tx1m}, {Tx2m}, ..., {Txnm} are Cauchy sequences.

Assume on contrary that atleast one of {Tx1m}, {Tx2m}, ..., {Txnm} is not a Cauchy se-

quence. Then there exists an ε > 0 for which we can find subsequences {Tx1m(k)}, {Tx1t(k)}
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of {Tx1m}, {Tx2m(k)}, {Tx2t(k)} of {Tx2m},...,{Txnm(k)}, {Txnt(k)} of {Txnm} with m(k) >

t(k) ≥ k such that

d(Tx1m(k), Tx
1
t(k)) + d(Tx2m(k), Tx

2
t(k)) + ...+ d(Txnm(k), Tx

n
t(k)) ≥ ε. (3.11)

Further, corresponding to t(k), we can choose m(k) in such a way that it is the smallest

integer with m(k) > t(k) ≥ k satisfying (3.11). Then

d(Tx1m(k)−1, Tx
1
t(k)) + d(Tx2m(k)−1, Tx

2
t(k)) + ...+ d(Txnm(k)−1, Tx

n
t(k)) < ε. (3.12)

Using (3.11),(3.12) and the triangle inequality, we have

ε ≤ rk := d(Tx1m(k), Tx
1
t(k)) + d(Tx2m(k), Tx

2
t(k)) + ...+ d(Txnm(k), Tx

n
t(k))

≤ d(Tx1m(k), Tx
1
m(k)−1) + d(Tx1m(k)−1, Tx

1
t(k)) + d(Tx2m(k), Tx

2
m(k)−1)

+d(Tx2m(k)−1, Tx
2
t(k))...+ d(Txnm(k), Tx

n
m(k)−1) + d(Txnm(k)−1, Tx

n
t(k))

≤ d(Tx1m(k), Tx
1
m(k)−1) + d(Tx2m(k), Tx

2
m(k)−1) + ...+ d(Txnm(k), Tx

n
m(k)−1) + ε.

Letting k →∞ in above inequality, and using (3.10) we have

lim
k→∞

rk = lim
k→∞

[d(Tx1m(k), Tx
1
t(k))+d(Tx2m(k), Tx

2
t(k))+ ...+d(Txnm(k), Tx

n
t(k))] = ε+ . (3.13)

By the triangle inequality

rk = d(Tx1m(k), Tx
1
t(k)) + d(Tx2m(k), Tx

2
t(k)) + ...+ d(Txnm(k), Tx

n
t(k))

≤ d(Tx1m(k), Tx
1
m(k)+1) + d(Tx1m(k)+1, Tx

1
t(k)+1) + d(Tx1t(k)+1, Tx

1
t(k))

+d(Tx2m(k), Tx
2
m(k)+1) + d(Tx2m(k)+1, Tx

2
t(k)+1) + d(Tx2t(k)+1, Tx

2
t(k))

...

+d(Txnm(k), Tx
n
m(k)+1) + d(Txnm(k)+1, Tx

n
t(k)+1) + d(Txnt(k)+1, Tx

n
t(k))

= dm(k) + dt(k) + d(Tx1m(k)+1, Tx
1
t(k)+1) + d(Tx2m(k)+1, Tx

2
t(k)+1)

+...+ d(Txnm(k)+1, Tx
n
t(k)+1). (3.14)

Since m(k) > t(k), we have

x1m(k) � x1t (k), x2m(k) � x2t (k), x3m(k) � x3t (k), ..., xnm(k) � xnt (k).
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From (3.1) and (3.4), we have

d(Tx1m(k)+1, Tx
1
t(k)+1) = d(TF (x1m(k), x

2
m(k), x

3
m(k), ..., x

n
m(k)), TF (x1t(k), x

2
t(k), x

3
t(k), ..., x

n
t(k)))

≤ 1
n
ϕ(d(Tx1m(k), Tx

1
t(k)) + d(Tx2m(k), Tx

2
t(k)) + d(Tx3m(k), Tx

3
t(k)) + ...+ d(Txnm(k), Tx

n
t(k))),

d(Tx2m(k)+1, Tx
2
t(k)+1) = d(TF (x2m(k), x

3
m(k), ..., x

n
m(k), x

1
m(k)), TF (x2t(k), x

3
t(k), ..., x

n
t(k), x

1
t(k)))

≤ 1
n
ϕ(d(Tx2m(k), Tx

2
t(k)) + d(Tx3m(k), Tx

3
t(k)) + ...+ d(Txnm(k), Tx

n
t(k)) + d(Tx1m(k), Tx

1
t(k))).

Similarly, we can write

d(Txnm(k)+1, Tx
n
t(k)+1) = d(TF (xnm(k), x

1
m(k), x

2
m(k), ...x

n−1
m(k)), TF (xnt(k), x

1
t(k), x

2
t(k), ..., x

n−1
t(k) ))

≤ 1
n
ϕ(d(Txnm(k), Tx

n
t(k)) + d(Tx1m(k), Tx

1
t(k)) + d(Tx2m(k), Tx

2
t(k)) + ...+ d(Txn−1m(k), Tx

n−1
t(k) )).

From the above inequalities, we have

rk ≤ dm(k) + dt(k) + ϕ(d(T (x1m(k), Tx
1
t(k)) + d(Tx2m(k), Tx

2
t(k))+

d(Tx3m(k), Tx
3
t(k)) + ...+ d(Txnm(k), Tx

n
t(k)))

= dn(k) + dm(k) + ϕ(rk).

Taking k →∞ in the above inequality, using (3.10),(3.13) and the property of ϕ, we have

ε = lim
k→∞

rk ≤ lim
k→∞

(dn(k) + dm(k) + ϕ(rk)) = lim
rk→ε+

ϕ(rk) < ε,

which is a contradiction. Therefore {Tx1m}, {Tx2m}, ..., {Txnm} are Cauchy sequences in X.

Since X is a complete metric space, {Tx1m}, {Tx2m}, ..., {Txnm} are convergent sequences.

Since T is an ICS mapping, there exist x1, x2, ..., xn ∈ X such that

lim
m→∞

x1m = x1, lim
m→∞

x2m = x2, ..., lim
m→∞

xnm = xn. (3.15)

Since T is continuous, we have

lim
m→∞

Tx1m = Tx1, lim
m→∞

Tx2m = Tx2, ..., lim
m→∞

Txnm = Txn. (3.16)

Suppose now the assumption (a) holds, that is, F is continuous. By (3.4), (3.15) and the

continuity of F , we obtain

x1 = lim
m→∞

x1m+1 = lim
m→∞

F (x1m, x
2
m, ..., x

n
m) = F ( lim

m→∞
x1m, lim

m→∞
x2m, ..., lim

m→∞
xnm)

= F (x1, x2, ..., xn),
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x2 = lim
m→∞

x2m+1 = lim
m→∞

F (x2m, x
3
m, ..., x

1
m) = F ( lim

m→∞
x2m, lim

m→∞
x3m, ..., lim

m→∞
x1m, )

= F (x2, ..., xn, x1),

...

xn = lim
m→∞

xnm+1 = lim
m→∞

F (xnm, x
1
m, ..., x

n−1
m ) = F ( lim

m→∞
xnm, lim

m→∞
x1m, ..., lim

m→∞
xn−1m )

= F (xn, x1, ..., xn−1).

Thus (x1, x2, ..., xn) ∈ Xn is an n-tupled fixed point of F.

Next assume that the condition (b) holds. Since {xim} is non-decreasing or non-increasing

according as i is odd or even and xim −→ xi as m→∞. Then by assumption (b) we have

for all m,

xim � xi when i is odd,

xim � xi when i is even.

Consider now,

d(Tx1, TF (x1, x2, ..., xn)) ≤ d(Tx1, Tx1m+1) + d(Tx1m+1, TF (x1, x2, ..., xn))

= d(Tx1, Tx1m+1) + d(TF (x1m, x
2
m, ..., x

n
m), TF (x1, x2, ..., xn))

≤ d(Tx1, Tx1m+1) +
1

n
ϕ(d(Tx1m, Tx

1) + d(Tx2m, Tx
2) + ...+ d(Txnm, Tx

n)).

(3.17)

Taking m→∞ yields that d(Tx1, TF (x1, x2, ..., xn)) ≤ 0. Hence

d(Tx1, TF (x1, x2, ..., xn)) = 0.

Thus Tx1 = TF (x1, x2, ..., xn) and since T is injective, we get that

x1 = F (x1, x2, ..., xn).

Analogously, we can show that

x2 = F (x2, x3, ..., x1), ..., xn = F (xn, x1, ..., xn−1).
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Thus we proved that F has an n-tupled fixed point.

This completes the proof.

Corollary 3.1. Let (X,�, d) be a complete partially ordered metric space. Let F :

Xn → X be a map enjoying the mixed monotone property on X such that there exist

x10, x
2
0, x

3
0, ..., x

n
0 ∈ X with



x10 � F (x10, x
2
0, x

3
0, ..., x

n
0 )

x20 � F (x20, x
3
0, ..., x

n
0 , x

1
0)

x30 � F (x30, ..., x
n
0 , x

1
0, x

2
0)

...

xn0 � F (xn0 , x
1
0, x

2
0, ..., x

n−1
0 ).

Suppose that there exists ϕ ∈ Φ such that

d(F (x1, x2, x3..., xn), F (y1, y2, y3..., yn)) ≤ 1
n
ϕ(d(x1, y1) + d(x2, y2) + ...+ d(xn, yn))

for all x1, x2, x3..., xn, y1, y2, y3..., yn ∈ X for which x1 � y1, x2 � y2, x3 � y3, ..., xn

� yn. Suppose either

(a) F is continuous or

(b) X has the following property:

(i) if nondecreasing sequence {xm} → x, then xm � x for all m;

(ii) if nonincreasing sequence {xm} → x, then xm � x for all m.

Then there exist x1, x2, ..., xn ∈ X such that x1 = F (x1, x2, ..., xn), x2 = F (x2, x3, ..., x1),

...,xn = F (xn, x1, ..., xn−1); that is, F has an n-tupled fixed point in X.

Proof. It follows by taking Tx = x, for all x ∈ X, in Theorem 3.1.

Corollary 3.2. Let (X,�, d) be a complete partially ordered metric space and T : X → X

is an ICS mapping. Let F : Xn → X be a map enjoying the mixed monotone property on
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X such that there exist x10, x
2
0, x

3
0, ..., x

n
0 ∈ X with

x10 � F (x10, x
2
0, x

3
0, ..., x

n
0 )

x20 � F (x20, x
3
0, ..., x

n
0 , x

1
0)

x30 � F (x30, ..., x
n
0 , x

1
0, x

2
0)

...

xn0 � F (xn0 , x
1
0, x

2
0, ..., x

n−1
0 ).

Suppose that there exists k ∈ [0, 1) such that

d(TF (x1, x2, x3..., xn), TF (y1, y2, y3..., yn)) ≤ k
n
(d(Tx1, T y1)+d(Tx2, T y2)+d(Tx3, T y3)+

...+ d(Txn, T yn))

for all x1, x2, x3..., xn, y1, y2, y3..., yn ∈ X for which x1 � y1, x2 � y2, x3 � y3, ..., xn

� yn. Suppose either

(a) F is continuous or

(b) X has the following property:

(i) if nondecreasing sequence {xm} → x, then xm � x for all m;

(ii) if nonincreasing sequence {xm} → x, then xm � x for all m.

Then there exist x1, x2, ..., xn ∈ X such that x1 = F (x1, x2, ..., xn), x2 = F (x2, x3, ..., x1),

...,xn = F (xn, x1, ..., xn−1); that is, F has an n-tupled fixed point in X.

Proof. It follows by taking ϕ(s) = ks, for all s ∈ [0,∞), in Theorem 3.1.

Remark 3.1. Taking n = 2 in Theorem 3.1 and in Corollaries 3.1-3.2, we get Theorem

2.1 and Corollaries 2.2-2.3 of Luong et al. [3].

Now, we shall prove the uniqueness of an n-tupled fixed point. For a product Xn of

a partially ordered set (X,�), we define a partial ordering in the following way: For

(x1, x2, x3, ..., xn), (y1, y2, y3, ..., yn) ∈ Xn

(x1, x2, x3, ..., xn) � (y1, y2, y3, ..., yn)⇔ x1 � y1, x2 � y2, x3 � y3..., xn � yn.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, suppose that for every

(x1, x2, x3, ..., xn), (y1, y2, y3, ..., yn) ∈ Xn, there exists (z1, z2, z3, ..., zn) ∈ Xn that is
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comparable to (x1, x2, x3, ..., xn) and (y1, y2, y3, ..., yn). Then F has a unique n-tupled fixed

point (x1, x2, x3, ..., xn).

Proof. The set of n-tupled fixed points of F is non-empty due to Theorem 3.1. Assume

now, (x1, x2, x3, ..., xn) and (y1, y2, y3, ..., yn) are two n-tupled fixed points of F, that is,



x1 = F (x1, x2, x3, ..., xn), y1 = F (y1, y2, y3, ..., yn),

x2 = F (x2, x3, ..., xn, x1), y2 = F (y2, y3, ..., yn, y1),

...

xn = F (xn, x1, x2, ..., xn−1), yn = F (yn, y1, y2, ..., yn−1).

(3.18)

We shall show that (x1, x2, x3, ..., xn) and (y1, y2, y3, ..., yn) are equal. By assumption,

there exists (z1, z2, z3..., zn) ∈ Xn that is comparable to (x1, x2, x3, ..., xn), and (y1, y2, y3, ..., yn).

Define sequences {z1m}, {z2m}, ..., {znm} as follows:

z10 = z1, z20 = z2, ..., zn0 = zn,



z1m+1 = F (z1m, z
2
m, z

3
m, ..., z

n
m)

z2m+1 = F (z2m, z
3
m, ..., z

n
m, z

1
m)

...

znm+1 = F (znm, z
1
m, z

3
m, ..., z

n−1
m ), for all m.

(3.19)

Since (z1, z2, z3, ..., zn) is comparable with (x1, x2, x3, ..., xn), we may assume that

(x1, x2, x3, ..., xn) � (z1, z2, z3, ..., zn) = (z10 , z
2
0 , z

3
0 , ...z

n
0 ).

Now we shall prove that

(x1, x2, x3, ..., xn) � (z1m, z
2
m, z

3
m, ..., z

n
m), for all m. (3.20)
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Suppose that (3.20) holds for some m ≥ 0. Then by the mixed monotone property of F,

we have 

z1m+1 = F (z1m, z
2
m, z

3
m, ..., z

n
m) � F (x1, x2, x3, ..., xn) = x1,

z2m+1 = F (z2m, z
3
m, ..., z

n
m, z

1
m) � F (x2, x3, ..., xn, x1) = x2,

...

znm+1 = F (znm, z
1
m, z

2
m, ..., z

n−1
m ) � F (xn, x1, x2, ..., xn−1) = xn.

Therefore, (x1, x2, x3, ..., xn) & (z1m+1, z
2
m+1, z

3
m+1, ..., z

n
m+1) for all m. Hence (3.20) holds.

From (3.18),(3.19) and (3.1), we have

d(Tx1, T z1m) = d(TF (x1, x2, ..., xn), TF (z1m−1, z
2
m−1, ..., z

n
m−1))

≤ 1
n
ϕ(d(Tx1, T z1m−1) + d(Tx2, T z2m−1) + ...+ d(Txn, T znm−1)),

d(Tx2, T z2m) = d(TF (x2, ..., xn, x1), TF (z2m−1, ..., z
n
m−1, z

1
m−1))

≤ 1
n
ϕ(d(Tx2, T z2m−1) + ...+ (Txn, T znm−1) + d(Tx1, T z1m−1)),

...

d(Txn, T znm) = d(TF (xn, x1, x2, ..., xn−1), TF (znm−1, z
1
m−1, z

2
m−1..., z

n−1
m−1))

≤ 1
n
ϕ(d(Txn, T znm−1) + d(Tx1, T z1m−1) + d...+ d(Txn−1, T zn−1m−1)).

Adding the above inequalities we obtain

d(Tx1, T z1m) + d(Tx2, T z2m) + ...+ d(Txn, T znm)) ≤ ϕ(d(Tx1, T z1m−1)

+d(Tx2, T z2m−1) + ...+ d(Txn, T znm−1)). (3.21)

Set δm = d(Tx1, T z1m) + d(Tx2, T z2m) + ... + d(Txn, T znm). It follows from (3.21) and the

property of ϕ that {δm} is a monotone decreasing sequence of positive real numbers.

Therefore there is some δ ≥ 0 such that

lim
m→∞

δm = lim
m→∞

(d(Tx1, T z1m) + d(Tx2, T z2m) + ...+ d(Txn, T znm)) = δ + .

Assume that δ > 0, taking m→∞ in both sides of (3.21), we have

δ = lim
m→∞

(d(Tx1, T z1m) + d(Tx2, T z2m) + ...+ d(Txn, T znm))

≤ lim
m→∞

ϕ(d(Tx1, T z1m−1) + d(Tx2, T z2m−1) + ...+ d(Txn, T znm−1))
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= lim
δm−1→δ+

ϕ(δm−1) < δ,

which is a contradiction. Thus δ = 0, that is,

lim
m→∞

(d(Tx1, T z1m) + d(Tx2, T z2m) + ...+ d(Txn, T znm)) = 0.

This yields that

lim
m→∞

d(Tx1, T z1m) = 0, lim
m→∞

d(Tx2, T z2m) = 0, ..., lim
m→∞

d(Txn, T znm) = 0. (3.22)

Analogously, we can show that

lim
m→∞

d(Ty1, T z1m) = 0, lim
m→∞

d(Ty2, T z2m) = 0, ..., lim
m→∞

d(Tyn, T znm) = 0. (3.23)

Combining (3.22) and (3.23) yields that (Tx1, Tx2, ..., Txn) and (Ty1, T y2, ..., T yn) are

equal. The fact that T is injective gives us x1 = y1, x2 = y2, ..., xn = yn.
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