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Abstract. This paper is concerned with weighted pseudo-almost automorphic functions, which are more general

and complicated than pseudo-almost automorphic functions. New results, concerning the composition of weighted

pseudo-almost automorphic functions and the existence of weighted pseudo-almost automorphic solutions to the

class of perturbed hyperbolic differential equations, are established. Our results improve and generalize some

recent results.
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1. Introduction-Preliminaries

Almost automorphic functions were first introduced by S.Bochner [2] as a natural generalization of the classical

concept of almost periodic function. Almost automorphic function is an attractive topic in the qualitative theory
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of differential equations due to their significance and applications in physics, mathematical biology, control theory

and others.

Recently, the theory of almost automorphic functions and some composition theorems have been developed

extensively (see e.g.[1, 2, 3, 4, 5, 6], [8, 9, 11, 12, 13, 14]). However, to the best of the authors’ knowledge,

results for weighted almost automorphic functions, which are more general and complicated than pseudo-almost

automorphic functions, are rare. Actually, there are even no results available in the literature on the composition

of weighted pseudo-almost automorphic functions. From the work of [3], one can see the basic and key role of

the composition of almost automorphic functions in discussing the existence of almost automorphic solutions to

differential equations and semilinear equations. In this paper, we study the the composition of weighted pseudo-

almost automorphic functions and obtain the existence of weighted pseudo-almost automorphic solutions to the

class of perturbed hyperbolic differential equations.

Throughout this paper, we always assume that H is Hilbert space and (X,‖ · ‖) is Banach space. Let BC(R,X)

(respectively, BC(R×X,X)) be the space of bounded continuous functions f : R→ X (respectively, f : R×X→

X), and BC(R,X) equipped with the sup norm defined by

‖ f‖= sup
t∈R
‖ f (t)‖,

is a Banach space.

Let U denote the collection of functions (weights) ρ : R→ (0,+∞), which are locally integrable over R. If

ρ ∈U and for T > 0, we then set

µ(T,ρ) :=
∫ T

−T
ρ(t)dt.

Denote

U∞ :=
{

ρ ∈U : lim
T→∞

µ(T,ρ) = ∞

}
,

and

UB :=
{

ρ ∈U∞ : ρ is bounded with inf
x∈R

ρ(x)> 0
}
.

Obviously, UB ⊂U∞ ⊂U , with strict inclusions.

Definition 1.1. [11]

(i) A continuous function f : R→ X is said to be almost automorphic if for each sequence of real numbers

{sn}∞
n=1, we can extract a subsequence {τn}∞

n=1 such that

g(t) = lim
n→∞

f (t + τn)

is well-defined in t ∈ R, and

lim
n→∞

g(t− τn) = f (t)

for each t ∈ R. Denote by AA(R,X) the set of all such functions.
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(ii) A continuous function f : R×X→X is said to be almost automorphic if f (t,x) is almost automorphic in

t ∈ R uniformly for all x ∈ K, where K is any bounded subset of X. That is to say, for each sequence of

real numbers {sn}∞
n=1, we can extract a subsequence {τn}∞

n=1 such that

g(t,x) = lim
n→∞

f (t + τn,x)

is well-defined in t ∈ R for all x ∈K, and

lim
n→∞

g(t− τn,x) = f (t,x)

for all t ∈ R and x ∈K. Denote by AA(R×X,X) the set of all such functions.

For ρ ∈U∞, the weighted ergodic space WAA0(R,X,ρ) and WAA0(R×X,X,ρ) are defined by

WAA0(R,X,ρ) :=
{

f ∈ BC(R,X) : lim
T→∞

1
µ(T,ρ)

∫ T

−T
‖ f (t)‖ρ(t)dt = 0

}
,

WAA0(R×X,X,ρ) :=

 F ∈ BC(R×X,X) : F(·,x) is bounded for each x ∈ X and

lim
T→∞

1
µ(T,ρ)

∫ T
−T ‖F(t,x)‖ρ(t)dt = 0 uniformly in x ∈ X

 .

Now we are ready to introduce the set PAA of weighted pseudo-almost automorphic functions.

Definition 1.2.

(i) Let ρ ∈U∞. A function f ∈BC(R,X) is called weighted pseudo-almost automorphic if it can be expressed

as f = g+φ , where g ∈ AA(R,X) and φ ∈WAA0(R,X,ρ). Denote by PAA(R,X,ρ) the set of all such

functions.

(ii) Let ρ ∈U∞. A function F ∈ BC(R×X,X) is called weighted pseudo-almost automorphic in t ∈ R and

uniformly in x ∈ X if it can be expressed as F = G+Φ, where G ∈ AA(R×X,X) and Φ ∈WAA0(R×

X,X,ρ). Denote by PAA(R×X,X,ρ) the set of all such functions.

The functions g and φ (or G and Φ) in Definition 1.2 are called the almost automorphic and the weighted ergodic

perturbation components of f (or F), respectively. Moreover, the decomposition g+ φ of f (or G+Φ of F) is

unique, and WAA0(R,X,ρ) and PAA(R,X,ρ) both are Banach spaces with the norm inherited from BC(R,X) (see

[5]).

Definition 1.3. [15] The Bocher transform f b(t,s), t ∈ R,s ∈ [0,1] of a function f : R 7→ X is defined by

f b(t,s) := f (t + s).

Definition 1.4. [7] Let p ∈ [1,∞). The space BSp(X) of all Stepanov bounded functions, with the exponent p,

consists of all measurable functions f : R→ X such that f b ∈ L∞(R,Lp((0,1),X)). This is a Banach space with
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the norm

‖ f‖Sp := ‖ f b‖L∞(R,Lp) = sup
t∈R

(
∫ t+1

t
‖ f (τ)‖pdτ)

1
p .

Definition 1.5. [14] The space ASp(X) of Stepanov-like almost automorphic functions consists of all f ∈ BSp(X)

such that f b ∈ AA(R,Lp((0,1),X)). That is, a function f ∈ Lp
loc(R,X) is said to be Sp-almost automorphic if

its Bochner transform f b : R→ Lp((0,1),X) is almost automorphic in the sense that for every sequence of real

numbers (s′n)n∈N , there exist a subsequence (sn)n∈N and a function g ∈ Lp
loc(R,X) such that

[
∫ t+1

t
‖ f (sn + s)−g(s)‖pds]

1
p → 0, and

[
∫ t+1

t
‖g(s− sn)− f (s)‖pds]

1
p → 0, as n→ ∞ pointwise on R.

Definition 1.6. Let ρ ∈U∞. A function F : R×X→ X,(t,u) 7→ F(t,u) with F(·,u) ∈ Lp
loc(R,X) for each u ∈ X,

is said to be Sp-weighted pseudo-almost automorphic if there exists two functions G,Φ : R×X→ X such that

F = G+Φ, where Gb ∈ AA(R×Lp((0,1),X),X) and Φb ∈WAA0(R×Lp((0,1),X),X,ρ).

The collection of those Sp-weighted pseudo-almost automorphic functions F : R×X→ X will be denoted

PAASp(R×X,X,ρ, p). Note that if ρ ∈U∞ and if the limits

lim
t→∞

ρ(t + τ)

ρ(t)
and lim

T→∞

µ(T + τ,ρ)

µ(T,ρ)

exist for all τ ∈ R, then PAA(R×X,X,ρ) is translation-invariant.

Let U inv
∞ denote the collection of all weights ρ ∈U∞ such PAA(R×X,X,ρ) is translation-invariant.

2. Composition theorems of weighted pseudo-almost automorphic func-
tions

Let us give the following assumptions on F :

(H1) F(t,x) is uniformly continuous in each bounded subset K ⊂ X uniformly for t ∈ R. More explicitly,

given ε > 0 and K ⊂ X bounded, there exists δ > 0 such that, x,y ∈ K and ‖x− y‖ < δ imply that

‖F(t,x)−F(t,y)‖< ε for all t ∈ R.

(H2) F(R,K) = {F(t,x) : t ∈ R,x ∈K} is bounded for every bounded subset K ⊂ X.

The following lemmas will be used in the proof of the composition theorems.
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Lemma 2.1. Let ρ ∈U∞ and f ∈WAA0(R,X,ρ). Then, given ε > 0,

lim
T→∞

1
µ(T,ρ)

∫
M(T,ε, f )

ρ(t)dt = 0,

where M(T,ε, f ) = {t ∈ [−T,T ] : ‖ f (t)‖ ≥ ε}.

PROOF. Suppose on the contrary, that there exists ε0 > 0 such that

1
µ(T,ρ)

∫
M(T,ε0, f )

ρ(t)dt

does not converge to 0 as T → ∞. Since ρ is positive, there exists δ > 0 such that for each n,

1
µ(Tn,ρ)

∫
M(Tn,ε0, f )

ρ(t)dt ≥ δ for some Tn ≥ n.

Then

1
µ(Tn,ρ)

∫ Tn

−Tn

‖ f (t)‖ρ(t)dt

≥ 1
µ(Tn,ρ)

∫
M(Tn,ε0, f )

‖ f (t)‖ρ(t)dt

≥ ε0

µ(Tn,ρ)

∫
M(Tn,ε0, f )

ρ(t)dt

≥ ε0δ ,

which contradicts the fact that f ∈WAA0(R,X,ρ), and the proof is complete.

Lemma 2.2. [11] If f : R×X→X is almost automorphic, and assume that f (t,x) is uniformly continuous on each

bounded subset K⊂ X uniformly for t ∈ R. Let φ : R→ X be almost automorphic. Then the function F : R→ X

defined by F(t) = f (t,φ(t)) is almost automorphic.

We are now ready to study the composition theorems of weighted pseudo-almost automorphic functions.

Theorem 2.3. Let F ∈ PAA(R×X,X,ρ) and h ∈ PAA(R,X,ρ) with ρ ∈U∞. Assume that conditions (H1)-(H2)

and the following condition hold:

(H3) Faa(t,x) is uniformly continuous in any bounded subset K⊂ X uniformly for t ∈ R.

Then F(·,h(·)) ∈ PAA(R×X,X,ρ) with almost automorphic component Faa(·,haa(·)), where Faa and haa are the

almost automorphic components of F and h, respectively.

PROOF. Since F ∈ PAA(R×X,X,ρ) and h∈ PAA(R,X,ρ), we know that F(·,h(·))∈ BC(R,X). Let F = Faa+

Fe and h = haa +he with Faa ∈ AA(R×X,X),Fe ∈WAA0(R×X,X,ρ),haa ∈ AA(R,X) and he ∈WAA0(R,X,ρ).

Then

F(t,h(t)) = Faa(t,haa(t))+F(t,h(t))−F(t,haa(t))+Fe(t,haa(t)).



COMPOSITION OF WEIGHTED PSEUDO-ALMOST AUTOMORPHIC FUNCTIONS 711

Let

G(t) = Faa(t,haa(t)),

Φ(t) = F(t,h(t))−F(t,haa(t))+Fe(t,haa(t)).

Using assumption (H3), we see G(t)∈AA(R,X) by Lemma 2.2. So we only need to show that Φ(t)∈WAA0(R,X,ρ).

This will be approached by the following two steps.

Step 1. We prove that F(·,h(·))−F(·,haa(·)) ∈WAA0(R×X,X,ρ).

Let K ⊂ X be bounded such that h(R),haa(R)⊂ K. Then, by assumption (H2), there exists S > 0 such that

(1) ‖F(t,h(t))−F(t,haa(t))‖ ≤ S for all t ∈ R.

Meanwhile, by condition (H1), given ε > 0, there exists δ > 0, such that for x,y ∈ K with ‖x− y‖< δ , we have

(2) ‖F(t,x)−F(t,y)‖< ε

2
for all t ∈ R.

It follows from Lemma 2.1 that

lim
T→∞

1
µ(T,ρ)

∫
M(T,δ ,he)

ρ(t)dt = 0,

where M(T,δ ,he) = {t ∈ [−T,T ] : ‖he(t)‖ ≥ δ}. Thus, there exists T0 > 0 such that

1
µ(T,ρ)

∫
M(T,δ ,he)

ρ(t)dt <
ε

2S
for all T > T0.(3)

Noticing that ‖h(t)−haa(t)‖= ‖he(t)‖< δ for all t ∈ [−T,T ]\M(T,δ ,he), by (1) – (3) we have, for T > T0,

1
µ(T,ρ)

∫ T

−T
‖F(t,h(t))−F(t,haa(t))‖ρ(t)dt

=
1

µ(T,ρ)

∫
M(T,δ ,he)

‖F(t,h(t))−F(t,haa(t))‖ρ(t)dt

+
1

µ(T,ρ)

∫
[−T,T ]\M(T,δ ,he)

‖F(t,h(t))−F(t,haa(t))‖ρ(t)dt

≤ S
µ(T,ρ)

∫
M(T,δ ,he)

ρ(t)dt +
ε

2µ(T,ρ)

∫
[−T,T ]\M(T,δ ,he)

ρ(t)dt

< S
ε

2S
+

ε

2
= ε.

This shows that F(·,h(·))−F(·,haa(·)) ∈WAA0(R×X,X,ρ).

Step 2. We prove that Fe(·,haa(·)) ∈WAA0(R×X,X,ρ).

It follows from assumptions (H1) and (H3) that Fe(t,x) = F(t,x)− Faa(t,x) is uniformly continuous in x ∈

haa([−T,T ]) uniformly in t. That is, given ε > 0, there exists δ > 0 such that, for x,y∈ haa([−T,T ]) with ‖x−y‖<

δ ,

(4) ‖Fe(t,x)−Fe(t,y)‖<
ε

2
for all t ∈ R.

Meanwhile, since Fe(t,haa(t)) is continuous in [−T,T ], it is uniformly continuous in [−T,T ]. Set I = haa([−T,T ]).

Then I is compact in R since the image of a compact set under a continuous mapping is compact, and so one can
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find a finite δ -net of I. Namely, there exist finite number of points x1,x2, · · · ,xm ∈ I such that, for any y ∈ I, we

have ‖y− xk‖< δ for some 1≤ k ≤ m. Let

Ok = {t ∈ [−T,T ] : ‖haa(t)− xk‖< δ},k = 1,2, · · · ,m.

Then I ⊂
m⋃

k=1
Ok. Let

B1 = O1,Bk = Ok \

(
k−1⋃
i=1

Oi

)
,k = 2,3, · · · ,m.

The set Bk = {t ∈ [−T,T ] : haa(t) ∈ Ok} is open in [−T,T ] and [−T,T ] =
m⋃

k=1
Bk. Then B j ∩Bk = /0 when

j 6= k,1≤ k ≤ m. Moreover, by (4) we have

(5) ‖Fe(t,haa(t))−Fe(t,xk)‖<
ε

2
for all t ∈Bk,1≤ k ≤ m.

Since Fe ∈WAA0(R×X,X,ρ), there exists T0 > 0 such that

(6)
1

µ(T,ρ)

∫ T

−T
‖Fe(t,xk)‖ρ(t)dt <

ε

2m
for T > T0,1≤ k ≤ m.

Now by (4)–(6), for T > T0, we have

1
µ(T,ρ)

∫ T

−T
‖Fe(t,haa(t))‖ρ(t)dt

≤ 1
µ(T,ρ)

m

∑
k=1

∫
Bk

⋂
[−T,T ]

(‖Fe(t,haa(t))−Fe(t,xk)‖+‖Fe(t,xk)‖)ρ(t)dt

≤ 1
µ(T,ρ)

m

∑
k=1

∫
Bk

⋂
[−T,T ]

ερ(t)
2

dt +
1

µ(T,ρ)

m

∑
k=1

∫
Bk

⋂
[−T,T ]

‖Fe(t,xk)‖ρ(t)dt

=
ε

2µ(T,ρ)

∫ T

−T
ρ(t)dt +

m

∑
k=1

1
µ(T,ρ)

∫
Bk

⋂
[−T,T ]

‖Fe(t,xk)‖ρ(t)dt

<
ε

2
+m

ε

2m
= ε,

which yields that Fe(·,haa(·)) ∈WAA0(R×X,X,ρ). The proof is completed.

Theorem 2.4. Let F ∈ PAASp(R×X,X,ρ) and h ∈ PAA(R,X,ρ) with ρ ∈U∞. Assume that conditions (H1)-(H3).

Then F(·,h(·)) ∈ PAASp(R×X,X,ρ).

PROOF. Since F ∈ PAASp(R×X,X,ρ) and h ∈ PAA(R,X,ρ), we have F = Faa +Fe and h = haa +he, where

Fb
aa ∈ AA(R×X,Lp((0,1),X)),Fb

e ∈WAA0(R×X,Lp((0,1),X),ρ), haa ∈ AA(R,X) and he ∈WAA0(R,X,ρ).

Now by an argument the same as the proofs of Theorem 3.2 in [7], we can prove that hb
aa ∈ AA(R,Lp((0,1),X)).

It is obvious to see that Fb(·,hb(·)) : R 7→ Lp((0,1),X). Now decompose Fb as follows

Fb(·,hb(·)) = Fb
aa(·,hb

aa(·))+Fb(·,hb(·))−Fb
aa(·,hb

aa(·))

= Fb
aa(·,hb

aa(·))+Fb(·,hb(·))−Fb(·,hb
aa(·))+Fb

e (·,hb
aa(·)).
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Using the Theorem 2.3, it is easy to see that Fb
aa(·,hb

aa(·)) ∈ AA(R×X,Lp((0,1),X)). So by an argument the

same as the proofs of Theorem 2.3, we can show that Fb(·,hb(·))− Fb(·,hb
aa(·)) + Fb

e (·,hb
aa(·)) ∈WAA0(R×

X, ,Lp((0,1),X),ρ). Hence, F(·,h(·)) ∈ PAASp(R×X,X,ρ).

Remark 2.5. In particular, if ρ = 1-that is, if the composition of pseudo-almost automorphic functions are

considered-Theorem 2.3 is the same as Theorem 2.4 in [11]

For example, let us consider the function

φ(t) = maxk∈Z{e−(t±k2)3}, t ∈ R.

For any T > 0, set ρ(t) = et , l = [
√

T ]+1. Then we have

lim
T→∞

1
µ(T,ρ)

∫ T

−T
‖maxk∈Z{e−(t±k2)3}‖ρ(t)dt

= lim
T→∞

1
µ(T,ρ)

∫ T

−T
‖max−l≤k≤l{e−(t±k2)3}‖etdt

≤ lim
T→∞

2le
1
4

µ(T,ρ)

∫
∞

−∞

e−(t−
1
2 )

2
dt

= lim
T→∞

2le
1
4
√

π

µ(T,ρ)
= 0

Therefore,

φ(t) = maxk∈Z{e−(t±k2)3} ∈WAA0(R,X,ρ)

Set

f (t,x) = xsin
1

cos2t + cos2πt
+φ(t)sinx, t,x ∈ R.

Clearly,

xsin
1

cos2t + cos2πt
∈ AA(R×X,X),

φ(t)sinx ∈WAA0(R×X,X,ρ).

If we put x(t) = cost + 1
1+t2 as an element of PAA(R,X,ρ), then the composition

f (t,x) = x(t)sin
1

cos2t + cos2πt
+φ(t)sinx(t), t ∈ R.

is a weighted pseudo-almost automorphic function by Theorem 2.3.

3. Existence of weighted pseudo-almost automorphic solutions

This section is devoted to the search of the existence of weighted pseudo-almost automorphic solution to the

class of perturbed hyperbolic differential equations

(7) u′(t) = Au(t)+F(t,Bu(t)), t ∈ R.
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where A is the infinitesimal generator of C0-semigroup (T (t))t≥0, and F satisfy assumptions(H1)-(H3) and we will

use the following assumptions:

(H4) P,Q = I−P are projections, T (t) is compact for t > 0 and there exist constants M,c,d > 0 such that

‖T (t)P‖ ≤Me−ct , for t ≥ 0.

‖T (t)Q‖ ≤Me−dt , for t ≥ 0.

(H5) the operator B : H 7→H is bounded.

(H6) F ∈ PAASp(R×H,H,ρ)
⋂

C(R×H,H) for p > 1 and ρ ∈U∞.

(H7) there exists L > 0 such that

SL := sup
t∈R,‖Bu‖≤L

(
∫ t+1

t
‖F(s,Bu(s))‖pds)

1
p ≤ L

Kc +Kd
,

where

Kc = M(
eqc−1

qc
)

1
q

∞

∑
n=1

e−cn, Kd = M(
eqd−1

qd
)

1
q

∞

∑
n=1

e−dn,

where M,c,d > 0 are given in (H4)and q≥ 1 such that 1
q +

1
p = 1.

(H8) Let {un} ⊂ PAA(R,H,ρ) be uniformly bounded in R and uniformly convergent in each compact subset

of R. Then F(·,Bun(·)) is relatively compact in PAASp(R×H,H,ρ).

Definition 3.1. A bounded continuous function u : R→H is said to be a mild solution to Eq.(7) provided that the

function s→ T (t− s)PF(s,Bu(s)) is integrable on (−∞, t), s→ T (t− s)QF(s,Bu(s)) is integrable on (−∞, t) for

each t ∈ R, and

u(t) =
∫ t

−∞

T (t− s)PF(s,Bu(s))ds+
∫ t

−∞

T (t− s)QF(s,Bu(s))ds for each t ∈ R.

Throughout the rest of the paper we denote by V and W , the two nonlinear integral operators defined by

(Vu)(t) :=
∫ t

−∞

T (t− s)PF(s,Bu(s))ds, (Wu)(t) :=
∫ t

−∞

T (t− s)QF(s,Bu(s))ds,

for t ∈ R, respectively. It is easy to see that the two integrals above are uniformly convergent in t ∈ R. A function

u∈BC(R,H) is called a mild solution of (7) if u can be expressed as: u=Vu+Wu. In addition, if u∈PAA(R,H,ρ),

u is called a mild weighted pseudo-almost automorphic solution.

The following lemma will be used in the proof of the weighted pseudo-almost automorphic solution to the

differential equation.

Lemma 3.2. Let ρ ∈U∞, { fn}n∈N ⊂WAA0(R,X,ρ) be a sequence of functions. If fn converges uniformly to some

f , then f ∈WAA0(R,X,ρ).
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PROOF. Note that f is necessarily a bounded continuous function from R into X, and ‖ fn− f‖∞→ 0 as n→∞.

Then we have

1
µ(T,ρ)

∫ T

−T
‖ f (t)‖ρ(t)dt ≤ 1

µ(T,ρ)

∫ T

−T
‖ f (t)− fn(t)‖ρ(t)dt +

1
µ(T,ρ)

∫ T

−T
‖ fn(t)‖ρ(t)dt

≤ ‖ fn(t)− f (t)‖∞ +
1

µ(T,ρ)

∫ T

−T
‖ fn(t)‖ρ(t)dt,

and hence f ∈WAA0(R,X,ρ).

Theorem 3.3. Let ρ ∈U inv
∞ . Assume (H1)-(H8). Then (7) has a mild weighted pseudo-almost automorphic solution

u such that ‖Bu(t)‖ ≤ L for t ∈ R .

PROOF. Let B = {u ∈ PAA(R,H,ρ) : ‖Bu‖ ≤ L}. Then B is a closed convex subset. We claim that (V +

W )B ⊂B. In fact, for u ∈B and t ∈ R, by (H4) and (H7), we have

‖(Vu)(t)+(Wu)(t)‖

= ‖
∫ t

−∞

T (t− s)PF(s,Bu(s))ds+
∫ t

−∞

T (t− s)QF(s,Bu(s))ds‖

≤ Σ
∞
n=1‖

∫ t−n+1

t−n
T (t− s)PF(s,Bu(s))ds+

∫ t−n+1

t−n
T (t− s)QF(s,Bu(s))ds‖

≤ Σ
∞
n=1

∫ t−n+1

t−n
Me−c(t−s)‖F(s,Bu(s))‖ds+Σ

∞
n=1

∫ t−n+1

t−n
Me−d(t−s)‖F(s,Bu(s))‖ds

≤ Σ
∞
n=1M(

∫ t−n+1

t−n
e−qc(t−s)ds)

1
q (
∫ t−n+1

t−n
‖F(s,Bu(s))‖pds)

1
p

+ Σ
∞
n=1M(

∫ t−n+1

t−n
e−qd(t−s)ds)

1
q (
∫ t−n+1

t−n
‖F(s,Bu(s))‖pds)

1
p

≤ (Σ∞
n=1M(

eqc−1
qc

)
1
q e−cn +Σ

∞
n=1M(

eqd−1
qd

)
1
q e−dn)SL

= (Kc +Kd)SL ≤ L.(8)

Then we show that V and W are continuous mappings from PAA(R,H,ρ) to PAA(R,H,ρ). For u∈B, we have u∈

PAA(R,H,ρ) with u = u1 +u2, where u1 ∈ AA(R,H),u2 ∈WAA0(R,H,ρ). So it follows that Bu ∈ PAA(R,H,ρ)

and Bu1 ∈ AA(R,H) from (H5). Setting h(t) = F(t,Bu(t)) and using Theorem 2.4, we have h ∈ PAASp(R×

H,H,ρ). Hence, we have h = G+Φ, where Gb ∈ AA(H,Lp((0,1),H)), Φb ∈WAA0(H,Lp((0,1),H),ρ). Let

Γ1(t) =G(t,Bu1(t)), Γ2(t) =
∧

1(t)+
∧

2(t),
∧

1(t) =F(t,Bu(t))−F(t,Bu1(t)),
∧

2(t) =Φ(t,Bu1(t)). Then h(t) =

F(t,Bu(t)) = Γ1(t)+Γ2(t). From Theorem 2.4 and its proof, we know that Γb
1 ∈ AA(R×H,Lp((0,1),H)), Γb

2 ∈

WAA0(R×H,Lp((0,1),H),ρ).
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Then

(Vu)(t) =
∫ t

−∞

T (t− s)PF(s,Bu(s))ds

=
∫ t

−∞

T (t− s)PΓ1(s)ds+
∫ t

−∞

T (t− s)PΓ2(s)ds

, V1(t)+V2(t).

Since h = G+Φ, where Gb ∈ AA(H,Lp((0,1),H)), Φb ∈WAA0(H,Lp((0,1),H),ρ). Now let us consider for each

n = 1,2, · · · , the integral

νn(t) =
∫ n

n−1
T (t− (t−ξ ))h(t−ξ )dξ

=
∫ n

n−1
T (ξ )G(t−ξ )dξ +

∫ n

n−1
T (ξ )Φ(t−ξ )dξ

and set Yn(t) =
∫ n

n−1 T (ξ )PG(t−ξ )dξ and Xn(t) =
∫ n

n−1 T (ξ )PΦ(t−ξ )dξ .

Let us show that Yn ∈ AA(R,H). For that, letting r = t−ξ one obtain

Yn(t) =−
∫ t−n+1

t−n
T (t− r)PG(r)dr for each t ∈ R.

It follows that the function r 7→ T (t− r)PG(r)dr is integrable over (−∞, t) for each t ∈ R from (H4).

Furthermore, using the Hölder inequality, it follows that

‖Yn(t)‖ ≤ M
∫ t−n+1

t−n
e−c(t−r)‖G(r)‖dr

≤ M[
∫ t−n+1

t−n
e−qc(t−r)dr]

1
q [
∫ t−n+1

t−n
‖G(r)‖pdr]

1
p

≤ M[
∫ t−n+1

t−n
e−qc(t−r)dr]

1
q ‖G‖Sp

≤ [e−cnM q

√
1+ eqc

qc
]‖G‖Sp .

Now since M q
√

1+eqc

qc Σ∞
n=1e−cn < ∞, we deduce from the well-known Weirstrass theorem that the series Σ∞

n=1Yn(t)

is uniformly convergent on R. Furthermore,

V1(t) :=
∫ t

−∞

T (t− s)PG(s)ds = Σ
∞
n=1Yn(t),

V1 ∈C(R,X), and

‖V1(t)‖ ≤ Σ
∞
n=1‖Yn(t)‖ ≤ Kc,M

q ‖G‖Sp ,

where Kc,M
q > 0 is a constant, which depends on the parameters q,c and M only.

Now let (sm)m∈N be a sequence of real numbers. Since G ∈ ASp(H), there exist a subsequence (smk)k∈N of

(sm)m∈N and a function ν ∈ ASp(H) such that

[
∫ t+1

t
‖G(smk +σ)−ν(σ)‖pdσ ]

1
p → 0 as k→ ∞.

Define Zn(t) =
∫ n

n−1 T (ξ )ν(t−ξ )dξ .
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Then using the Hölder inequality we get

‖Yn(t + smk)−Zn(t)‖ = ‖
∫ n

n−1
T (ξ )P[G(t + smk −ξ )−ν(t−ξ )]dξ‖

≤ M
∫ n

n−1
e−cξ‖G(t + smk −ξ )−ν(t−ξ )‖dξ

≤ Mc,M
q [

∫ n

n−1
‖G(t + smk −ξ )−ν(t−ξ )‖pdξ ]

1
p .

where Mc,M
q = M q

√
1+eqc

qc .

Obviously,

‖Yn(t + smk)−Zn(t)‖→ 0 as k→ ∞.

Similarly, we can prove that

‖Zn(t + smk)−Yn(t)‖→ 0 as k→ ∞.

Therefore each Yn ∈ AA(R,H) for each n and hence their uniform limit V1 ∈ AA(R,H), by using Theorem 2.1.10

of [13].

Let us show that each Xn ∈WAA0(R,H,ρ). For this, note that

‖Xn(t)‖ ≤ M
∫ t−n+1

t−n
e−c(t−r)‖Φ(r)‖dr

≤ M[
∫ t−n+1

t−n
e−qc(t−r)dr]

1
q [
∫ t−n+1

t−n
‖Φ(r)‖pdr]

1
p

≤ [e−cnM q

√
1+ eqc

qc
][
∫ t−n+1

t−n
‖Φ(r)‖pdr]

1
p

≤ [M q

√
1+ eqc

qc
][
∫ t−n+1

t−n
‖Φ(r)‖pdr]

1
p ,

and hence Xn ∈WAA0(R,H,ρ), as Φb ∈WAA0(Lp(0,1),H,ρ). Furthermore,

V2(t) :=
∫ t

−∞

T (t− s)PΦ(s)ds = Σ
∞
n=1Xn(t),

V2 ∈C(R,H), and

‖V2(t)‖ ≤ Σ
∞
n=1‖Xn(t)‖ ≤Cc,M

q ‖Φ‖Sp ,

where Cc,M
q > 0 is a constant, which depends on the parameters q,c and M only. By Lemma 3.2 the uniform limit

V2 ∈WAA0(R,H,ρ). Hence, we have Vu ∈ PAA(R,H,ρ). Similarly, we can get that Wu ∈ PAA(R,H,ρ) and we

omit the details. Therefore, V +W ∈ PAA(R,H,ρ). This together with (8) yields that (V +W )B ⊂B.

Now by an argument the same as the proofs of Lemma 3.4 in [10], we can prove that V and W are continuous

mappings and the following statements are true.

(i) {(Vu)(t) : u ∈B} and {(Wu)(t) : u ∈B} both are relatively compact subsets of H for each t ∈ R.

(ii) {Vu : u ∈B} ⊂ PAA(R,H,ρ) and {(Wu) : u ∈B} ⊂ PAA(R,H,ρ) both are equicontinuous.
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Now using (H8), by an argument the same as the proofs of Theorem 3.1 in [9], we can prove that V +W has a fixed

point in co(V +W )B(here we omit the details). That is Eq (7) has a mild weighted pseudo-almost automorphic

solution u such that ‖Bu(t)‖ ≤ L for t ∈ R .
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