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1. Introduction

In 2006, Mustafa and Sims [1] generalized the concept of a metric in which the real
number is assigned to every triplet of an arbitrary set. Based on the notion of
generalized metric spaces, Mustafa et al. [2-5], Obiedat and Mustafa [6], Aydi et al.
[7,8], Gajié and Stojakovié [9], Zhou and Gu [10] obtained some fixed point results
for mappings satisfying different contractive conditions. Shatanawi [11] obtained
some fixed point results for ® -maps in generalized metric spaces. Chugh et al. [12]
obtained some fixed point results for maps satisfying property P in generalized metric

spaces. Study of common fixed point problems in generalized metric spaces was
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initiated by Abbas and Rhoades [13]. Subsequently, many authors obtained many
common fixed point theorems for the mappings satisfying different contractive
conditions; see [14]-[32] for more details. Recently, Abbas et al. [33] and Mustafa et

al. [34] obtained some common fixed point results for a pair of mappings satisfying

(E.A) property under certain generalized strict contractive conditions in G -metric

spaces. Long et al. [35] obtained some common coincidence and common fixed points

results of two pairs of mappings when only one pair satisfies (E.A) property in the

framework of a generalized metric space. Very recently, Gu and Yin [36] introduce

the concept of the common (E.A) property for two pairs of self-mappings in

G -metric spaces, and study the existence and uniqueness of coincidence and common

fixed points for three pairs of mappings satisfying @ -contractive conditions.

In 2011, Vats et. al [14] introduced the notion of compatible mappings of type (A),

and prove a common fixed point theorem for three and four compatible mappings of

type (A) inthe framework of generalized metric spaces.
The purpose of this paper is to use the concept of weakly compatible mappings of
type (A) to discuss a new common fixed point problem for six self-mappings

in G -metric spaces. The results presented in this paper extend and improve the
corresponding results of Vats, Kumar and Sihag[14].

We now recall some definitions and properties in G -metric spaces.

Definition 1.1 Let X be a nonempty set, and let G:XxXxX —>R*be a

function satisfying the following axioms:

(G) G(x,y,2)=0if x=y=1,
(G,) 0<G(x,x,y), forallx,ye X with x=y,
(G;) G(X,XxYy)<G(xYy,z), forall x,y,ze X

(G,) G(x,y,2) =G(x,2,y¥)=G(Y, z,x) =...(symmetry in all three variables),
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(G;) G(x,y,z)<G(x,a,a)+G(a,y,z) forall x,y,z,ae X (rectangle inequality).

Then the function G is called a generalized metric, or, more specifically, a
G -metric on X , and the pair (X,G) iscalleda G -metric space.

Definition 1.2 Let (X,G) be a G -metric space, and let {x,} a sequence of

points in X , a point x in X is said to be the limit of the sequence{x.},

limG(x, x

n—oo

X,,) =0, and one says that sequence{x }is G -convergentto X.

n’

Thus, that if x, —> x or limx, =x ina G-metric space (X,G) then if for each

n—oo

e>0 [J[] there exists a positive integer N such that G(x,x,,x,)<eg for all

n?

nm>N.

Proposition 1.1M Let (X,G) be a G -metric space. Then the followings are

equivalent:

(1) {x,}is Gconvergenttox,
(2) G(x,,%,X)—>0 as n— oo,
(3) G(x,,X,Xx) >0 as n— oo,
(4) G(x,,x,x)—0 as m,n— oo,

Definition 1.3™ Let (X,G) be a G -metric space. A sequence{x }is called

G -Cauchy if, for each [¢}>0, there exists a positive integer N such that

G(X,, X, %) <e forall nm,I>N;ie. if G(x,x,,%x)—>0 as nm,| - co.
Proposition 1.2M If (X,G) isa G -metric space then the following are equivalent:
(1) The sequence{x.}is G -Cauchy,

(2) for each e >0, there exist a positive integer N such that G(x,,x,,x ) <e& for
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all nmI>N.

Proposition 1.3™ Let(X,G)be a G -metric space. Then the function G(x,y,z) is
jointly continuous in all three of its variables.

Definition 1.4 A G-metric space (X,G) is called a symmetric G -metric space if

G(x,y,yY)=G(y,x,x) forall x,y in X.

Definition 1.52 A G -metric space (X,G) is said to be G -complete if every
G -Cauchy sequence in(X,G) is G -convergentin X .
Proposition 1.4 Let (X,G) be a G -metric space. Then, for any x,y,z,a in X

it follows that:

(i) 1fG(xy,z)=0thenx=y=z,

(i) G(x,y,2)<G(x,x,¥)+G(x,X,2),

(i) G(x,y,y) <2G(y,x,X),

(iv) G(x,y,2)<G(xa,2)+G(a,y,2),

(V) G(xy,2) <%(G(x,y.a)+G(x,a,2)+G(a,y,2)),

(vi) G(x,y,z)<(G(x,a,a)+G(y,a,a)+G(z,a a)).
Definition 1.6"4 Self mappings S and T ofa G -metric space (X,G) are said
to be compatible if

lim,_ G(TSx,,STx,,STx,)=0 and lim _,  G(STx,,TSx,,TSx,)=0,
whenever{x_}is a sequence in X such that lim_, Sx =Ilim_ , Tx =t, for somete X .

Definition 1.7 Self mappings S and T ofa G -metric space(X,G) are said to
be compatible of type (A) if

lim,_, G(TSx,,SSx,,SSx,)=0 and lim_ , G(STx,,TTx,  TTx,)=0,
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Whenever {x } is a sequence in X such that lim ,_ Sx =lim_ _, Tx =t, for

somete X.

2. Main results
Theorem 2.1 Suppose S,T,I,A/B,and C be six self mapping of a complete

G -metric space (X, G) in to itself, satisfying the conditions:
(i) S(X)<=B(X),T(X)<=C(X), I(X) < A(X),
(i) G(Sx,Ty, 1z) < aG(Ax, By,Cz)+ B[G(Sx, Ty, By) + G(S, Ty, Cz)]
+7[G(AX, 1z,5%) + G(By, Iz,5X)] 2.1)

for all x,y,ze X . Where «,8,y>0, a+38+3y<1. Then one of the pairs

(S,A),(T,B) and (I,C) has a coincidence point in X . Moreover, if the following

conditions is satisfied:

(iii)) oneof S,T,I,A,B,Cis continuous,
(iv) the pairs (S,A), (T,B) and (I,C) are compatible of type (A).
Then the mappingsS,T,1,A,Band C have uniqgue common fixed pointin X .

Proof. Let x, € X be any arbitrary. We choose a point X; in X so that Sx, =Bx,,
this can be done since S(X) < B(X). Let X, beapointin X suchthat Tx, =Cx,,
this can be done since T(X) < C(X). Let X; beapointin X such that Ix, = Ax,,
this can be done since 1(X)c A(X). In general we can chooSe Xy, Xsy,1s Xgnepseeeeees

and there is exists a sequence {y,}in X, such that

Yan = SXan = BXani0s Yanas = Thanis = CXanins Vaneo = gpin = Ay (2.2)

If y =y, for some n, with n=3m , then p=x,,,Iis a coincidence point of

m+1
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the pair (T,B); If y,,=Y,, for some n, with n=3m , then p=x,,.,is a
coincidence point of the pair (I,C); If y..,=Y,,, for some n, with n=3m, then

P = X,,,, IS acoincidence point of the pair (S, A).
On the other hand, if there existn, € N, such thaty, =y, ., =Yy, ., then y =y,

for anyn>n,, this implies that {y } isa G -Cauchy sequence.

In fact, if there exist pe N, such thaty, =y, , =VY,,,,, then applying the condition

(i), we have

G(Yap: Yapr Yapsa) = C(Yapiar Yapizs Yapia) = C(SXgpia: Txapu, 1Xa5,,5)

SaG(AXg,, 5 BXg .0 CXgp,0) + BIG(SXg5: T 10 BXg 1) + G (S50 TXg 11 CXs )]
+7[C(AXyp,5, X2 SXap5) + G (BXg,, 1X5.50 s 15)]

:aG(y3p+2’ySp’y3p+1)+ﬂ[G(y3p+3’y3p+l’y3p)+G(y3p+3’y3p+1’y3p+l)]

+ VG (Yapi2s Yapear Yapea) T C(Yaps Vapar Yapia)]

:aG(y3p7y3p’y3p)+ﬂ[G(y3p+3’y3p’y3p)+G(y3p+3’y3p’y3p)]
+7IG(Yaps Yaps Yapia) T G(Yapr Yaps Vapis)]

=(2B+2y)C(Yap: Yap: Yapsa)-

If Yip1 #VYs, » then 28+2y>1, this is a contradiction, since
0<2p+2y<a+3B+3y<1l. Which implies that y, .=V, =V, =VYsp,,- SO
we find y =y, for any n>3p. This implies that {y }is a G -Cauchy sequence.
The same conclusion holds ify, ., =V, ., = Vs,.30 O Ysp.0 = Yapis = Yapes, TOr SOME

p € N . Without loss of generality, we can assume that y, = y_,forall nmeN,and
n<m.

Now we prove that {y,} is a G-Cauchy sequence in X . Using condition (ii)

and the (G,) and (G;), we have
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G(Yan1 Yanr Yanea) = G (X TXgg 1X51)

S aG(AXy,, BXgnq0 CXg,y) + BIG(SXg,, TXgq0 BXgpiy) + G (SXg,, TXg00 CXa o)
+ 1[G (AXgy, 1X 1, SX50) + G (BXg,g, X, 1, SX5,)]

=G (Y302 Yan-11 Yan) + BIC(Yan: Yans Yania) + G (Yan-zs Yans Yanes)]
+ 7IG(Van1 Yan-1s Yan) + C(Vans Yans Yan-i)]

<G (Yan-2: Yanar Yan) T BIC(Yanas Yan: Yania) G (Vanzs Yanas Yans) + G (Yanas Yans Yanua)]
+ 7IG(Yan-1+ Yan: Yania) + G (Yanas Yans Yania)]

<(a+B)G(Yan s Yanar Yan) + (2B +27)C (Va1 Yan» Yanea)-

Which implies that
G(ySn—l’ y3n’ y3n+1) (1 25— Zy)G(y3n 2! ySn—l’ ySn) hlG(y3n—2’ y3n—1’ ySn)’ (2'3)

a+p <1.

where =
n 1-28-2y

Again using condition (ii) and the (G,) and (G;), we obtain

G(ysn’ Yani y3n+2) = G(SXSn 'TX3n+1’ IX3n+2)
S (ZG (AX3n ' BX3n+l’ CX3n+2) + ﬂ[G (SXSn ’TX3n+l7 BX3n+l) + G (SXSn ’TX3n+l’ CX3n+2)]

+ V[G(AXy,, X500 SXg,) + G (BXg1,1, IXs400 S )]

=G (Y3011 Yanr Yani) + BIC(Yans Yaniar Yan) + G (Yanr Yanins Yanin)]
+71G(Yan-1: Yanszr Yan) T G (Yans Yanez» Yan)l

< aG(Yan 11 Yans Yanea) + BLC(Vans Yansas Yanea) + G(Yans Yaners Yaneo)]
+7[G(Yan 1 Yansrs Yani) ¥ C(Vanias Yanszr Yan) + G (Vans Yanias Yanio)]

(@ +7)G(Yan 1 Yans Yane) T (2B +27)G(Yans Yanias Yansa)-

This implies that

at+y
G(y3n7y3n+1vy3n+2) m (y3n -1 y3n Y3n+1) h G(ysn -1 y3n y3n+1) (2-4)

a+y

_ 2T,
1-28-2y

where h, =

Again using condition (ii) and the (G,) and (G;), we get
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G(Y3n+1’ Yani2 Y3n+3) = G(SX3n+3’TX3n+1’ IX3n+2)
S (ZG (Ax3n+3' BX3n+1’ CX3n+2) + ﬂ[G (SX3n+3 ’TX3n+l' BX3n+1) + G (Sx3n+3 ’TX3n+l’ Cx3n+2)]

+ 1[G (A5 X 50 SXap.5) + G (BXayu X 50 SXg1,5)]

=G (Yan.2s Yans Yanes) T BIC(Yanizs Yanear Yan) + G (Vansas Yanirs Yania)]
+ 716 (Yane2s Yanizs Yanea) + C(Yan: Yanzs Yania)]

<0G (Yay: Yanas Yaniz) + BLC(Vaniar Yanias Yaniz) + G (Yanizs Yanuas Yan) + G (Vanias Yanss Yania)l
+7IG(Yanas Yansas Yanea) + G (Yans Yaneas Yanea) + G (Vanins Yanias Yanea)l

S(@+B+7)6(Yan, Yanear Yane2) + (2B +27)G Va1, Yaniar Yansa):

Which implies that

a+p+
G(y3n+1v Yania y3n+3) < ¢G(ysn' Yanis y3n+2) = heG(ysn’ Yanis y3n+2) ) (2'5)
1-28-2y
where h, = arpy
1-28-2y

Let h=max{h,h,,h}, then from 0<a+3£+3y <1 weknow that 0<h<1.

Combining (2.3), (2.4) and (2.5), we have

G(Yn: Ynitr Yni2) ShG (Y, 10 Vi Vi)

<SG (Y20 Yo Yn) S+ <h"G(¥g, yi, ¥o)- 29
Moreover, for alln,me N; n<m, we have by rectangle inequality that
G(Yns Ymr Yin) G (Vs Yors Ynr) + G (Ynaas Yneos Yae2) +-+ G (Vg Yins Yin)
<(h"+h™ +.-+h"NG(Y,, ¥, ¥,) (2.7)
<G )

And soG(y,,Y,.Y,) —0,as nm—ow. Thus {y }is G -Cauchy sequence. Due to the

completeness of (X,G), there exists Z € X such that {y } is G -convergeto z.

Since the sequences {Sx3n} = {BX3n+1},{TX3n+1} = {CX3n+2}and{|X3n+2} = {AX3n+3} are

all subsequences of {y,}, then they all converge toz, that is,

y3n = SXSn = BX3n+l -1, y3n+1 :TX3n+l = CX3n+2 -, y3n+2 = IX3n+2 = AX3n+3 - Z(n - CX)) '
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Now we prove that z isacommon fixed pointof S,T,1,A,BandC.

First we suppose that A is continuous, then A’x, — Az as n—> . since the

pair (S,A) is compatible of type (A) we get SAx,, > Az as n— . Now by the
condition (ii)

G (SAXSn 'Tx3n+l’ IX3n+2) < OCG (A2 XSn ! BX3n+l’ Cx3n+2)
+ ﬁ[G (SAX3n 1TX3n+l’ BX3n+1) + G (SAX3n ’TX3n+17 CX3n+2)] (28)
+ VG (A*Xq,, gy, SAXy, ) + G (BXy s X, 5, SAX,, )]

Letting n — oo, we have
G(Az,2,2) <aG(Az,z,2)+ fIG(Az,2,2) + G(Az,2,2)]+ 7[G(Az,z, Az) + G(z, Z, Az)].
By (iii) of Proposition 1.4, we get

G(Az,z2,2) < (x¢+2L+3y)G(Az,2,2),

this gives G(Az,z,z)=0,since0<a+2p+3y<1.Hence Az=1z.

Again by the condition (ii), we have

G(SZ, TXgpu1: X3.,,) < @G (AZ, B,y CXsy, )
+ ﬂ[G (SZ ! TX3n+11 BX3n+l) + G (SZ ! TX3n+1’ CX3n+2)] (29)
+7[G(AZ,1%,,,,,S2) + G(BX,,.,, 1X3,,,,, SZ)].

Letting n— o and using Az=z, we have

G(Sz,2,2) < aG(z,2,2) + pIG(Sz,z,2) + G(Sz, 2, 2)] + 7[G(z, z,Sz) + G(z, Z, Sz)]
=2(B+7)G(Sz,2,2).

Which implies that G(Sz,z,z) =0, since 0<28+2y<1.ThusSz=z=Az.

Since S(X)cB(X) and z=SzeS(x) , there is a point ue X such that
z =Sz = Bu. By the condition (ii), we have

G(Sz,Tu, Ix,,,,) < aG(Az,Bu,Cx,,.,)
+ pIG(Sz,Tu, Bv) +G(Sz,Tu,Cx,,, ., )] (2.10)
+71G(Az, Ix,,,,,52) + G(Bu, Ix,,.,,, Sz)].

Lettingn — coand using z = Bu, we have
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G(z,Tu,2) £aG(z,z,2) + pIG(z,Tu,z) +G(z,Tu, 2)]+ 7[C(z,2,2) + G(z, 2, 2)]
=2pG(z,Tu,2).

This implies that G(z,Tu,z)=0, since 0<2f4<1.Hence Tu=z=Bu.

Taking w,=u for all n>1. Then Tw,»Tu=z and Bw,—»Bu=z as n—o. Since
the pair (T,B) is compatible type (A), we obtain lim _,_ G(BTw,,TTw,,TTw,)=0,
it gives G(Bz,Tz,Tz)=0 since Tw, =z forall n>1, hence we have Bz=Tz.

Again by the condition (ii), we have

G(Sz,Tz,1X,,,,) < aG(Az,Bz,Cx,,.,) + BIG(Sz,Tz,Bz) + G(Sz,Tz,Cx,,,,)]

(2.11)
+7[G(Az, IX,,.,, S2) + G(BZ, IX,,,, S2)].

n+2?
Lettingn — o0, using Bz =Tz and the Proposition 1.4, we have

G(z,Tz,2) <aG(z,Tz,2)+ pIG(z,Tz,Tz) + G(z,Tz,2)]+ y[G(z,2,2) + G(Tz,z,2)]
<(a+3B+y)G(z,Tz,2).

Which implies that G(z,Tz,z) =0, since0<a+3B+y<a+3B+3y<1. Thus
Tz=z=Bz.

Since T(X)cC(X) and z=TzeT(x) , there is a point veX such
thatz=Tz=Cv.
By the condition(ii), using Sz=Az=Tz=Bz=Cv =1z, we have

G(z,z2,Iv)=G(z,z,Iv)<aG(z,2,2)+ B[G(z,2,2) + G(z, 2,2)]
+7[G(z,1Iv,2) +G(z, v, 2)] (2.12)
=2yG(z,Iv,2).

HenceG(z,z,lv) =0, since0<2y<1,s0 lv=z=Cv.
Taking t =v forall n>1, thenlt, > lv=zand Ct, >Cv=z as n— . Since
the pair (1,C) is compatible type (A), we obtainlim_ __G(CIt It 1lt.)=0, it

gives G(Cz,lz,1z) =0, sincelt, =z for all n>1, hence Cz=1z. By the condition

(ii), we have
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G(Sz,Tz,1z) < aG(Az,Bz,Cz) + p[G(Sz,Tz,Bz) + G(Sz,Tz,Cz)] 213
+[G(Az, 1z,52) + G(Bz, Iz, 57)]. (2.13)
It gives

G(z,z,12) £aG(z,2,12) + p[G(z,2,2) +G(z,2,12)]+ 7[C(z, 1z, 2) + G(z, 12, 2)]
=(a+ f+2y)G(z,2,12).

HenceG(z,z,12) =0, since0<a+ f+2y<1.Thuslz=z=Cz

Therefore, z is the common fixed point of S,T,I,A,Band C when A is

continuous and the pairs (S, A),(T,B)and (I,C)are compatible of type (A).

The proof is similar when B or C is continuous and the pairs (S, A),(T,B) and

(1,C) are compatible of type (A).

Next we suppose S is continuous, then S?x, —Szas n—> o since the pair

(S,A) is compatible of type (A) we get ASx,, —Szasn-—oo. Again by the
condition (ii), we have

G (S %50 Thapons Xs0.5) < @G (ASXy,, BXy,.1,CXy. )
+ ﬂ[G (S 2X?,n lTX3n+l7 BX?,n+1) + G (S 2X3n ’TX3n+l' Cx3n+2 )] (2 14)
+ YIG(ASXgy, Xgp.51 S Xg0) + G (BXayya, X050 S,

Letting n — coand using the (iii) of Proposition 1.4, we have

G(Sz,2,2) £aG(Sz,z,2) + p[G(Sz,z,2) + G(Sz, z,2)]+ y[G(Sz, 2, S2) + G(z, z, Sz)]
<(a+2p+3y)G(Sz,2,2).

It gives G(Sz,z,z)=0,since0<a+2£+3y<1.Hence Sz=z.
Since S(X)cB(X)and z=Sze S(X), there is a point pe X such that
Sz =z = Bp. By the condition (ii), we have

G(S°X,,, TP, IX,,.,) < aG(ASX,,, Bp,Cx,..,)
+ ﬁ[G(SZXSn ’Tpl Bp) + G(SZXSn ’Tp’ CX3n+2)] (215)
+7[G(ASX3n’ IX3n+2’ SZXBn) +G(Bp1 IX3n+2’ Szx3n)]'
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Lettingn — o0, we have

G(z,Tp,2) <aG(z,z2,2) + P[G(z,Tp,2) + G(z,Tp, 2)]1+ ¥[G(z,2,2) + G(z, 2, 2)]
=26G(z,Tp, 2).

Hence G(z,Tp,z) =0, since0<28<1. ThusTp=z=Bp.

Taking p,=pfor alln>1, then Tp, >Tp=zandTp, > Tp=zasn—oo. Since
the pair (T,B) is compatible type (A), we obtain lim_, G(BTp,,TTp,,TTp,)=0,
it gives G(Bz,Tz,Tz) =0, since Tp, =z forall n>1, hence Bz=Tz.

Again by the condition (ii), we have

G(SX,,, T2, IX5,,,) < aG(AX,,, Bz,CX;,,,)
+ BIG(SX,,,Tz,Bz) + G(SX,,, TZ,CX,,..,)] (2.16)
+7[G(AX,,, 1X5,,50 SX5,) + G(BzZ, 1%y, SX5,)]-

Letting n— o and using (iii) of Proposition 1.4, we have

G(z,Tz,2) <aG(z,Tz,2) + pIG(z,Tz,Tz) + G(z,Tz,2)] + ¥[G(z,2,2) + G(Tz, z, 2)]
<(a+3B+y)G(z,Tz,2)

Hence G(z,Tz,z)=0,since 0<a+3f+y<1.Thus Tz=z=Bz.

Since T(X)cC(X)and z=TzeT(X), there is a point ge X such that
Tz =z =Cq. By the condition (ii), we have

G(SX;,,Tz,19) < aG(AXx,,, Bz,Cq)
+ PIG(SX,,, Tz, Bz) + G(SX,,,Tz,Cq)] (2.17)
+7/[G(AX3n1 Iq’ SX3n)+G(BZ, Iq’ SXSn)]'

Letting n — o, we have

G(z,z,19) £aG(z,2,2) + BIG(z,2,2) + C(z,2,2)]+ y[G(z,1q9,2) + G(z, 19, 2)]
=2yG(z,1q,2).

HenceG(z,1q,z) =0, since0<2y <1. Thuslg=z=Cq.

Taking q,=qfor all n>1, then Ig, > Ilg=z and Cq, >Cq=z as n— .
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Since the pair (1,C) is compatible type (A), we obtain lim . G(Clqg,,!lq,,1lg,)=0,
it gives G(Cz,lz,1z) =0, since Igq, =z forall n>1, henceCz=1z.

Again by the condition (ii), we have

G(SX,,,Tz,1z) < aG(AX,,, Bz,Cz) + SIG(SX,,, Tz, Bz) + G(SX,,,Tz,Cz)]

(2.18)
+7[G(AX,,, 1Z,SX,,) + G(Bz, 1z, Sx,,,)].

Lettingn — o0, we have

G(z,z,12) £ aG(z,z,12) + p[G(z,2,2) +G(z,2,12)]+ 7[C(z, 1z, 2) + G(z, 12, 2)]
<(a+pB+2y)G(z,2,12).

HenceG(z,z,12) =0, since0<a+ f+2y <1.Thuslz=z=Cz.
Since I(X)c A(X) and z=1lzel(X), there is a point we X such that

Iz =z = Aw. By the condition (ii), we have

G(Sw,Tz,1z) < aG(Aw, Bz,Cz) + S[G(Sw, Tz, Bz) + G(Sw, Tz,Cz)]

+7[G(Aw, Iz, SW) + G(Bz, 1z, SW)]. (2.19)

It gives
G(Sw,z,2) < (28 +2y)G(Sw, z,2).
Hence G(Sw, z,z) =0, since0<243+2y <1.Thus Sw=1z= Aw.

Takingu, =wfor all n>1 , then Su,-»Sw=z and Au,—»Aw=zas n-— . Since
the pair (S, A)is compatible type (A), we obtain lim_ __ G(SAu,, AAu,,AAu, ) =0,
it gives G(Sz, Az, Az) =0, since Au, =zforalln>1, hence Sz=Az=z.

Therefore, z is the common fixed point of S,T,I,A,B and C when S is
continuous and the pairs (S, A),(T,B),(1,C) are compatible of type (A).

The proof is similar when T or | is continuous and the pairs (S, A),(T,B),(I,C)

are compatible of type (A).
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Finally, we prove uniqueness of common fixed pointz .

Let z and t be two common fixed point of S, T,I,A,B and C, then using the

condition (ii) and the (iii) of Proposition 1.4 we have

G(t,z,2) =G(St, Tz, 12)
<aG(At,Bz,Cz)+ S[G(St, Tz,Bz) + G(St,Tz,Cz)]
+7[G(At, Iz, St) + G(Bz, Iz, St)]
<(a+2p+3y)G(t,z,2).

(2.20)

Which implies thatG(t, z,z) =0, since0<a+2£+3y <1. Thust =z. So common fixed
point is unique.

Remark 2.1 Theorem 2.1 generalize and extend the corresponding results in Vats,

Kumar and Sihag[14,Theorem 2.1 and 2.2].

Remark 2.2 In Theorem 2.1, we taken: 1) A=B=C;2) S=T=1;3) T=Iand

B=C;4) B=C=E (E isidentity mapping), several new result can be obtained.

Now we introduce an example to support Theorem 2.1.
Example 2.1 Let X =[0,1] bea G -metric space with
G(x,y,2) =|x—y|+|y—7|+|z—¥|.

We define mappings S,T,1,A,B and C on X by

g Z, x €[0,1] E, x e[0,1]
Sc=z, xelod], Tx = 2 | IX = ; |
5’ XE(%!:L] 5' XE(%’]']
0, xe[0,3 1 xe[0,3 0, xe[0,3
AX = § xe(3.1)), Bx = § xe(3,1) , Cx = § xe(3,1)
9 9 9
E’ w1 0, x=1 Z «—1
7 8

Clearly, S is continuous and T,I, A Band C are discontinuous mappings,

S(X)cB(X), T(X)cC(X), I(X)c A(X) and the pairs (S,A), (T,B), and
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(1,C) be compatible of type (A).
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Now we prove that the mappings S,T,I,A,B and C are satisfying the

condition (2.1) of Theorem 2.1 with a=%,ﬂ=%,y=%.

Casel. If x,y,z€[0,3], then we have

©|

7 6 4
G(Sx, Ty, 12) =G| =, —,= |=—
( Y. 12) ( 8 7) 63

and
G(Ax,By,Cz)=G(0,1,0)=2.

Thus we get

G(Sx, Ty, lz) = % < %x 2 =aG(Ax,By,Cz)

<aG(Ax,By,Cz) + S[G(Sx, Ty, By) + G(Sx, Ty, Cz)].

+ 7[G(AX, 1z, Sx) + G(By, Iz, Sx)].

Case2. If x,ye[0,3],z<(3,1], then we have

87 8 1
G(Sx, Ty, 12) =G| =, —,— |=—
( y:12) (9 8 9) 36
If z=1
7
G(AX, By,Cz)zG(O,l,gjzz.
If ze(3,1)
8
G(AX, By,Cz)zG(O,l,gjzz.
So we know

1 1
G(Sx, Ty, 1z) =—<=x2=aG(AX, By,Cz
(Sx,Ty, 1z) 36 3" aG( y,C2)

<aG(Ax,By,Cz) + S[G(Sx, Ty, By) + G(Sx,Ty,Cz)]

+ y[G(AX, Iz, Sx) + G(By, Iz, Sx)].

Case3. If x,z€[0,3], y(3.1], then we have
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8 8
G(Sx, Ty, 12) =G| —,—=
(Sx, Ty, Iz) = [99

If y=1
8 8 8 8
G(Sx,Ty,By)+G(Sx,Ty,C2) =G| =,—,0 |+ G| =—,—
(yy)(y)(ggj(gg

Thus we have

G(Sx, Ty, 12) —is < ;x§ = PIG(Sx, Ty, By) + G(Sx,Ty,Cz)]

<aG(Ax,By,Cz) + pS[G(Sx, Ty, By) + G(Sx,Ty,Cz)]
+ 7[G(AX, Iz, SX) + G(BY, Iz, Sx)].

If ye(3.0

G(Ax,By,Cz)=G (02,0) :E :
9 9
So we know

G(Sx, Ty, 12) _i3< ;x%—aG(AX By,Cz)

<aG(Ax,By,Cz) + S[G(Sx, Ty, By) + G(Sx,Ty,Cz)]
+ 7[G(AX, Iz, Sx) + G(BY, Iz, Sx)].

Case4. If y,z€[0,3], xe(3,1], then we have

876 4
G(Sx, Ty,12) =G| —,—,— |=— .
( yolz)= (9 8’ 7) 63
If x=1
6
G(Ax,By,Cz)=G(7,1,0]=2.
If xe(3,1)

G(AXx, By, C2) =G(§,1,0J: 2.

So we know
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G(Sx, Ty, Iz) = % < %x 2=aG(Ax,By,Cz)

<aG(Ax,By,Cz) + S[G(Sx, Ty, By) + G(Sx,Ty,Cz)]
+ y[G(AX, Iz, Sx) + G(By, Iz, Sx)].

Case 5. If x€[0,3], ¥,z €(3,1], then we have
,§,§j=o .
99

G(Sx, Ty, 1z) < aG(Ax, By,Cz) + B[G(Sx, Ty, By) + G(Sx, Ty, Cz)]
+ 7[G(AX, 1z, Sx) + G(By, Iz, Sx)].

G(Sx,Ty,1z) = G(

© |

So we know

Case 6. If ye[0,1], x,z € (3,1], then we have
8 78
G(Sx,Ty,12) =G| =,—,—
(5xTy. 1) =6 5. 2.5

If x=1, z=1 or ze(3,1), we have
G(Ax,By,Cz) =

Thus we get

1 1 2
G(Sx, Ty, 12) =— < =x—=aG(AX, By,Cz
( y)36<3x7a( y,C2)

< aG(Ax, By,Cz) + S[G(Sx, Ty, By) + G(Sx, Ty, Cz)]
+ y[G(AX, Iz, Sx) + G(By, Iz, Sx)].

If xe(3,1),z=1

8,7 1
G(Ax,By,C2) =G| =,1,— |==.
( ,C2) (9 8} 4

Thus we obtain

1 11
G(Sx, Ty, 12) =— < =x—=aG(Ax, By, Cz
( y)363><4a( y,Cz)

<aG(Ax,By,Cz) + SI[G(Sx, Ty, By) + G(Sx,Ty,Cz)]
+ 7[G(AX, Iz, Sx) + G(BY, Iz, Sx)].

550
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If x,ze(3,1)

8.8 2
G(Ax,By,C2) =G| =,1,— [=—.
(Ax,By,C2) (9 gj :

So we know

1 1 2
G(Sx, Ty, 1z2) =— < =x—=aG(Ax, By, Cz
( y)36<3><9a( y,Cz)
<aG(Ax,By,Cz) + S[G(Sx, Ty, By) + G(Sx,Ty,Cz)]
+ 7[G(AX, Iz, SX) + G(BY, Iz, Sx)].

Case7. If z€[0,1], x,y €(3,1], then we have

886) 4
63

G(Sx, Ty, 12) =G| —,—,—
smn-o[ 3

Ifx=1y=1
G(Ax, By,Cz) :G(S,0,0j:%.

Thus we have

4 1 12
G(Sx, Ty, 12) =— < =x—=aG(AXx,By,Cz
(y)63<3><7a( y,Cz)

< aG(Ax, By,Cz) + S[G(Sx, Ty, By) + G(Sx, Ty, Cz)]
+ y[G(AX, Iz, Sx) + G(By, Iz, Sx)].

Ifx=1ye (5,1

\llov
@loo

G(Ax,By,Cz) = G(
If xe(3,1),y=1

G(Ax,By,Cz):G(g,O,Oj:E.
If x,ye(5.,1)

8 8
G(Ax,By,C2) =G| —,—
( y,Cz) = (99

So we know



YUNJUAN SHEN, YUN YIN, AND FENG GU 552

G(Sx, Ty, I2) —is< ;x%—aG(AX By,Cz)

<aG(Ax,By,Cz) + S[G(Sx, Ty, By) + G(Sx,Ty,Cz)]
+ y[G(AX, Iz, Sx) + G(By, Iz, Sx)].

Case 8. If Xx,y,ze(3,1], then we have

G(Sx,Ty,1z) = G(

©| o

§,§j=0 .
99

G(Sx, Ty, 1z) < aG(AX, By,Cz) + S[G(Sx, Ty, By) + G(Sx, Ty, Cz)]
+ 7[G(AX, Iz, Sx) + G(BY, Iz, Sx)].

So we know

Then in all the above cases, the mapping S, T, I, A BandC are satisfying the
L
9

is the unique common fixed

condition (2.1) of Theorem 2.1 with «a=

1 p :i .50 that all the
3’ 10

conditions of Theorem2.1are satisfied. Moreover, g
pointof S, T, 1, A, Band C.
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