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1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty

closed convex subset of H. Let ϕ : C → R be a real value function, A : C → H a nonlinear

mapping and let Φ : C×C→ R be a bifunction, i.e., Φ(x,x) = 0 for each x ∈C.

Peng and Yao [11] considered the generalized mixed equilibrium problem of finding x∗ ∈C

such that

(1.1) (GMEP) : Φ(x∗,y)+ϕ(y)−ϕ(x∗)+ 〈Ax∗,y− x∗〉 ≥ 0, ∀y ∈C.

The set of solutions for problem (1.1) is denoted by Ω, i.e.,

(1.2) Ω = {x∗ ∈C : Φ(x∗,y)+ϕ(y)−ϕ(x∗)+ 〈Ax∗,y− x∗〉 ≥ 0, ∀y ∈C}.

If A ≡ 0 in (1.1), then (GMEP) (1.1) reduces to the classical mixed equilibrum problem (for

short, MEP) and Ω is denoted by MEP(Φ,ϕ), that is,

(1.3) MEP(Φ,ϕ) = {x∗ ∈C : Φ(x∗,y)+ϕ(y)−ϕ(x∗)≥ 0, ∀y ∈C},

which was considered by Ceng and Yao [3].

If ϕ ≡ 0 in (1.1), then (GMEP) (1.1) reduces to the generalized equilibrium problem (for short,

GEP) and Ω is denoted by EP, that is,

(1.4) EP = {x∗ ∈C : Φ(x∗,y)+ 〈Ax∗,y− x∗〉 ≥ 0, ∀y ∈C}.

which was studied by Takahashi and Takahashi [16] and many other for instance, [8,15-17].

If ϕ ≡ 0 and A ≡ 0 in (1.1), then (GMEP) (1.1) reduces to the classical equilibrium problem

(for short, EP) and Ω is denoted by EP(Φ), that is,

(1.5) EP(Φ) = {x∗ ∈C : Φ(x∗,y)≥ 0, ∀y ∈C}.

If Φ ≡ 0 and ϕ ≡ 0 in (1.1), then (GMEP) (1.1) reduces to the classical variational inequality

and Ω is denoted by V I(A,C), that is,

(1.6) V I(A,C) = {x∗ ∈C : 〈Ax∗,y− x∗〉 ≥ 0, ∀y ∈C}.
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In 2005, Combettes and Hirstoaga [4] introduced an iterative scheme of finding the best

approximation to the initial data when EP(Φ) 6= /0 and proved a strong convergence theorem.

In 2006, Takahashi and Takahashi [17] introduced an iterative scheme by the viscosity ap-

proximation method for finding a common element of the set of solutions of an equilibrium

problem and the set of fixed points of nonexpansive mapping in a Hilbert space and proved a

strong convergence theorem.

In 2007, Tada and Takahashi [15] introduced two iterative schemes for finding a common

element of the set of solutions of an equilibrium problem and the set of fixed points of a non-

expansive mapping in a Hilbert space and obtained both strong convergence theorem and weak

convergence theorem. In 2008, Takahashi and Takahashi [16] introduced an iterative method

for finding a common element of the set of solutions of a generalized equilibrium problem and

the set of fixed points of a nonexpansive mapping in a Hilbert space and then obtain that the

sequence converges strongly to a common element of two sets. Moreover they proved three new

strong convergence theorems in fixed point problems, variational inequalities and equilibrium

problems.

In 2008, Ceng and Yao [3] introduced a hybrid iterative scheme for finding a common ele-

ment of the set of solutions of mixed equilibrium problem (1.3) and the set of common fixed

points of finitely many nonexpansive mappings and they proved that the sequences generated

by the hybrid iterative scheme converge strongly to a common element of the set of solutions of

mixed equilibrium problem and the set of common fixed points of finitely many nonexpansive

mappings.

The generalized mixed equilibrium problems includes, optimization problems, variational in-

equalities, the Nash equilibrium problem in noncooperative games and others; see, for example

[1, 3, 16]. Peng and Yao [11] obtained some strong convergence theorems for iterative schemes

based on the hybrid method and the extragradient method for finding a common element of the

set of solutions of problem (1.1), the set of fixed points of a nonexpansive mapping and the set

of solutions of the variational inequality.
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Very recently, Jeong [7] consedered the generalized equilibrium problem

(x,y) ∈C×C such that

(1.7)


G1(x,x)+ 〈F1y,x− x〉+ 1

µ1
〈x− y,x− x〉 ≥ 0, ∀x ∈C,

G2(y,y)+ 〈F2x,y− y〉+ 1
µ2
〈y− x,y− y〉 ≥ 0, ∀y ∈C,

where G1,G2 : C×C→R are two bifunctions, F1,F2 : C→H are two nonlinear and µ1 > 0 and

µ2 > 0 are two constants.

In this paper, we will introduced an iterative scheme by the general iterative method (3.1) for

finding an element of the set of solutions of the generalized mixed equilibrium problem (1.1),

the set of solutions of the generalized equilibrium problem (1.7) and the set of common fixed

points of finitely many nonexpansive mappings in real Hilbert space, whereA,F1,F2 : C →

H be η−inverse strongly monotone, ζ1−inverse strongly monotone and ζ2−inverse strongly

monotone, respectively, and then obtain a strong convergence theorem. Moreover we using

this theorem to the problem for finding a common elements of ∩N
i=1F(Ti)∩MEP(Φ,ϕ)∩O ,

∩N
i=1F(Ti)∩EP∩O, ∩N

i=1F(Ti)∩EP(Φ)∩O and ∩N
i=1F(Ti)∩V I(A,C)∩O, respectively, where

O is the set of solutions of the generalized equilibrium problem (1.7).

2. PRELIMINARIES

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let symbols ⇀ and→

denote weak and strong convergence, respectively. Let C be a nonempty closed convex subset

of H. Then, for any x ∈ H, there exists a unique nearest point in C, denoted by PC(x) such that

‖x−PC(x)‖ ≤ ‖x− y‖, ∀y ∈C. The mapping PC : x→ PC(x) is called the metric projection of

H onto C. We know that PC is nonexpansive.

The following characterizes the projection PC.

Lemma 2.1. (See [14]) Given x ∈ H and y ∈C. Then PC(x) = y if and only if there holds the

inequality

〈x− y,y− z〉 ≥ 0, ∀z ∈C.

Recall that the following definitions.
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(1) A mapping T : C→ C is called nonexpansive if ‖T x− Ty‖ ≤ ‖x− y‖ for all x,y ∈ C.

Next, we denote by F(T ) the set of fixed points of T, i.e., F(T ) = {x ∈C : T x = x}.

(2) A mapping f : H→H is said to be a contraction if there exists a constant ρ ∈ (0,1) such

that ‖ f (x)− f (y)‖ ≤ ρ‖x− y‖ for all x,y ∈ H.

(3) A mapping A : C→ H is called monotone if 〈Ax−Ay,x− y〉 ≥ 0 for all x,y ∈ C and it

is called α−inverse strongly monotone if there exists a positive real number α such that 〈x−

y,Ax−Ay〉 ≥ α‖Ax−Ay‖2, ∀x,y ∈C. We can see that if A is α−inverse strongly monotone,

then A is monotone mapping.

The following lemmas will be useful for proving our main results.

Lemma 2.2. (See [14]) For all x,y ∈ H, there holds the inequality

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉.

Lemma 2.3. (See [14]) In a strictly convex Banach space E, if

‖x‖= ‖y‖= ‖λx+(1−λ )y‖,

for all x,y ∈ E and λ ∈ (0,1), then x = y.

Lemma 2.4. (See [19]) Let {an} be a sequence of nonnegative real numbers satisfying an+1 =

(1−αn)an +αnβn, ∀n≥ 0 where {αn},{βn} satisfy the conditions

(i) {αn} ⊂ [0,1],
∞

∑
n=1

αn = ∞;

(ii) limsup
n→∞

βn ≤ 0.

Then lim
n→∞

an = 0.

Lemma 2.5. (See [13]) Let {xn} and {yn} be bounded sequences in a Banach space X and let

{βn} be a sequence in [0,1] with 0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1. Suppose

xn+1 = βnxn +(1−βn)yn,

for all integer n≥ 0 and

limsup
n→∞

(‖yn+1− yn‖−‖xn+1− xn‖)≤ 0.

Then, lim
n→∞
‖yn− xn‖= 0.
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Lemma 2.6. (See [3]) Let C be a nonempty closed convex subset of H , ϕ : C→ R be a lower

semicontinuous and convex function and let Φ be a bifunction of C×C in to R satisfy

(A1) Φ(x,x) = 0 for all x ∈C;

(A2) Φ is monotone, i.e., Φ(x,y)+Φ(y,x)≤ 0, ∀x,y ∈C;

(A3) for all x,y,z ∈C, limt→0 Φ(tz+(1− t)x,y)≤Φ(x,y);

(A4) for all x ∈C, y 7→Φ(x,y) is convex and lower semicontinuous;

(B1) for each x ∈H and r > 0, there exists a bounded subset Dx ⊂C and yx ∈C such that for

any z ∈C\Dx,

Φ(z,yx)+ϕ(yx)+
1
r
〈yx− z,z− x〉< ϕ(z).

(B2) C is bounded set.

Assume that either (B1) or (B2) holds. For x ∈C and r > 0, define a mapping T (Φ,ϕ)
r : H →C

as follows.

T (Φ,ϕ)
r (x) := {z ∈C : Φ(z,y)+ϕ(y)+

1
r
〈y− z,z− x〉 ≥ ϕ(z), ∀y ∈C}

for all x ∈ H. Then , the following conditions hold:

(i) For each x ∈ H,T (Φ,ϕ)
r (x) 6= /0;

(ii) T (Φ,ϕ)
r is single-valued;

(iii) T (Φ,ϕ)
r is firmly nonexpansive, i.e.,

‖T (Φ,ϕ)
r x−T (Φ,ϕ)

r y‖2 ≤ 〈T (Φ,ϕ)
r x−T (Φ,ϕ)

r y,x− y〉, ∀x,y ∈ H;

(iv) F(T (Φ,ϕ)
r ) = MEP(Φ,ϕ) ;

(v) MEP(Φ,ϕ) is closed and convex.

Remark 2.7. If ϕ ≡ 0 then T (Φ,ϕ)
r is rewritten as T Φ

r .

Lemma 2.8. (see [7]) Let C be a nonempty closed convex subset of H. let G1,G2 : C×C−→R

be two a bifunctions satisfying conditions (A1)-(A4) and let the mapping F1,F2 : C −→ H be

ζ1− inverse strongly monotone and ζ2− inverse strongly monotone, respectively. Then, for
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given x,y∈C, (x,y) is a solution (1.7) if and only if x is a fixed point of the mapping Γ : C−→C

defined by

Γ(x) = T G1
µ1 (T G2

µ2 (x−µ2F2x)−µ1F1T G2
µ2 (x−µ2F2x)), ∀x ∈C,

where y = T G2
µ2 (x−µ2F2x).

The set of fixed points of the mapping Γ is denoted by O.

Proposition 2.9. (see [16]) Let C,H,Φ,ϕ and T (Φ,ϕ)
r be as in Lemma 2.6. Then the following

holds:

‖T (Φ,ϕ)
s x−T (Φ,ϕ)

t x‖2 ≤ s− t
s
〈T (Φ,ϕ)

s x−T (Φ,ϕ)
t x,T (Φ,ϕ)

s x− x〉

for all s, t > 0 and x ∈ H.

Lemma 2.10. (see [5]) Assume that T is a nonexpansive self-mapping of a nonempty closed

convex subset C of H. If T has a fixed point, then I − T is demi-closed, that is, when {xn}

is a sequence in C converging weakly to some x ∈ C and the sequence {(I−T )xn} converges

strongly to some y, it follows that (I−T )x = y.

Let X be a real Hilbert space and C a nonempty closed convex subset of X . For a finite family

of nonexpansive mappings T1,T2, . . . ,TN and sequence {λn,i}N
i=1 in [0,1], Kangtunyakarn and

Suantai [8] defined the mapping Kn : C→C as follows:

Un,1 = λn,1T1 +(1−λn,1)I,

Un,2 = λn,2T2Un,1 +(1−λn,2)Un,1,

Un,3 = λn,2T3Un,2 +(1−λn,3)Un,2,

...

Un,N−1 = λn,N−1TN−1Un,N−2 +(1−λn,N−1)Un,N−2,

Kn =Un,N = λn,NTNUn,N−1 +(1−λn,N)Un,N−1(2.1)

Such a mapping Kn is called the K−mapping generated by T1,T2, . . . ,TN and λn,1,λn,2, . . . ,λn,N .

Definition 2.11. (See [8]) Let C be a nonempty convex subset of a real Banach space. Let

{Ti}N
i=1 be a finite family of nonexpansive mapping of C into itself, and let λ1, . . . ,λN be real
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numbers such that 0 ≤ λi ≤ 1 for every i = 1, . . . ,N. They define a mapping K : C → C as

follows:

U1 = λ1T1 +(1−λ1)I,

U2 = λ2T2U1 +(1−λ2)U1,

U3 = λ3T3U2 +(1−λ3)U2,

...

UN−1 = λN−1TN−1UN−2 +(1−λN−1)UN−2,

K =UN = λNTNUN−1 +(1−λN)UN−1.

Such a mapping K is called the K−mapping generated by T1, . . . ,TN and λ1, . . . ,λN .

Lemma 2.12. (See [8]) Let C be a nonempty closed convex subset of a strictly convex Banach

space. Let {Ti}N
i=1 be a finite family of nonexpansive mappings of C into itself with ∩N

i=1F(Ti) 6=

/0 and let λ1, . . . ,λN be real numbers such that 0< λi < 1 for every i= 1, . . . ,N−1 and 0< λN ≤

1. Let K be the K−mapping generated by T1, . . . ,TN and λ1, . . . ,λN . Then F(K) = ∩N
i=1F(Ti).

Lemma 2.13. (See [8]) Let C be a nonempty closed convex subset of a Banach space. Let

{Ti}N
i=1 be a finite family of nonexpansive mappings of C into itself and {λn,i}N

i=1 sequences

in [0,1] such that λn,i→ λi, as n→ ∞ (i = 1,2, . . . ,N). Moreover, for every n ∈ N, let K and

Kn be the K−mappings generated by T1,T2, . . . ,TN and λ1,λ2, . . . ,λN and T1,T2, . . . ,TN and

λn,1,λn,2, . . . ,λn,N , respectively. Then, for every x ∈C,

lim
n→∞
‖Knx−Kx‖= 0.

Lemma 2.14. (see [12]) Let {xn} be a bounded sequence in a Hilbert space H. Then there exits

L > 0 such that

(2.2) ‖Kn+1xn+1−Knxn‖ ≤ ‖xn+1− xn‖+L
N

∑
i=1
|λn+1,i−λn,i|, ∀n≥ 0.
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3. MAIN RESULTS

We are now in a position to prove the main result of this paper.

Theorem 3.1. Let H be a real Hilbert space, C a closed convex nonempty subset of H. Let

Φ,G1,G2 : C×C→ R be three bifunctions which satisfying (A1)-(A4) and ϕ : C→ R a lower

semicontinuous and convex functional. Let A,F1,F2 : C→ H be η−inverse strongly monotone,

ζ1−inverse strongly monotone and ζ2−inverse strongly monotone, respectively. Let {Ti}N
i=1 be

a finite family of nonexpansive mappings of C into itself such that ∆ = ∩N
i=1F(Ti)∩Ω∩O 6= /0

and f a ρ−contraction of C into itself. Assume that either (B1) or (B2) holds. Let x1 ∈C and

let {xn} be a sequence defined by

(3.1)


un = T (Φ,ϕ)

rn (xn− rnAxn),

yn = T G1
µ1 [T G2

µ2 (un−µ2F2un)−µ1F1T G2
µ2 (un−µ2F2un)],

xn+1 = αn f (Knxn)+βnxn + γnKnyn,∀n≥ 1,

where Kn is a K−mapping generated by T1,T2, . . . ,TN and λn,1,λn,2, . . . ,λn,N and {αn},{βn}

and {γn} are three sequences in (0,1) with αn +βn + γn = 1, {λn,i}N
i=1 a sequence in [a,b] with

0 < a≤ b < 1 , {rn} a sequence in [0,2η ] for all n ∈ N , µ1 ∈ (0,2ζ1) and µ2 ∈ (0,2ζ2) satisfy

the following conditions:

(i) the sequence {rn} satisfies

(C1) 0 < c≤ rn ≤ d < 2η; and

(C2)
∞

∑
n=1
|rn+1− rn|< ∞;

(ii) the sequence {αn} satisfies

(D1) lim
n→∞

αn = 0; and

(D2)
∞

∑
n=0

αn = ∞;

(iii) the sequence {βn} satisfies

(E1) 0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1;

(iv) the finite family of sequences {λn,i}N
i=1 satisfies

(F1) lim
n→∞
|λn+1,i−λn,i|= 0 for every i ∈ {1,2, . . . ,N}.



684 BENJAWAN RODJANADID AND SUPUNNEE SOMPONG

Then {xn} converges strongly to x∗ = P∆ f (x∗) where ∆ = ∩N
i=1F(Ti)∩Ω∩O and (x∗,y∗) is a

solution of problem (1.7) where y∗ = T G2
µ2 (x∗−µ2F2x∗).

Proof. Let x,y∈C. Since A is η−inverse strongly monotone and rn ∈ (0,2η) ,∀n∈N, we have

‖(I− rnA)x− (I− rnA)y‖2 = ‖x− y− rn(Ax−Ay)‖2

= ‖x− y‖2−2rn〈x− y,Ax−Ay〉+ r2
n‖Ax−Ay‖2

≤ ‖x− y‖2−2rnη‖Ax−Ay‖2 + r2
n‖Ax−Ay‖2

= ‖x− y‖2 + rn(rn−2η)‖Ax−Ay‖2

≤ ‖x− y‖2,

then the mapping I−rnA is a nonexpansive mapping, and so are I−µ1F1 and I−µ2F2, provided

µ1 ∈ (0,2ζ1) and µ2 ∈ (0,2ζ2), respectively.

We shall divide the proof into several steps.

step 1. We shall show that the sequences {xn} is bounded.

Let p ∈ ∆ = ∩N
i=1F(Ti)∩Ω∩O. Since p = T (Φ,ϕ)

rn (p− rnAp) and T (Φ,ϕ)
rn and (I − rnA) are

nonexpansive, we obtain that for any n≥ 1,

‖un− p‖= ‖T (Φ,ϕ)
rn (xn− rnAxn)−T (Φ,ϕ)

rn (p− rnAp)‖

≤ ‖(xn− rnAxn)− (p− rnAp)‖

≤ ‖xn− p‖.(3.2)

Putting zn = T G2
µ2 (un−µ2F2un) and z = T G2

µ2 (p−µ2F2 p), we have

‖zn− z‖= ‖T G2
µ2 (un−µ2F2un)−T G2

µ2 (p−µ2F2 p)‖

≤ ‖(un−µ2F2un)− (p−µ2F2 p)‖

≤ ‖un− p‖.(3.3)
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And since p = T G1
µ1 (z−µ1F1z), we know that for any n≥ 1,

‖yn− p‖= ‖T G1
µ1 (zn−µ1F1zn)−T G1

µ1 (z−µ1F1z)‖

≤ ‖(zn−µ1F1zn)− (z−µ1F1z)‖

≤ ‖zn− z‖

≤ ‖un− p‖.(3.4)

Furthermore, from (3.1), (3.2) and (3.4) we have

‖xn+1− p‖= ‖αn f (Knxn)+βnxn + γnKnyn− p‖

= ‖αn f (Knxn)+βnxn + γnKnyn− (αn +βn + γn)p‖

≤ αn‖ f (Knxn)− p‖+βn‖xn− p‖+ γn‖Knyn− p‖

≤ αn(‖ f (Knxn)− f (p)‖+‖ f (p)− p‖)+βn‖xn− p‖+ γn‖yn− p‖

≤ αn(ρ‖xn− p‖+‖ f (p)− p‖)+βn‖xn− p‖+ γn‖xn− p‖

= αnρ‖xn− p‖+βn‖xn− p‖+ γn‖xn− p‖+αn‖ f (p)− p‖

= αnρ‖xn− p‖+(1−αn)‖xn− p‖+αn‖ f (p)− p‖

= (1−αn(1−ρ))‖xn− p‖+αn‖ f (p)− p‖

= (1−αn(1−ρ))‖xn− p‖+αn(1−ρ) · 1
1−ρ

‖ f (p)− p‖.(3.5)

It follows from (3.5) induction that

‖xn− p‖ ≤M, ∀n≥ 1

where M =max{‖x0− p‖, 1
1−ρ
‖ f (p)− p‖}. Hence {xn} is bounded, and so are {un},{yn},{Axn},{ f (Knxn)}

and {Knyn}.

Step 2. We claim that lim
n→∞
‖xn+1− xn‖= 0.

Define

(3.6) wn =
αn

1−βn
f (Knxn)+

γn

1−βn
Knyn,

we have

xn+1 = βnxn +(1−βn)wn, ∀n≥ 0.
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Notice that

‖wn+1−wn‖= ‖
αn+1

1−βn+1
f (Kn+1xn+1)+

γn+1

1−βn+1
Kn+1yn+1−

αn

1−βn
f (Knxn)−

γn

1−βn
Knyn‖

≤ αn+1

1−βn+1
‖ f (Kn+1xn+1)− f (Knxn)‖+ |

αn+1

1−βn+1
− αn

1−βn
|‖ f (Knxn)‖

+
γn+1

1−βn+1
‖Kn+1yn+1−Knyn‖+ |

γn+1

1−βn+1
− γn

1−βn
|‖Knyn‖

≤ αn+1

1−βn+1
ρ‖Kn+1xn+1−Knxn‖+ |

αn+1

1−βn+1
− αn

1−βn
|(‖ f (Knxn)‖+‖Knyn‖)

+
γn+1

1−βn+1
‖Kn+1yn+1−Knyn‖.(3.7)

From Lemma 2.14, there exist L1 > 0 and L2 > 0 such that

‖wn+1−wn‖ ≤
αn+1

1−βn+1
ρ(‖xn+1− xn‖+L1

N

∑
i=1
|λn+1,i−λn,i|)

+ | αn+1

1−βn+1
− αn

1−βn
|(‖ f (Knxn)‖+‖Knyn‖)

+
γn+1

1−βn+1
(‖yn+1− yn‖+L2

N

∑
i=1
|λn+1,i−λn,i|).(3.8)

Notice that

‖yn+1− yn‖2 = ‖T G1
µ1 (zn+1−µ1F1zn+1)−T G1

µ1 (zn−µ1F1zn)‖2

≤ ‖(zn+1− zn)−µ1(F1zn+1−F1zn)‖2

= ‖zn+1− zn‖2−2µ1〈zn+1− zn,F1zn+1−F1zn〉+µ
2
1‖F1zn+1−F1zn‖2

≤ ‖zn+1− zn‖2−2µ1ζ1‖F1zn+1−F1zn‖2 +µ
2
1‖F1zn+1−F1zn‖2

= ‖zn+1− zn‖2 +µ1(µ1−2ζ1)‖F1zn+1−F1zn‖2
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‖yn+1− yn‖2 ≤ ‖zn+1− zn‖2

= ‖T G2
µ2 (un+1−µ2F2un+1)−T G2

µ2 (un−µ2F2un)‖2

≤ ‖(un+1−un)−µ2(F2un+1−F2un)‖2

= ‖un+1−un‖2−2µ2〈un+1−un,F2un+1−F2un〉+µ
2
2‖F2un+1−F2un‖2

≤ ‖un+1−un‖2−2µ2ζ2‖F2un+1−F2un‖2 +µ
2
2‖F2un+1−F2un‖2

= ‖un+1−un‖2 +µ2(µ2−2ζ2)‖F2un+1−F2un‖2

≤ ‖un+1−un‖2.(3.9)

And

‖un+1−un‖= ‖T (Φ,ϕ)
rn+1 (xn+1− rn+1Axn+1)−T (Φ,ϕ)

rn (xn− rnAxn)‖

≤ ‖T (Φ,ϕ)
rn+1 (xn+1− rn+1Axn+1)−T (Φ,ϕ)

rn+1 (xn− rnAxn)‖

+‖T (Φ,ϕ)
rn+1 (xn− rnAxn)−T (Φ,ϕ)

rn (xn− rnAxn)‖

≤ ‖(xn+1− rn+1Axn+1)− (xn− rnAxn)‖

+‖T (Φ,ϕ)
rn+1 (xn− rnAxn)−T (Φ,ϕ)

rn (xn− rnAxn)‖

= ‖xn+1− xn− rn+1Axn+1 + rn+1Axn− rn+1Axn + rnAxn‖

+‖T (Φ,ϕ)
rn+1 (xn− rnAxn)−T (Φ,ϕ)

rn (xn− rnAxn)‖

≤ ‖(xn+1− rn+1Axn+1)− (xn− rn+1Axn)‖+‖rnAxn− rn+1Axn‖

+‖T (Φ,ϕ)
rn+1 (xn− rnAxn)−T (Φ,ϕ)

rn (xn− rnAxn)‖

≤ ‖xn+1− xn‖+ |rn+1− rn|‖Axn‖

+‖T (Φ,ϕ)
rn+1 (xn− rnAxn)−T (Φ,ϕ)

rn (xn− rnAxn)‖.(3.10)



688 BENJAWAN RODJANADID AND SUPUNNEE SOMPONG

It follows from (3.9) and (3.10) that

‖yn+1− yn‖ ≤ ‖un+1−un‖

≤ ‖xn+1− xn‖+ |rn+1− rn|‖Axn‖

+‖T (Φ,ϕ)
rn+1 (xn− rnAxn)−T (Φ,ϕ)

rn (xn− rnAxn)‖.(3.11)

Without loss of generality, let us assume that there exists a real number k such that rn > k > 0

for all n. Utilizing Proposition 2.9, we have

‖T (Φ,ϕ)
rn+1 (xn− rnAxn)−T (Φ,ϕ)

rn (xn− rnAxn)‖

≤ |rn+1− rn|
rn+1

‖T (Φ,ϕ)
rn+1 (I− rnA)xn‖

≤ |rn+1− rn|
k

‖T (Φ,ϕ)
rn+1 (I− rnA)xn‖.(3.12)

By (3.11) and (3.12) , we have

(3.13) ‖yn+1− yn‖ ≤ ‖xn+1− xn‖+ |rn+1− rn|‖Axn‖+
|rn+1− rn|

k
‖T (Φ,ϕ)

rn+1 (I− rnA)xn‖.

Combining (3.8) and (3.13), we deduce

‖wn+1−wn‖ ≤
αn+1

1−βn+1
ρ(‖xn+1− xn‖+L1

N

∑
i=1
|λn+1,i−λn,i|)

+ | αn+1

1−βn+1
− αn

1−βn
|(‖ f (Knxn)‖+‖Knyn‖)

+
γn+1

1−βn+1
(‖xn+1− xn‖+ |rn+1− rn|‖Axn‖+

|rn+1− rn|
k

‖T (Φ,ϕ)
rn+1 (I− rnA)xn‖

+L2

N

∑
i=1
|λn+1,i−λn,i|)

≤ ‖xn+1− xn‖+ |
αn+1

1−βn+1
− αn

1−βn
|(‖ f (Knxn)‖+‖Knyn‖)

+
γn+1

1−βn+1
|rn+1− rn|‖Axn‖+

γn+1

1−βn+1
· 1

k
|rn+1− rn|‖T (Φ,ϕ)

rn+1 (I− rnA)xn‖

+
γn+1

1−βn+1
L2

N

∑
i=1
|λn+1,i−λn,i|+

αn+1

1−βn+1
L1

N

∑
i=1
|λn+1,i−λn,i|.
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Therefore

‖wn+1−wn‖−‖xn+1− xn‖ ≤ |
αn+1

1−βn+1
− αn

1−βn
|(‖ f (Knxn)‖+‖Knyn‖)

+
γn+1

1−βn+1
|rn+1− rn|‖Axn‖+

γn+1

1−βn+1
· 1

k
|rn+1− rn|‖T (Φ,ϕ)

rn+1 (I− rnA)xn‖

+
γn+1

1−βn+1
L2

N

∑
i=1
|λn+1,i−λn,i|+

αn+1

1−βn+1
L1

N

∑
i=1
|λn+1,i−λn,i|.(3.14)

Applying the conditions (C2), (D1), (E1) and (F1) and taking the superior limit as n → ∞

to (3.14), we have

limsup
n→∞

(‖wn+1−wn‖−‖xn+1− xn‖) = 0.

Hence, by Lemma 2.5, we get lim
n→∞
‖wn− xn‖= 0. This implies that

lim
n→∞
‖xn+1− xn‖= lim

n→∞
(1−βn)‖wn− xn‖= 0.

Step 3. We shall show that lim
n→∞
‖xn−un‖= 0 , lim

n→∞
‖un− yn‖= 0,

lim
n→∞
‖xn− yn‖= 0 and lim

n→∞
‖Knyn− yn‖= 0.

Since xn+1 = αn f (Knxn)+βnxn + γnKnyn, we obtain

‖xn−Knyn‖ ≤ ‖xn− xn+1‖+‖xn+1−Knyn‖

= ‖xn− xn+1‖+‖αn f (Knxn)+βnxn + γnKnyn−Knyn‖

= ‖xn− xn+1‖+‖αn f (Knxn)+βnxn− (1− γn)Knyn‖

= ‖xn− xn+1‖+‖αn f (Knxn)+βnxn− (αn +βn)Knyn‖

≤ ‖xn− xn+1‖+αn‖ f (Knxn)−Knyn‖+βn‖xn−Knyn‖

and hence

(3.15) ‖xn−Knyn‖ ≤
1

1−βn
‖xn− xn+1‖+

αn

1−βn
‖ f (Knxn)−Knyn‖.

Since αn→ 0 and ‖xn− xn+1‖→ 0 as n→ ∞, (3.15) implies that

(3.16) lim
n→∞
‖xn−Knyn‖= 0.
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Since A,F1 and F2 are η−inverse strongly monotone, ζ1−inverse strongly monotone and ζ2−inverse

strongly monotone, respectively and p ∈ ∆, we have

‖xn+1− p‖2 = ‖αn f (Knxn)+βnxn + γnKnyn− p‖2

≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn‖Knyn− p‖2

≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn‖yn− p‖2

= αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn‖T G1
µ1 (zn−µ1F1zn)−T G1

µ1 (z−µ1F1z)‖2

≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn‖(zn− z)−µ1(F1zn−F1z)‖2

≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn[‖zn− z‖2−2µ1〈zn− z,F1zn−F1z〉

+µ
2
1‖F1zn−F1z‖2]

≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn[‖zn− z‖2−2µ1ζ1‖F1zn−F1z‖2

+µ
2
1‖F1zn−F1z‖2]

= αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn[‖zn− z‖2 +µ1(µ1−2ζ1)‖F1zn−F1z‖2]

= αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn[‖T G2
µ2 (un−µ2F2un)−T G2

µ2 (p−µ2F2 p)‖2

+µ1(µ1−2ζ1)‖F1zn−F1z‖2]

≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn[‖un− p‖2 +µ2(µ2−2ζ2)‖F2un−F2 p‖2

+µ1(µ1−2ζ1)‖F1zn−F1z‖2]

= αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn[‖T (Φ,ϕ)
rn (xn− rnAxn)−T (Φ,ϕ)

rn (p− rnAp)‖2

+µ2(µ2−2ζ2)‖F2un−F2 p‖2 +µ1(µ1−2ζ1)‖F1zn−F1z‖2]

≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn[‖xn− p‖2 + rn(rn−2η)‖Axn−Ap‖2

+µ2(µ2−2ζ2)‖F2un−F2 p‖2 +µ1(µ1−2ζ1)‖F1zn−F1z‖2].(3.17)
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It follows that

γnrn(2η− rn)‖Axn−Ap‖2 + γnµ2(2ζ2−µ2)‖F2un−F2 p‖2 + γnµ1(2ζ1−µ1)‖F1zn−F1z‖2

≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn‖xn− p‖2−‖xn+1− p‖2

= αn‖ f (Knxn)− p‖2 +(1−αn)‖xn− p‖2−‖xn+1− p‖2

= αn‖ f (Knxn)− p‖2−αn‖xn− p‖2 +‖xn− p‖2−‖xn+1− p‖2

≤ αn‖ f (Knxn)− p‖2−αn‖xn− p‖2 +‖xn− xn+1‖× (‖xn− p‖+‖xn+1− p‖).

Since 0 < c≤ rn ≤ d < 2η , we have

γnc(2η−d)‖Axn−Ap‖2 + γnµ2(2ζ2−µ2)‖F2un−F2 p‖2 + γnµ1(2ζ1−µ1)‖F1zn−F1z‖2

≤ αn‖ f (Knxn)− p‖2−αn‖xn− p‖2 +‖xn− xn+1‖× (‖xn− p‖+‖xn+1− p‖).(3.18)

From αn→ 0 , ‖xn−xn+1‖→ 0 as n→∞ and the boundedness of {xn} and { f (Knxn)}, we have

lim
n→∞
‖Axn−Ap‖= 0, lim

n→∞
‖F1zn−F1z‖= 0 and lim

n→∞
‖F2un−F2 p‖= 0.

Indeed, from (3.2), (3.3) and Lemma 2.6, we have

‖zn−z‖2 = ‖T G2
µ2 (un−µ2F2un)−T G2

µ2 (p−µ2F2 p)‖2

≤ 〈T G2
µ2 (un−µ2F2un)−T G2

µ2 (p−µ2F2 p),(un−µ2F2un)− (p−µ2F2 p)〉

= 〈(un−µ2F2un)− (p−µ2F2 p),zn− z〉

=
1
2
(‖(un−µ2F2un)− (p−µ2F2 p)‖2 +‖zn− z‖2−‖(un−µ2F2un)− (p−µ2F2 p)− (zn− z)‖2)

≤ 1
2
(‖un− p‖2 +‖zn− z‖2−‖(un− zn)−µ2(F2un−F2 p)− (p− z)‖2)

≤ 1
2
(‖xn− p‖2 +‖zn− z‖2−‖(un− zn)− (p− z)‖2

+2µ2〈(un− zn)− (p− z),F2un−F2 p〉−µ
2
2‖F2un−F2 p‖2),
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and

‖yn− p‖2 = ‖T G1
µ1 (zn−µ1F1zn)−T G1

µ1 (z−µ1F1z)‖2

≤ 〈T G1
µ1 (zn−µ1F1zn)−T G1

µ1 (z−µ1F1z),(zn−µ1F1zn)− (z−µ1F1z)〉

= 〈(zn−µ1F1zn)− (z−µ1F1z),yn− p〉

=
1
2
(‖(zn−µ1F1zn)− (z−µ1F1z)‖2 +‖yn− p‖2

−‖(zn−µ1F1zn)− (z−µ1F1z)− (yn− p)‖2)

≤ 1
2
(‖zn− z‖2 +‖yn− p‖2−‖(zn− yn)+(p− z)‖2

+2µ1〈(zn− yn)+(p− z),F1zn−F1z〉−µ
2
1‖F1zn−F1z‖2)

≤ 1
2
(‖xn− p‖2 +‖yn− p‖2−‖(zn− yn)+(p− z)‖2

+2µ1〈(zn− yn)+(p− z),F1zn−F1z〉

which implies that

(3.19) ‖zn−z‖2 ≤ ‖xn− p‖2−‖(un−zn)−(p−z)‖2+2µ2‖(un−zn)−(p−z)‖‖F2un−F2 p‖

and

(3.20) ‖yn− p‖2 ≤ ‖xn− p‖2−‖(zn−yn)+(p−z)‖2+2µ1‖F1zn−F1z‖‖(zn−yn)+(p−z)‖.

It follows from (3.20) that

‖xn+1− p‖2 ≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn‖yn− p‖2

≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn(‖xn− p‖2−‖(zn− yn)+(p− z)‖2

+2µ1‖F1zn−F1z‖‖(zn− yn)+(p− z)‖),
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which finds that

γn‖(zn− yn)+(p− z)‖2 ≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn‖xn− p‖2−‖xn+1− p‖2

+2µ1γn‖F1zn−F1z‖‖(zn− yn)+(p− z)‖

≤ αn‖ f (Knxn)− p‖2−αn‖xn− p‖2 +‖xn− xn+1‖

× (‖xn− p‖+‖xn+1− p‖)+2µ1γn‖F1zn−F1z‖‖(zn− yn)+(p− z)‖.(3.21)

Since αn→ 0, ‖xn− xn+1‖→ 0 and ‖F1zn−F1z‖→ 0 as n→ ∞, we have

(3.22) lim
n→∞
‖(zn− yn)+(p− z)‖= 0.

Also, from (3.4) and (3.19) , we obtain that

‖xn+1− p‖2 ≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn‖yn− p‖2

≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn(‖zn− z‖2−‖(zn− yn)+(p− z)‖2

+2µ1‖F1zn−F1z‖‖(zn− yn)+(p− z)‖)

= αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2− γn‖(zn− yn)+(p− z)‖2

+2γnµ1‖F1zn−F1z‖‖(zn− yn)+(p− z)‖+ γn(‖xn− p‖2

−‖(un− zn)− (p− z)‖2 +2µ2‖(un− zn)− (p− z)‖‖F2un−F2 p‖)

It follows that

γn‖(un− zn)− (p− z)‖2 ≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn‖xn− p‖2

−‖xn+1− p‖2− γn‖(zn− yn)+(p− z)‖2

+2γnµ1‖F1zn−F1z‖‖(zn− yn)+(p− z)‖

+2γnµ2‖(un− zn)− (p− z)‖‖F2un−F2 p‖(3.23)

≤ αn‖ f (Knxn)− p‖2−αn‖xn− p‖2 +‖xn− xn+1‖(‖xn− p‖

+‖xn+1− p‖)− γn‖(zn− yn)+(p− z)‖2 +2γnµ1‖F1zn−F1z‖

×‖(zn− yn)+(p− z)‖+2γnµ2‖(un− zn)− (p− z)‖‖F2un−F2 p‖.(3.24)
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Since αn→ 0, ‖xn− xn+1‖ → 0, ‖F2un−F2 p‖ → 0 and ‖(zn− yn)+(p− z)‖ → 0 as n→ ∞,

we have

(3.25) lim
n→∞
‖(un− zn)− (p− z)‖= 0.

In addition, from the firm nonexpansivity of T (Φ,ϕ)
rn , we have

‖un− p‖2 = ‖T (Φ,ϕ)
rn (xn− rnAxn)−T (Φ,ϕ)

rn (p− rnAp)‖2

≤ 〈un− p,(xn− rnAxn)− (p− rnAp)〉

=
1
2
(‖(xn− rnAxn)− (p− rnAp)‖2 +‖un− p‖2−‖(xn− rnAxn)− (p− rnAp)− (un− p)‖2)

≤ 1
2
(‖xn− p‖2 +‖un− p‖2−‖(xn−un)− rn(Axn−Ap)‖2)

=
1
2
(‖xn− p‖2 +‖un− p‖2−‖xn−un‖2 +2rn〈Axn−Ap,xn−un〉− r2

n‖Axn−Ap‖2,

which implies that

(3.26) ‖un− p‖2 ≤ ‖xn− p‖2−‖xn−un‖2 +2rn‖Axn−Ap‖‖xn−un‖.

From (3.1), (3.4) and (3.26), we have

‖xn+1− p‖2 ≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn‖yn− p‖2

≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn‖un− p‖2

≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn(‖xn− p‖2

−‖xn−un‖2 +2rn‖Axn−Ap‖‖xn−un‖).
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It follows that

γn‖xn−un‖2 ≤ αn‖ f (Knxn)− p‖2 +βn‖xn− p‖2 + γn‖xn− p‖2−‖xn+1− p‖2

+2γnrn‖Axn−Ap‖‖xn−un‖

= αn‖ f (Knxn)− p‖2−αn‖xn− p‖2 +‖xn− p‖2−‖xn+1− p‖2

+2γnrn‖Axn−Ap‖‖xn−un‖

≤ αn‖ f (Knxn)− p‖2−αn‖xn− p‖2 +(‖xn− p‖+‖xn+1− p‖)‖xn− xn+1‖

+2γnrn‖Axn−Ap‖‖xn−un‖.

Since αn→ 0,‖Axn−Ap‖→ 0 and ‖xn− xn+1‖→ 0 as n→ ∞, we obtain that

(3.27) lim
n→∞
‖xn−un‖= 0.

From (3.22), (3.25) and (3.27), we obtain that

lim
n→∞
‖un− yn‖= lim

n→∞
‖(un− zn)− (p− z)+(zn− yn)+(p− z)‖

≤ lim
n→∞
‖(un− zn)− (p− z)‖+ lim

n→∞
‖(zn− yn)+(p− z)‖

= 0(3.28)

and

(3.29) lim
n→∞
‖xn− yn‖ ≤ lim

n→∞
‖xn−un‖+ lim

n→∞
‖un− yn‖= 0.

Since ‖Knyn− yn‖ ≤ ‖Knyn− xn‖+‖xn− yn‖, by (3.16) and (3.29), we have

(3.30) lim
n→∞
‖Knyn− yn‖= 0.

Step 4. We shall show that

limsup
n→∞

〈 f (x∗)− x∗,xn− x∗〉 ≤ 0,

where x∗ = P∆ f (x∗). To show this inequality, we can choose a subsequence {yni} of {yn} such

that

(3.31) lim
i→∞
〈 f (x∗)− x∗,yni− x∗〉= limsup

n→∞

〈 f (x∗)− x∗,yn− x∗〉.
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Since {yni} is bounded, there exists a subsequence {yni j} of {yni} which converges weakly to

ω. Without loss of generality, we can assume that yni ⇀ ω. Let us show ω ∈ ∆.

First, we show that ω ∈ O. Utilizing Lemma 2.6 , we have for all x,y ∈C

‖Γ(x)−Γ(y)‖2 = ‖T G1
µ1 [T G2

µ2 (x−µ2F2x)−µ1F1T G2
µ2 (x−µ2F2x)]

−T G1
µ1 [T G2

µ2 (y−µ2F2y)−µ1F1T G2
µ2 (y−µ2F2y)]‖2

≤ ‖T G2
µ2 (x−µ2F2x)−T G2

µ2 (y−µ2F2y)−µ1(F1T G2
µ2 (x−µ2F2x)

−F1T G2
µ2 (y−µ2F2y))‖2

= ‖T G2
µ2 (x−µ2F2x)−T G2

µ2 (y−µ2F2y)‖2−2µ1〈T G2
µ2 (x−µ2F2x)

−T G2
µ2 (y−µ2F2y),F1T G2

µ2 (x−µ2F2x)−F1T G2
µ2 (y−µ2F2y)〉

+µ
2
1‖F1T G2

µ2 (x−µ2F2x)−F1T G2
µ2 (y−µ2F2y)‖2

≤ ‖T G2
µ2 (x−µ2F2x)−T G2

µ2 (y−µ2F2y)‖2−2µ1ζ1‖F1T G2
µ2 (x−µ2F2x)

−F1T G2
µ2 (y−µ2F2y)‖2 +µ

2
1‖F1T G2

µ2 (x−µ2F2x)−F1T G2
µ2 (y−µ2F2y)‖2

= ‖T G2
µ2 (x−µ2F2x)−T G2

µ2 (y−µ2F2y)‖2 +µ1(µ1−2ζ1)‖F1T G2
µ2 (x−µ2F2x)

−F1T G2
µ2 (y−µ2F2y)‖2

≤ ‖T G2
µ2 (x−µ2F2x)−T G2

µ2 (y−µ2F2y)‖2

≤ ‖(x−µ2F2x)− (y−µ2F2y)‖2

= ‖(x− y)−µ2(F2x−F2y)‖2

≤ ‖x− y‖2 +µ2(µ2−2ζ2)‖F2x−F2y‖2

≤ ‖x− y‖2.

This implies that Γ : C→C is nonexpansive. Note that

‖yn−Γ(yn)‖= ‖Γ(un)−Γ(yn)‖ ≤ ‖un− yn‖

from (3.28), we have lim
n→∞
‖yn− Γ(yn)‖ ≤ lim

n→∞
‖un− yn‖ = 0. According to Lemma 2.8 and

Lemma 2.10, we obtain ω ∈ O.
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Next, we show that ω ∈Ω. Since un = T (Φ,ϕ)
rn (xn− rnAxn), for any y ∈C we have

Φ(un,y)+ϕ(y)−ϕ(un)+ 〈Axn,y−un〉+
1
rn
〈y−un,un− xn〉 ≥ 0.

From (A2) we have

ϕ(y)−ϕ(un)+ 〈Axn,y−un〉+
1
rn
〈y−un,un− xn〉 ≥ −Φ(un,y)≥Φ(y,un),

and hence

(3.32) ϕ(y)−ϕ(uni)+ 〈Axni,y−uni〉+ 〈y−uni,
uni− xni

rni

〉 ≥Φ(y,uni).

Put ut = ty+(1− t)ω for all t ∈ (0,1] and y ∈C. Then we have ut ∈C. From (3.32) we have

ϕ(ut)−ϕ(uni)+ 〈ut−uni,Aut〉

≥ 〈ut−uni,Aut〉−〈ut−uni,Axni〉−〈ut−uni,
uni− xni

rni

〉+Φ(ut ,uni)

= 〈ut−uni,Aut−Auni〉+ 〈ut−uni,Auni−Axni〉−〈ut−uni,
uni− xni

rni

〉

+Φ(ut ,uni).

Since ‖uni − xni‖ → 0, we have ‖Auni −Axni‖ → 0. Further, from monotonicity of A, we have

〈ut−uni,Aut−Auni〉 ≥ 0.

From (A4), the weakly semicontinuity of ϕ , uni− xni → 0 and uni ⇀ ω, we have

(3.33) ϕ(ut)−ϕ(ω)+ 〈ut−ω,Aut〉 ≥Φ(ut ,ω) as i→ ∞.

From (A1), (A4), (3.33) and the convexity of ϕ , we obtain

0 = Φ(ut ,ut)+ϕ(ut)−ϕ(ut)

= Φ(ut ,(ty+(1− t)ω))+ϕ(ty+(1− t)ω)−ϕ(ut)

≤ tΦ(ut ,y)+(1− t)Φ(ut ,ω)+ tϕ(y)+(1− t)ϕ(ω)−ϕ(ut)

≤ tΦ(ut ,y)+(1− t)(ϕ(ut)−ϕ(ω)+ 〈ut−ω,Aut〉)+ tϕ(y)+(1− t)ϕ(ω)−ϕ(ut)

= tΦ(ut ,y)− tϕ(ut)+(1− t)〈ut−ω,Aut〉+ tϕ(y)

= t[Φ(ut ,y)−ϕ(ut)+ϕ(y)]+(1− t)t〈y−ω,Aut〉,(3.34)
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and hence

Φ(ut ,y)−ϕ(ut)+ϕ(y)+(1− t)〈y−ω,Aut〉 ≥ 0, ∀y ∈C.

Letting t→ 0, it follows from (A3) and the weakly semicontinuity of ϕ that

(3.35) Φ(ω,y)−ϕ(ω)+ϕ(y)+ 〈y−ω,Aω〉 ≥ 0, ∀y ∈C.

This implies that ω ∈ Ω. Next, we show that ω ∈ ∩N
i=1F(Ti). Assume that there exists j ∈

{1,2, . . . ,N} such that ω 6= Tjω. By Lemma 2.12, we have ω 6= Kω.

Since yni ⇀ ω and ω 6= Kω, by Opial’s condition[10] and (3.30) and Lemma 2.13, we have

liminf
i→∞

‖yni−ω‖< liminf
i→∞

‖yni−Kω‖

≤ liminf
i→∞

(‖yni−Kniyni‖+‖Kniyni−Kniω‖+‖Kniω−Kω‖)

≤ liminf
i→∞

‖yni−ω‖,

which derives a contradiction. This implies that ω = Kω . It follows from

ω ∈ F(K) = ∩N
i=1F(Ti), that ω ∈ ∩N

i=1F(Ti). Hence ω ∈ ∆.

Since x∗ = P∆ f (x∗), we have

limsup
n→∞

〈 f (x∗)− x∗,xn− x∗〉= lim
i→∞
〈 f (x∗)− x∗,xni− x∗〉

= lim
i→∞
〈 f (x∗)− x∗,yni− x∗〉

= 〈 f (x∗)− x∗,ω− x∗〉 ≤ 0.(3.36)
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Step 5. Finally, we prove that {xn} converge strongly to x∗.

From (3.1), we obtain

‖xn+1− x∗‖2 = 〈αn f (Knxn)+βnxn + γnKnyn− x∗,xn+1− x∗〉

= αn〈 f (Knxn)− x∗,xn+1− x∗〉+βn〈xn− x∗,xn+1− x∗〉+ γn〈Knyn− x∗,xn+1− x∗〉

≤ αn〈 f (Knxn)− f (x∗),xn+1− x∗〉+αn〈 f (x∗)− x∗,xn+1− x∗〉

+
1
2

βn(‖xn− x∗‖2 +‖xn+1− x∗‖2)+
1
2

γn(‖Knyn− x∗‖2 +‖xn+1− x∗‖2)

≤ 1
2
(1−αn)(‖xn− x∗‖2 +‖xn+1− x∗‖2)+αn〈 f (x∗)− x∗,xn+1− x∗〉

+
1
2

αn(‖ f (Knxn)− f (x∗)‖2 +‖xn+1− x∗‖2)

≤ 1
2
(1−αn)(‖xn− x∗‖2 +‖xn+1− x∗‖2)+αn〈 f (x∗)− x∗,xn+1− x∗〉

+
1
2

αnρ
2‖xn− x∗‖2 +

1
2

αn‖xn+1− x∗‖2

=
1
2
(1−αn(1−ρ

2))‖xn− x∗‖2 +
1
2
‖xn+1− x∗‖2 +αn〈 f (x∗)− x∗,xn+1− x∗〉,(3.37)

which implies that

‖xn+1− x∗‖2 ≤ (1−αn(1−ρ
2))‖xn− x∗‖2 +2αn〈 f (x∗)− x∗,xn+1− x∗〉

= (1−αn(1−ρ
2))‖xn− x∗‖2 +αn(1−ρ

2) · 2
(1−ρ2)

〈 f (x∗)− x∗,xn+1− x∗〉

= (1−δn)‖xn− x∗‖2 +δnσn,(3.38)

where δn = αn(1−ρ2) and σn =
2

(1−ρ2)
〈 f (x∗)− x∗,xn+1− x∗〉. It is easy to see that

∞

∑
n=1

δn = ∞

and limsup
n→∞

σn ≤ 0. Applying Lemma 2.4 to (3.38), we conclude that xn→ x∗ as n→ ∞. This

completes the proof. �

Corollary 3.2. Let H be a real Hilbert space, C a closed convex nonempty subset of H. Let

Φ,G1,G2 : C×C→ R be three bifunctions which satisfying (A1)-(A4) and ϕ : C→ R a lower

semicontinuous and convex function. Let F1,F2 : C → H be ζ1−inverse strongly monotone

and ζ2−inverse strongly monotone, respectively. Let {Ti}N
i=1 be a finite family of nonexpansive

mappings of C into itself such that ∩N
i=1F(Ti)∩MEP(Φ,ϕ)∩O 6= /0 and f a ρ−contraction of C
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into itself. Assume that either (B1) or (B2) holds. Let x1 ∈C and let {xn} be a sequence defined

by 
Φ(un,y)+ϕ(y)−ϕ(un)+

1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C,

yn = T G1
µ1 [T G2

µ2 (un−µ2F2un)−µ1F1T G2
µ2 (un−µ2F2un)]

xn+1 = αn f (Knxn)+βnxn + γnKnyn,∀n≥ 1,

where Kn be a K−mapping generated by T1,T2, . . . ,TN and λn,1,λn,2, . . . ,λn,N and {αn},{βn}

and {γn} are three sequences in (0,1) with αn +βn + γn = 1, {λn,i}N
i=1 a sequence in [a,b] with

0 < a ≤ b < 1 , {rn} ⊂ (0,∞), for all n ∈ N, µ1 ∈ (0,2ζ1),µ2 ∈ (0,2ζ2) satisfy the following

conditions:

(i) the sequence {rn} satisfies

(C1) 0 < liminf
n→∞

rn ≤ limsup
n→∞

rn < ∞; and

(C2)
N
∑

n=1
|rn+1− rn|< ∞;

(ii) the sequence {αn} satisfies

(D1) lim
n→∞

αn = 0; and

(D2)
∞

∑
n=0

αn = ∞;

(iii) the sequence {βn} satisfies

(E1) 0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1;

(iv) the finite family of sequences {λn,i}N
i=1 satisfies

(F1) lim
n→∞
|λn+1,i−λn,i|= 0 for every i ∈ {1,2, . . . ,N}.

Then {xn} converge strongly to x∗ = P∩N
i=1F(Ti)∩MEP(Φ,ϕ)∩O f (x∗) and (x∗,y∗) is a solution of

problem (1.7) where y∗ = T G2
µ2 (x∗−µ2F2x∗).

Proof. In Theorem 3.1, for all n≥ 0, un = T (Φ,ϕ)
rn (xn− rnAxn) is equivalent to

(3.39) Φ(un,y)+ϕ(y)−ϕ(un)+ 〈Axn,y−un〉+
1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C.

Putting A≡ 0, we obtain

Φ(un,y)+ϕ(y)−ϕ(un)+
1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C.

�
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Corollary 3.3. Let H be a real Hilbert space, C a closed convex nonempty subset of H. Let

Φ,G1,G2 : C×C→ R be three bifunctions which satisfying (A1)-(A4) and Let A,F1,F2 : C→

H be η−inverse strongly monotone, ζ1−inverse strongly monotone and ζ2−inverse strongly

monotone, respectively. Let {Ti}N
i=1 be a finite family of nonexpansive mappings of C into itself

such that ∩N
i=1F(Ti)∩EP∩O 6= /0 and f a ρ−contraction of C into itself. Assume that either

(B1) or (B2) holds. Let x1 ∈C and let {xn} be a sequence defined by
Φ(un,y)+ 〈Axn,y−un〉+ 1

rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C.

yn = T G1
µ1 [T G2

µ2 (un−µ2F2un)−µ1F1T G2
µ2 (un−µ2F2un)],

xn+1 = αn f (Knxn)+βnxn + γnKnyn,∀n≥ 1,

where Kn be a K−mapping generated by T1,T2, . . . ,TN and λn,1,λn,2, . . . ,λn,N and {αn},{βn}

and {γn} are three sequences in (0,1) with αn +βn + γn = 1, {λn,i}N
i=1 a sequence in [a,b] with

0 < a≤ b < 1 , {rn} a sequence in [0,2η ] for all n ∈ N, µ1 ∈ (0,2ζ1),µ2 ∈ (0,2ζ2) satisfy the

following conditions:

(i) the sequence {rn} satisfies

(C1) 0 < c≤ rn ≤ d < 2η; and

(C2)
∞

∑
n=1
|rn+1− rn|< ∞;

(ii) the sequence {αn} satisfies

(D1) lim
n→∞

αn = 0; and

(D2)
∞

∑
n=0

αn = ∞;

(iii) the sequence {βn} satisfies

(E1) 0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1;

(iv) the finite family of sequences {λn,i}N
i=1 satisfies

(F1) lim
n→∞
|λn+1,i−λn,i|= 0 for every i ∈ {1,2, . . . ,N}.

Then {xn} converge strongly to x∗ = P∩N
i=1F(Ti)∩EP∩O f (x∗) and (x∗,y∗) is a solution of prob-

lem (1.7) where y∗ = T G2
µ2 (x∗−µ2F2x∗).

Proof. Put ϕ ≡ 0 in Theorem 3.1. Then we have from (3.39) that

Φ(un,y)+ 〈Axn,y−un〉+
1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C.
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�

Corollary 3.4. Let H be a real Hilbert space, C a closed convex nonempty subset of H. Let

Φ,G1,G2 : C×C→ R be three bifunctions which satisfying (A1)-(A4). Let F1,F2 : C→ H be

ζ1−inverse strongly monotone and ζ2−inverse strongly monotone, respectively. Let {Ti}N
i=1 be

a finite family of nonexpansive mappings of C into itself such that ∩N
i=1F(Ti)∩EP(Φ)∩O 6= /0

and f a ρ−contraction of C into itself. Assume that either (B1) or (B2) holds. Let x1 ∈C and

let {xn} be a sequence defined by
Φ(un,y)+ 1

rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C.

yn = T G1
µ1 [T G2

µ2 (un−µ2F2un)−µ1F1T G2
µ2 (un−µ2F2un)],

xn+1 = αn f (Knxn)+βnxn + γnKnyn,∀n≥ 1,

where Kn be a K−mapping generated by T1,T2, . . . ,TN and λn,1,λn,2, . . . ,λn,N and {αn},{βn}

and {γn} are three sequences in (0,1) with αn +βn + γn = 1, {λn,i}N
i=1 a sequence in [a,b] with

0 < a ≤ b < 1 , {rn} ⊂ (0,∞), for all n ∈ N, µ1 ∈ (0,2ζ1),µ2 ∈ (0,2ζ2) satisfy the following

conditions:

(i) the sequence {rn} satisfies

(C1) 0 < liminf
n→∞

rn ≤ limsup
n→∞

rn < ∞; and

(C2)
N
∑

n=1
|rn+1− rn|< ∞;

(ii) the sequence {αn} satisfies

(D1) lim
n→∞

αn = 0; and

(D2)
∞

∑
n=0

αn = ∞;

(iii) the sequence {βn} satisfies

(E1) 0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1;

(iv) the finite family of sequences {λn,i}N
i=1 satisfies

(F1) lim
n→∞
|λn+1,i−λn,i|= 0 for every i ∈ {1,2, . . . ,N}.

Then {xn} converge strongly to x∗ = P∩N
i=1F(Ti)∩EP(Φ)∩O f (x∗) and (x∗,y∗) is a solution of prob-

lem (1.7) where y∗ = T G2
µ2 (x∗−µ2F2x∗).
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Proof. Put ϕ ≡ 0 and A≡ 0 in Theorem 3.1. Then we have from (3.39) that

Φ(un,y)+
1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C.

�

Corollary 3.5. Let H be a real Hilbert space, C a closed convex nonempty subset of H. Let

G1,G2 : C×C→ R be two bifunctions which satisfying (A1)-(A4) and let A,F1,F2 : C→ H be

η−inverse strongly monotone, ζ1−inverse strongly monotone and ζ2−inverse strongly mono-

tone, respectively. Let {Ti}N
i=1 be a finite family of nonexpansive mappings of C into itself such

that ∩N
i=1F(Ti)∩V I(A,C)∩O 6= /0 and f a ρ−contraction of C into itself. Assume that either

(B1) or (B2) holds. Let x1 ∈C and let {xn} be a sequence defined by
un = PC(xn− rnAxn),

yn = T G1
µ1 [T G2

µ2 (un−µ2F2un)−µ1F1T G2
µ2 (un−µ2F2un)],

xn+1 = αn f (Knxn)+βnxn + γnKnyn,∀n≥ 1,

where Kn be a K−mapping generated by T1,T2, . . . ,TN and λn,1,λn,2, . . . ,λn,N and {αn},{βn}

and {γn} are three sequences in (0,1) with αn +βn + γn = 1, {λn,i}N
i=1 a sequence in [a,b] with

0 < a≤ b < 1 , {rn} a sequence in [0,2η ] for all n ∈ N, µ1 ∈ (0,2ζ1),µ2 ∈ (0,2ζ2) satisfy the

following conditions:

(i) the sequence {rn} satisfies

(C1) 0 < c≤ rn ≤ d < 2η; and

(C2)
∞

∑
n=1
|rn+1− rn|< ∞;

(ii) the sequence {αn} satisfies

(D1) lim
n→∞

αn = 0; and

(D2)
∞

∑
n=0

αn = ∞;

(iii) the sequence {βn} satisfies

(E1) 0 < liminf
n→∞

βn ≤ limsup
n→∞

βn < 1;

(iv) the finite family of sequences {λn,i}N
i=1 satisfies

(F1) lim
n→∞
|λn+1,i−λn,i|= 0 for every i ∈ {1,2, . . . ,N}.
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Then {xn} converge strongly to x∗ = P∩N
i=1F(Ti)∩V I(A,C)∩O f (x∗) and (x∗,y∗) is a solution of prob-

lem (1.7) where y∗ = T G2
µ2 (x∗−µ2F2x∗).

Proof. Put Φ≡ 0 and ϕ ≡ 0 in Theorem 3.1. Then we have from (3.39) that

〈Axn,y−un〉+
1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C.

That is,

〈y−un,xn− rnAxn−un〉 ≤ 0, ∀y ∈C.

It follows that un = PC(xn− rnAxn) for all n ≥ 1. Hence the corollary is obtained by Theorem

3.1. �
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