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Abstract. The aim of the present paper is to establish a fixed point theorem for six set-valued mappings in three
complete Menger spaces. The results presented in this article mainly generalize the corresponding results in [1].
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1. Introduction

The literature in related fixed point theorems have been developed by many authors; [1], [2],
[4]-[9] and the references therein. The result of Fisher on two metric spaces [4] was generalized
to three metric spaces by Jain, Sahu and Fisher [8]. The result in [8] was generalized to set-
valued mapings by Jain and Fisher [7]. Recently Beg and Chauhan extended the result in [7] in
Menger spaces and obtained related fixed point theorems for three mappings; for more details,
see [1]. In this paper, a related fixed point theorem for six set-valued mapings in three Menger

spaces is obtained based on the result in [1].

2. Preliminaries
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In this paper, we always use R to denote the set of real numbers and R" to denote the set of
non-negative real numbers. Next, we give some definitions and lemmas which play an important

role in this paper.

Definition 2.1. A mapping F : R — R™ is called a distribution function if it is non-decreasing
and left continuous with inf;cg F () = 0 and sup,. F (t) = 1.Let D denotes the set of all dis-
tribution functions whereas H stands for specific distribution function(also known as Heaviside

function) defined as

0, <0
H(r) =
I, t>0.

Definition 2.2. A PM-space is an ordered pair (X, F)consisting of non- empty set Xand a
mapping F from X x X into D.The value of F at (x,y) € X is represented by F; ,.The functions
F yare assumed to satisfy the following conditions:

(i) Fyy(t) =1forall ¢ > 0if and only if x = y;

(if) Fry(0) = 0;

(ifi) Fry(t) = Fyx(1);

(iv) if Fr () = 1 and F;(s) = 1,then Fy ;(r+s) = lfor all x,y € X and ¢,5 > 0.

Every metric (X,d) space can always be realized as a PM-space by considering F from X x X

into D as F, ,(s) =H(s—d(u,v)) forall u,v € X.

Definition 2.3. A mapping A : [0, 1] x [0, 1] — [0, 1] is called a triangular norm (briefly t-norm)
if the following conditions are satisfied:

(i) A(a,1)=a for all a€|0,1];

(i) Ala,b) = A(b,a);

(iii) A(c,d) > A(a,b) for ¢ > a,d > b

(iv) A(A(a,b),c) = Ala,A(b,c)) for all a,b,c,d € [0,1].

Examples of t-norm are A(a,b) = min(a,b), A(a,b) = ab and A(a,b) = min(a+ b — 1,0)

etc.
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Definition 2.4. A Menger space is a triplet(X, F,A),where(X, F)is a PM-space,Ais t-norm and

the following condition hold:

Fr (t+5) > A(Fey(1),F-(s)),Vx,y,z€ X 1,5 > 0.

Definition 2.5. A sequence {p,}in a Menger space (X, F,A) is said to converge to a point p
in X if for every € > 0 and A > 0,there is an integer N(€,A) such that F,,, ,(&) > 1 — A for all
n > N(g,A).The sequence is said to be Cauchy sequence if for every € > 0 and A > 0,there is

an integer N(€,A) such that F), , () >1—A, foralln,m > N(g,A).

Throughout this paper, B(X) is denoted by the set of all non-empty bounded subsets of
Menger space X.
For all A,B € B(X) and for all 7 > 0, we define

OF, (1) =inf{F,,(t) :a € A,b € B}.
If A= {a}, then §F p(t) = 6 F, 5(1).
If we have also B = {b}, then 0F p(t) = F,(1).

It follows from the definition that 6Fy p(t) = 1 < A =B = {a}.
Let {A,} be a sequence in B(X). we say that {A,} d-converges to a set A in X if for every

€ > 0 we have

lim 5FAn,A(8) =1.
n—soo

Lemma 2.1 [3] Let (X, F,min) be a Menger space. Let A,G,H € B(X). Then forty,t; > 0 we

have

5FA7H(Z‘1 -l-tz) > min{SFA(;(tl),5FG7H(t2)}.

Lemma 2.2 [10] Let (X, F,min) be a Menger space. If the sequence {a,} converges to a and

the sequence {b,} converges to b, then fort > 0 we have

limil’lfFambn (Z‘) = Fa,b (l‘) .
n—yeo
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Lemma 2.3 [3] Let (X, F,min) be a Menger space. If the sequence {A,} d-converges to a and

the sequence {B,} 8-converges to b, then fort > 0 we have

liminf5FAmBn (l) = Fa,b (t)
n—$o0

3. Main result

Now, we are in a position to state the main results of the paper.

Theorem 3.1 Let (X, Fy,min), (Y,F>,min) and (Z, F3,min) be three complete Menger spaces.
If F and P are continuous mappings of X into B(Y), G and Q are continuous mappings of Y

into B(Z) and H and R are mappings of Z into B(X) satisfying the inequalities

O1F1HGFx RoPy (Ct) > Min{Fi, (1), 81 Fiy Grx(t), 01 F1v ropy (),

63F3GFx,QPx’ (t)v 62F2Fx7Px’ (t)} (1)

& Faproy Gy (ct) > min{Fay, (1), 822y Froy (1), 62F2y pHGY (1),
O1F1RoyHGY (1), 03F30y 6y (1)} (2)

03F3GFRy, oPHZ (Ct) > Min{F3, (1), 03F3, grRr:(t), 03F3 oprz (1),
2 F2rRe Pz (1), 01FiR o (1)} (3)
for all x,X'in X,y,y' inY and 7,7 in Z and ¢ € (0,1), Then HGF and RQP has a unique fixed
point u in X, FRQ and PHG has a unique fixed point v in Y and GFR and QPH has a unique
fixed point w in Z. Further, Fu = Pu= {v},Gv = Qv = {w} and Hw = Rw = {u}.

Proof. Let x; be an arbitrary point in X. Define sequences {x,} in X, {y,} in Y, {z,} in Z by

Yont1 € Fxong1,  Yont2 € Pxopy2,

2n+1 € Gyans1, 22042 € Oyony2,

Xon2 € Hzopy1,  Xony3 € R2opy2,
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forn=0,1,2.... Using inequality (1), we get that
Flyy, s 003 (€)= O1LF1RQPY,, 2 HGF ., (1)
>min{Fiy,, 5 v (£),01F 1y, ROPxspia (1) O1F1xy, | HGF 21 (1)
03F30Pxy,9,GFxas1 (1) 02F2Px s Fooyr (£}
> min{ 61 F15GFxy,, | ROPxsn (1) O1FIHGFx3 s 1 ROPxan 2 (1)
01 F1RQPxs HGFxpny1 (1)
O3F30PHz5, 1 1,GF Rz (1) 02F2PH Gy 1 FROy, (1) }
> min{ 81 FigGFxy,, 1,ROPx2 (1), O3F30PHzZy, 1 GF Rz, (1)

2 F2PHGys, 1,FROy, (1) }-

In view of (2), we have
Fayi030m13(€1) 2 B2F2FROys, 2 PHGY 1 (€1)
> min{F; 2ym42:Y2n+1 (1), &2F 2yon+2:FRQy2n12 (1),
0Py, . PHGys 1 (1), OLF1RQys, 2 HGyans s (1),
03F3 Oyan+2,Gy2m+1 (1)}
> min{ &F2pyGys, . FROys, (1) O2F2PHGy s 1 FROY2: (1)
022 FRQys, PHGY21 (1) OLF1ROPx 12 HGFx20s1 (1)

03F30PHzy, 1 ,GFRz, (1)}

It follows from (4) that

F2Y2n+27y2n+3 (Ct) Z min{ézFZPHGyzn+1 7FRQan (t) ’ 51 Fl HGsz,,Jr] ,ROPx>, (t)7 ( )
5

03F30pHzy, . 1 ,GFRzy, (1) }-
Using inequality (3), we have
B3y omis (€)= 3F3GERz, 2, 0PHzy (1) 2 Min{Fsy, o (£),03F3,,, 5 GFRzy o (1)
83F32,, .1 0PHzm 1 (1)s O2F2F Rz, 5 PHzp ey (1) O1F 1 Rey s Hg (1)}
> min{63F30prz,, . | .GFRzy () 03F30PHz, | GFRzp 12 (1)

O3F3GF R, 0P34 1 (1) 2F2F ROy, 15 PHGY o1 (1), O1F1RQPY,, 5 HGFxy, o (1) }-
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In view of (4) and (5), we find that

F3Zzn+2,Z2,,+3 (Ct) > mln{63F3 QPHz5,41,GFRzy, (t)7 82F2FRQy2n7PHG)’2n+1 (t)7
O1F1HGFxsy 1 ROPx2, (1)}

Combining (4), (5) and (6), we have

Firy iz 03 (1) OUF1ROPry, 2 HGFx3y (1) 2> Min{ 81 Fi Gy ROPx, (i1 )5

8 F2pGy, FROy, (1) 03F3 0PHz, GF R, (vt ) }

Fay 0 ()= 022 ERQy, 2 PHGY, ., (€1) = min{ 81 F1 Gy, ,RQsz(Cznﬁ)a

2 F2pHGy, FROy, (71 )> 03F3 0PHz, GF R (vt ) }

F3Z2n+27z2n+3 (I)Z 53F3GFRZ2n+27QPHZZn+1 (Ct) > min{lelHGFxl ,ROPx» (ﬂiﬁ)’

2 F2r R0y, PHGy, (z3v1)> 03F3 0PHz, GF R (2er ) }

Now for r =2,4,6.. and m > n, we from Lemma 2.1 find that

Fl X2n+rX2m+r+1 (8) Z 6] F] ROPxomtr HGF Xpp4r—1 (8) Z mln{él Fl HGFxpp4r—1,ROPX2p 41 (8 - CS)’

51 Fl ROPx2p4 1, ROPX2p 11 (CS)}
It follows from (7) that

> min{ 81 Fi G, roPv, (Zirrr)s 02F2PHGy, FROY, (s )

YR QPHZz,GFRz, (Cgr;—ffz)}y min{F, 1RQPx2p4 1 HGF X2yt r 41 (ce— c’e )s

FIHGFxys741.ROPxoms, (C2€) }}

> min{ 81 FipGrx, roPy, (Firees)s 02F2PHGy, FROY, (s )

_ . _ 2 _ 2
83F30pPHz, GFRz (Frez) b Min{ 81 F1 HGFx, RoPx, (51 ) ©2F2PHGy, FROY, (Firi=T )

)
03F30pHz, GFR: (St ) b FLHGF o 41 ROPxo s (c*e)}}

> min{lelHGFxl ,ROPx, (an:-—ifz)? 52F2PHGy1,FRQy2 (%—552)7
83 F30pHz) GFRo (557553 )s FUHGFxsy 111 ROPxos, (€€) 1}

Continuing in this process, we have

> min{ 01 F1 G rx, ROPx, (Giirez ) 2F2PHGy, FROy, (Girrz )

53
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83 F30piz, GFRey (Fiee1)s FUHGF sy 1 ROPxsps, (€7 2"€) )

> min{ 81 Fi G, roPv, (Zirr1)s 02F2PHGy, FROY, (s )

2m—2n
E—cE c &
63F3 QPHz1,GFRz ( c2n+r=2 ) ) 61 Fl HGFx1,RQPx» (02m+r72 )7
c2m—2n c2m—2n €

2 F2pHiGy, FROy, (i3 ) 3 F3 0PHz, GF Rz, (Sors) }

> min{ 81 FiGrx, roPv, (Firees)s 02F2PHGy, FROY, ( vz )
03F30pHz, GFR (Girrz )}

Now for n greater than some N we can have some A > 0 such that

F1x2n+r~,x2m+r+l <8) 2 61F1RQPx2m+r:HGFx2n+r71 (8) 2 - )"n 2 N. (10)

This show {x,} is a Cauchy sequence in complete Menger space X.Let it converges to some
point u in X.Similarly,we can show sequences {y, } and {z,} are Cauchy sequences with limits

v and w in complete Menger spaces Y and Z respectively. It follows from (10) that

61F1x2n+37x2n+2 (£> > 51F1RQPx2n+27HGFX2n+1 (8> >1-2A,n>N.
This gives that

lim x2,10 = lim x5 = lim HGFx,11 = lim ROPx2,12 = {u} "
= lim HGyz,+1 = lim RQy2,>.
n—oo n—roo
Similarly we have
lim yo40 = lim yo, 13 = lim FRQyoi2 = lim PHGyz 11 = v}
= lim FRzpp12 = lim PHzpp+1 (12)
= r}glolo Fxypi3 = ,}EI;PXZ"”
and
r}l_{Iolo Lnt+2 = ’}glolo L3 = r}l_{Iolo GFRzp42 = ,}I_I& QPHzo, 41 = {w} 13)
= lim GFxp,43 = im OPx,2 = lim Gyz,43 = lim Qyo;42.
n—soo n—soo n—soo n—soo

Notice that F, P, G and Q are continuous. From (12) and (23), we have

lim y,43 = Fu = Pu={v}, (14)
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lim 75,13 = Gv = Qv = {w}. (15)
n—soo
Combining (14) with (15), we see that
GFu = GPu= QFu= QPu= Gv=Qv={w}. (16)
In view of Lemma 2.3, we find from (1) that
O1F1, mGru(ct) = li’gionglF Lxans 3, HGFu(Ct)
> li}g inf 81 Fi Ropy,, 2 HGFu (ct)
Z ligigfmin{le2n+2,u (l)7 61 F1x2n+27RQPx2n+2 (t)7 61 Flu,HGFM (t)7
53F3QPX2V,+2,GFM (t) ’ 62F2szn+2,Fbt (t)}
Using (11), (12), (13), (14), (16), Lemma 2.2 and Lemma 2.3, we have

O1F1u mGru(ct) > 811, mGru(t).

It gives that
HGFu = {u}. (17)
Again using Lemma 2.3 and from (1), we have
O1F1u,ropu(ct) = iminf 81 Fiy,, ) ropu(ct)
> liminf 01 F1HGFxy,, 1 ,ROPu(CE)
> liminfmin{Fiy,,,, 4(t), 61Fi v, | HGFxy., (t);

n—oo

01 F1u,ropu(t), 03F3GFxs, .1, 0Pu(t), B2F2F 0, Pu(t) }-
Using (11), (12), (13), (14), (16), Lemma 2.2 and Lemma 2.3, we have
011y ropu(ct) > 81F1, ropu(t)
It gives ROPu = {u} (18)
By (17), (14) we have PHGv = PHGFu = Pu = {v}. (19)

By (18), (14) we have FRQv = FRQPu = Fu = {v}. (20)
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By (15), (20) we have GFRw = GFRQv = Gv = {w}.
By (15), (19) we have QPHw = QPHGv = Qv = {w}.

By (16), (17), (18) we have Hw = {u} and Rw = {u}.
Uniqueness of u:
Let u'be another fixed point different from u such that

HGFu = {u'}, ROPW = {u'}. (21)
From inequality (3) and using (21),we have

03 F36ry opu (ct) = 83F36rropw oPHGFW (Ct)
> min{F3ppy Gru (1), 03F36ru 0P (1),
(22)
63F3GFu’,QPu’(t)a 62F2Fu/,Pu/ (l>> 61Flu’,u’(t)}
> 52F2Fu’7Pu’(t)'
From inequality (2) and using (21), we have
O Fapy pu(ct) = 02F2rropw PHGFw (Ct) > Min{Fapy py (t), S2F2py pu (1),
52F2Fu’,Pu’ (t)a 51Flu’,u’(t)7 53F3QPu’,GFu’ (t)}
> 03F30pw GFru (1)- (23)

From (22) and (23), we have

53F36rw,0pu (t) > BaFapy pu(5) 2 83Fsgpy opw (33) > - 2 83F3gpy opw ()-

c2

Taking kK — o where k = 1,2,3.. we have
63F3GFM/,QPM/(I) > 1
GFu' = QPu' and GFu’and QPu’ are singleton. (24)

Again from (22) and (23), we have

S Fxpw pu(t) > 53Fsopw oru(5) 2 SF2pw pu () > oo > 8Fapw pu(Zx)
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Taking k — oo, we find
62F2Fu’,Pu’(t) > 1
Fu' = Pu' and Fu/and Py’ are singleton (25)

Using (17) and (21) and from (1), we have

O1F1(ct) = O1F1HGFuROPw (Ct) > mini{Fy, (), 61F1, nGFu(t), 61F 1 roPu (1),
03 F3GFu,0pw (1), 62F2pu pu (1) }

Using (17) and (21), we have

> mini{a’)F3GFu7QPu’ (t>7 82F2Fu,Pu’ (t)} (26>

From (3) and Using (18) and (21),we have

03 F3Gruope (ct) = 83F36rropu.oprGr (ct) > mini{ F3op, gru (1), 3F30py crropu(t)

02 F2propPu,PHGF (1), 01 F1 RoPuHGFY (1),

03 P36y opaGFW (1) }-
Using (16), (18), (21) and (24),we have
> mini{ &, F2pupu (1), 61F14 (1)} (27)
From (26) and (27),we have
O1F1,(ct) > 02Fapy pu(t). (28)

From (2) and using (18) and (21), we have

02 Fopy py (ct) > mini{Fap, gy (t), 82F2py prOPU(t), 2 F2p1 PHGFW (1),

O1F1ropuaGFu (1), 3F30pu.cru (1)}
Using (14), (18), (25) and (21), we have
> mini{01F,,,(t), 53F30py gru (t)}-

Using (16) and (24), we have
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O Frpy py(ct) > mini{ 81 Fy, (1), 53F36Fy opu (1)} (29)

Using (29) in (27), we have

03 F3Gru,0pw (Ct) > O1F1y (1) (30)

From (29) and (30), we have
O Fapupu(ct) > O1F1,,(1).
From (28), (31), we have
O1F1,(ct) > O1F1,,(t).

This gives u = «’. Hence u is unique. Similarly uniqueness of v and w can be proved.

Remark 3.2. If we put F = P,G = Q,H = R in Theorem 3.1, then we get result of Beg and

Chauhan [1] immediately.
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