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Abstract. In this paper, we prove new fixed point theorems of multivalued mappings in partially ordered metric

spaces using newly reformulated pre-order relations. As consequence, we derive fixed point theorems for single

valued mappings given by Nieto and Rodriguez-Lopez [11], [12]. We also establish some results on the stability of

fixed point sets of multivalued mappings in partially ordered metric spaces. General illustrative examples are also

given. Essential to our results are the pre-order relations <1,<2,<3 defined in [3], and newly reformulated pre-

order relations namely <4,<5,<6, which are obtained by imposing a distance condition to comparable elements

of two non-empty, closed and bounded sets.
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One of the main areas in the study of fixed points is metric fixed point theory, where the

major and classical result was given and proved by Banach [2], known as the Banach con-

traction principle. It essentially states that a self-contraction mapping on a complete metric

space has a unique fixed point. In 1969, Nadler [10] extended the Banach contraction princi-

ple to multivalued mappings in complete metric spaces and later on, Ran and Reurings [13]

weakened the contraction principle by considering single valued mappings over partially or-

dered complete metric spaces, and applied their results to matrix equations. This trend in the

study of existence of fixed points in partially ordered sets was immediately followed by Nieto

and Rodriguez-Lopez [11], and very recently by Beg and Butt [4]. The study of fixed point

theorems of multivalued mappings has developed not only in theories, but in applications to

control theory, convex optimization, integral and differential inclusions, computer science, and

economics and game theory.

In this paper, we extend the results of Nieto and Rodriguez-Lopez to multivalued mappings

by using newly reformulated pre-order relations with a weakened multivalued contraction con-

dition, and give examples to illustrate the application of our results. We likewise establish

stability theorems of fixed point sets of multivalued mappings in partially ordered complete

metric spaces, which are similar to that of Lim [8].

2. Preliminaries

We recall some definitions and important results found in the literature.

Definition 2.1. A partially ordered set is a system (X ,�) where X is a non-empty set and � is

a binary relation on X satisfying, for all x,y,z ∈ X ,

a. x� x (reflexivity)

b. if x� y and y� x, then x = y (antisymmetry)

c. if x� y and y� z, then x� z (transitivity)

Definition 2.2. A non-empty set X together with a metric d : X ×X → R+ ∪{0} is called a

metric space if the following conditions are satisfied by any x,y,z ∈ X :

a. d(x,y)≥ 0 and d(x,y) = 0 if and only if x = y
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b. d(x,y) = d(y,x)

c. d(x,z)≤ d(x,y)+d(y,z)

Definition 2.3. Let (X ,d) be a metric space. A sequence {xn} ∈ X is a Cauchy sequence if it

has the property that given ε > 0, there exists N ∈N such that d(xn,xm)< ε whenever n,m≥N.

The metric (X ,d) is complete if every Cauchy sequence in X is convergent.

Definition 2.4. (X ,d,�) is a partially ordered complete metric space if (X ,d) is a complete

metric space and (X ,�) is a partially ordered set.

Definition 2.5. The distance between any point a of X and any nonempty subset B of X is

defined as:

d(a,B) := inf
b∈B

d(a,b).

For A,B ∈CB(X) (set of non-empty, closed, and bounded subsets of X), let

D(A,B) := max{sup
b∈B

d(b,A),sup
a∈A

d(a,B)}.

D is called the Hausdorff metric induced by d.

We use the following relations between non-empty subsets of partially ordered complete met-

ric spaces. The first three appeared in [3], [5], [14], while the last three are newly reformulated

relations.

Definition 2.6. Let (X ,d,�) be a partially ordered complete metric space. Let A,B ∈CB(X),

define the following pre-order relations:

(1) A <1 B⇔∀a ∈ A,∃b ∈ B such that a� b

(2) A <2 B⇔∀b ∈ B,∃a ∈ A such that a� b

(3) A <3 B⇔ A <1 B and A <2 B

(4) A <4 B⇔∀a ∈ A,∃b ∈ B such that a� b and d(a,b)≤ D(A,B)

(5) A <5 B⇔∀b ∈ B,∃a ∈ A such that a� b and d(a,b)≤ D(A,B)

(6) A <6 B⇔ A <4 B and A <5 B

Example 2.7. Consider X = R, and let A1 = [0, 1
2 ] and B1 = [−1,1], ‘�’ is the usual order on

X , then A1 <1 B1 but A1 6<2 B1. On the other hand, if A2 = [0,1] and B2 = [0, 1
3 ], then A2 <2 B2

but A2 6<1 B2. Thus, <1 and <2 are different relations between A and B, and so are <4 and <5.
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Remark 2.8. The relations <1, <2, and <3 are reflexive and transitive, but are not antisymmet-

ric. To see this, consider X = R, A = [0,2], and B = [0, 1
2 ]∪ [1,2], ‘�’ is the usual order on X ,

then A <3 B and B <3 A, but A 6= B.

Definition 2.9. A point x ∈ X is said to be a fixed point of the multivalued mapping F (single

valued mapping f ) if x ∈ Fx (x = f x).

Lemma 2.10. [10] Let {An} be a sequence in CB(X) and lim
n→∞

D(An,A) = 0 for A ∈CB(X). If

xn ∈ An and lim
n→∞

d(xn,x) = 0, then x ∈ A.

Theorem 2.11. [11] Let (X ,d,�) be a partially ordered complete metric space. Let f : X → X

be a monotone nondecreasing mapping such that there exists α ∈ [0,1) with d( f (x), f (y)) ≤

αd(x,y) for all x � y. Assume that either f is continuous or X has a property that, if there is

a nondecreasing sequence {xn} → x in X, then xn � x. Moreover, if there exists x0 ∈ X with

x0 � f (x0), then f has a fixed point.

Theorem 2.12. [4] Let (X ,d,�) be a partially ordered complete metric space. Let F : X →

CB(X) be a multivalued mapping satisfying:

i. There exists x0 ∈ X, and some x1 ∈ Fx0 with x0 � x1 such that d(x0,x1)< 1.

ii. If d(x,y)< ε < 1 for some y ∈ Fx then x� y.

iii. If a nondecreasing sequence xn→ x in X, then xn � x, for all n.

iv. There exists α ∈ (0,1) with D(Fx,Fy)≤ αd(x,y) for all x� y.

Then F has a fixed point.

3. Main results

We are now ready to discuss our results on fixed point theorems of multivalued mappings

in partially ordered metric spaces. In particular, we first present fixed point theorems of mul-

tivalued mappings and single valued mappings, and then apply our results with examples. We

further provide stability theorems of fixed point sets of multivalued mappings which satisfy the

weakened multivalued contraction condition in partially ordered complete metric spaces.
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Theorem 3.1. Let (X ,d,�) be a partially ordered complete metric space. Let F : X →CB(X)

be a multivalued mapping such that the following conditions are satisfied:

i. There exists x0 ∈ X such that {x0}<1 Fx0

ii. For all x,y ∈ X, if x� y then Fx <4 Fy

iii. If xn→ x is a nondecreasing sequence in X, then xn � x for all n

iv. There exists α ∈ (0,1) such that D(Fx,Fy)≤ αd(x,y) for all x� y

Then F has a fixed point.

Proof. Let x0 ∈ X such that {x0}<1 Fx0, then there exists x1 ∈ Fx0 such that x0 � x1. If x0 = x1

then x0 is a fixed point of F , and we are done.

Suppose that x0 6= x1, by condition ii, Fx0 <4 Fx1, then there exists x2 ∈ Fx1 such that x1� x2

and

d(x1,x2)≤ D(Fx0,Fx1).

Using condition iv, we obtain

d(x1,x2) ≤ D(Fx0,Fx1)

≤ αd(x0,x1).

Again, from condition ii and iv, Fx1 <4 Fx2, and there exists x3 ∈ Fx2 such that x2 � x3 and

d(x2,x3) ≤ D(Fx1,Fx2)

≤ αd(x1,x2)

≤ α
2d(x0,x1).

Continuing this process, we obtain a nondecreasing sequence {xn} such that xn+1 ∈ Fxn and

d(xn,xn+1) ≤ D(Fxn−1,Fxn)

≤ α
nd(x0,x1).
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Next, show that {xn} is a Cauchy sequence. By the way the sequence {xn} was generated, note

that we have:

d(xn,xn+1) ≤ α
nd(x0,x1)

d(xn+1,xn+2) ≤ α
n+1d(x0,x1)

d(xn+2,xn+3) ≤ α
n+2d(x0,x1).

Now let N ∈ N, and m,n≥ N such that m > n, then,

d(xn,xm) ≤ d(xn,xn+1)+d(xn+1,xn+2)+ . . .+d(xm−1,xm)

≤ α
nd(x0,x1)+α

n+1d(x0,x1)+ . . .+α
m−1d(x0,x1)

= α
nd(x0,x1)(1+α + . . .+α

m−1−n)

≤ α
nd(x0,x1)

1
1−α

.

Therefore as n→ ∞, d(xn,xm)→ 0, and this implies that {xn} is a Cauchy sequence. Since X

is a complete metric space, there exists x ∈ X such that xn→ x, where {xn} is a nondecreasing

sequence. From condition iii, we have xn � x for all n.

From condition iv, it follows that D(Fxn,Fx)≤ αd(xn,x), and since xn→ x, this implies that

lim
n→∞

D(Fxn,Fx) = 0. Clearly, because xn+1 ∈ Fxn it follows from Lemma 2.10 that x ∈ Fx, that

is, x is a fixed point of F . �

Remark 3.2. The definition of relation <4 is very important in the proof of Theorem 3.1

because it ensures a contraction of the distance between elements of Fx and Fy whenever x� y

for x,y ∈ X .

A dual result of Theorem 3.1 can be obtained by using relations <2 and <5.

Theorem 3.3. Let (X ,d,�) be a partially ordered complete metric space. Let F : X →CB(X)

be a multivalued mapping such that the following conditions are satisfied:

i. There exists x0 ∈ X such that Fx0 <2 {x0}

ii. For all x,y ∈ X, if x� y then Fx <5 Fy

iii. If xn→ x is a nonincreasing sequence in X, then x� xn for all n
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iv. There exists α ∈ (0,1) such that D(Fx,Fy)≤ αd(x,y) for all x� y

Then F has a fixed point.

Proof. The proof follows that of Theorem 3.1 and by considering nonincreasing sequence. �

Remark 3.4. Completeness of the metric space X in Theorems 3.1 and 3.3 plays a crucial role,

because it is possible that a multivalued mapping F does not have a fixed point if the underlying

metric space is not complete even if conditions i to iv of Theorems 3.1 and 3.3 are satisfied.

Indeed, contractions on incomplete metric spaces may fail to have fixed points. To see this,

consider the following example.

Example 3.5. Let X = (0,1] ⊆ R with the usual order. Define d(x,y) = |x− y| and Fx ={
y : y ∈

[x
5
,

x
4

]}
for all x ∈ (0,1].

Note that if x0 = 1 ∈ X , then Fx0 = [1
5 ,

1
4 ], thus condition i of Theorem 3.3 is satisfied. Take

any x,y ∈ X such that x � y, then Fx = [ x
5 ,

x
4 ] and Fy = [ y

5 ,
y
4 ]. Note that for all y′ ∈ Fy there

exists x′ ∈ Fx such that x′ � y′ and d(x′,y′) ≤ D(Fx,Fy), that is Fx <5 Fy. Also, if x � y, we

have that D(Fx,Fy) = y−x
4 and d(x,y) = y− x. Clearly, F satisfies the weakened contraction

condition defined in Theorem 3.3. If for instance, we did not notice that X is not a complete

metric space, then by Theorem 3.3, it can be concluded that F has a fixed point. But by closer

investigation on how F was defined, it can be seen that F has no fixed point. Therefore, to be

able to use Theorems 3.1 and 3.3, one should check that X is indeed a complete metric space to

deduce a correct and valid conclusion.

As consequence of Theorem 3.1 and Theorem 3.3, we have the following fixed point theorem

for single valued mappings.

Corollary 3.6. Let (X ,d,�) be a partially ordered complete metric space. Let f : X → X be a

single valued mapping such that the following conditions are satisfied:

i. There exists x0 ∈ X such that x0 � f x0 or f x0 � x0

ii. For all x,y ∈ X, if x� y then f x� f y

iii. If xn→ x is a sequence in X whose consecutive elements are comparable, then xn � x

or x� xn for all n
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iv. There exists α ∈ (0,1) such that d( f x, f y)≤ αd(x,y) for all x� y

Then f has a fixed point.

Remark 3.7. In Corollary 3.6, if we replace condition (iii) by requiring f to be continuous,

then the existence of fixed point of f can be proven.

In [4], Beg and Butt established fixed point theorems of multivalued mappings in partially

ordered complete metric spaces. In the following example, we illustrate the applicability of

Theorem 3.1 where Theorem 2.12 fails.

Example 3.8. Let X = {(0,0),(0,− 1
p),(−

1
q ,0),(−

1
r ,

1
r ),such that p,q,r ∈ Z+,1 < p < q <

r and r−q< q}⊆R2, where� is defined as: for x,y∈ X such that x = (x1,y1), and y= (x2,y2),

x� y if and only if x1 ≤ x2 and y1 ≤ y2. Define d : X×X → R as:

d(x,y) = max{|x1− x2|, |y1− y2|}

where x = (x1,y1),y = (x2,y2). Let F : X →CB(X) as:

Fx =



{(0,0),(−1
r ,

1
r )} if x = (0,0)

{(−1
q ,0)} if x = (0,− 1

p)

{(0,0)} if x = (−1
q ,0)

{(0,0)} if x = (−1
r ,

1
r )

Let x = (0,− 1
p), then Fx = {(−1

q ,0)}. Note that for y ∈ Fx, d(x,y) = d((0,− 1
p),(−

1
q ,0)) =

1
p < 1, but x and y are not comparable. Thus, we cannot use Theorem 2.12 to show that F has a

fixed point.

However, it can be shown that the assumptions of Theorem 3.1 are satisfied, hence it can be

invoked to conclude the existence of a fixed point of F .

Example 3.9. Let X = [0,1], where� is the usual order in R and d is defined as d(x,y) = |x−y|

for all x,y ∈ X . Define F : X →CB(X) as:

Fx =
{

y ∈ X :
x

n+1
≤ y≤ x

n

}
for a fixed value of n, where n ∈ Z and n≥ 2.

X with the defined metric d is a complete metric space, and F satisfies the assumptions of

Theorem 3.3, therefore we can conclude that F has a fixed point.
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Lim [8] presented an interesting stability result that holds for multivalued contractions. If a

sequence of multivalued mappings {Fn}, each of which satisfies Nadler’s fixed point theorem,

uniformly converges to a multivalued mapping F0, then the fixed point sets of {Fn} converges

to the fixed point set of F0. Here, we prove theorems for the stability of fixed point sets of

uniformly convergent sequence of multivalued mappings in partially ordered complete metric

spaces. We start with a very important lemma.

Lemma 3.10. Let (X ,d,�) is a partially ordered complete metric space. Let Fi : X→CB(X),(i=

1,2) satisfy the conditions given in Theorem 3.1. Denote by S(F1) and S(F2) the respective fixed

point sets of F1 and F2, and S = S(F1)∪S(F2). If

a. for all x0 ∈ S(F1), {x0}<4 F2(x0)

b. for all y0 ∈ S(F2), {y0}<4 F1(y0)

then

D(S(F1),S(F2))≤ sup
x∈S

D(F1(x),F2(x))
1

1−α

Proof. Let x0 ∈ S(F1) such that {x0} <4 F2(x0), then there exists x1 ∈ F2(x0) such that x0 � x1

and d(x0,x1)≤D(x0,F2(x0)). Similar to the proof of Theorem 3.1 we can deduce a nondecreas-

ing sequence {xn} such that xn ∈ F2(xn−1) and d(xn,xn+1)≤ αnd(x0,x1).

Let N ∈ N, and m,n≥ N such that m > n, then,

d(xn,xm) ≤ d(xn,xn+1)+d(xn+1,xn+2)+ . . .+d(xm−1,xm)

≤ α
nd(x0,x1)+α

n+1d(x0,x1)+ . . .+α
m−1d(x0,x1)

= α
nd(x0,x1)(1+α + . . .+α

m−1−n)

≤ α
nd(x0,x1)

1
1−α

and this goes to zero as n→ ∞. Thus, {xn} is a Cauchy sequence. Since X is a complete metric

space, there exists z ∈ X such that xn→ z, where {xn} is a nondecreasing sequence. Therefore,

from condition iii of Theorem 3.1, xn � z for all n.
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From condition iv of Theorem 3.1, it follows that D(F2(xn),F2(z)) ≤ αd(xn,z), and since

xn → z, then D(F2(xn),F2(z)) = 0 as n→ ∞. Clearly, because xn+1 ∈ F2(xn) it follows from

Lemma 2.10 that z ∈ F2(z), that is, z ∈ S(F2). Furthermore,

d(x0,z) ≤ d(x0,x1)+d(x1,x2)+ . . .+d(xn,xn+1)+ . . .

≤ d(x0,x1)+αd(x0,x1)+ . . .+α
nd(x0,x1)+ . . .

= d(x0,x1)(1+α + . . .+α
n + . . .)

≤ d(x0,x1)
1

1−α

≤ D(x0,F2(x0))
1

1−α

≤ D(F1(x0),F2(x0))
1

1−α
.

Reversing the roles of F1 and F2 and repeating the arguments above lead to the conclusion that

for each y0 ∈ S(F2) there exists y1 ∈ F1(y0) and w ∈ S(F1) such that

d(y0,w) ≤ D(F1(y0),F2(y0))
1

1−α

Hence,

D(S(F1),S(F2))≤ sup
x∈S

D(F1(x),F2(x))
1

1−α
.

�

Theorem 3.11. Let (X ,d,�) is a partially ordered complete metric space. Let Fi : X →

CB(X),(i = 0,1,2, . . .) be a sequence of multivalued mappings, each satisfying all the con-

ditions in Theorem 3.1. Denote by S(F0), S(F1), S(F2), . . . the respective fixed point sets of

F0,F1 and F2 . . ., and S =
⋃

S(Fi). If lim
n→∞

D(Fn(x),F0(x)) = 0 uniformly for all x ∈ S, and

a. for all x0 ∈ S(F0), {x0}<4 Fi(x0) for i = 1,2, . . .

b. for all y0 ∈ S(Fi), {y0}<4 F0(y0) for i = 1,2, . . .

then

lim
n→∞

D(S(Fn),S(F0)) = 0
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Proof. Let ε > 0. Since lim
n→∞

D(Fn(x),F0(x)) = 0 for all x ∈ S, then we can choose N ∈ N such

that for n≥N, sup
x∈S

D(Fn(x),F0(x))< (1−α)ε . By invoking Lemma 3.10, then D(S(Fn),S(F0))<

ε for all n. Therefore, lim
n→∞

D(S(Fn),S(F0)) = 0. �

Remark 3.12. Dual results of Lemma 3.10 and Theorem 3.11 can be obtained by using <5

relation.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] A. Amini-Hrandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric

spaces and application to ordinary differential equation, Nonlinear Anal. 72 (2012), 2238-2242.

[2] S. Banach, Surles operations dans les ensembles abstraits et leus application aux quation intgrales, Fund.

Math (1922), 1379-1393.

[3] I. Beg and A. R. Butt, Common fixed point for generalized set valued contractions satisfying an implicit

relation in partially ordered metric spaces, Math. Commun. 15 (2010), 65-76.

[4] I. Beg and A. R. Butt, Fixed point theorems for set valued mappings in partially ordered metric spaces, Int. J.

Math. Sci. 7 (2013), 66-68.

[5] B. S. Choudhury and N. Metiya, Multivalued and single valued fixed point results in partially ordered metric

spaces, Arab J. of Math. Sci. (2011), 135-151.

[6] L. Ciric, Fixed point theorems for multivalued contractions in complete metric spaces, J. Math. Anal. 348

(2008), 499-507.

[7] Y. Feng, Fixed point theorems for multi-valued operators in partial ordered spaces, Soochow J. Math. 30

(2004), 461-469.

[8] T. C. Lim, On fixed point stability of set-valued contractive mappings with applications to generalized differ-

ential equations, J. Math. Anal. Appl. (1985), 436-441.

[9] P. S. Macansantos, A generalized Nadler-type theorem in partial metric spaces, Int. J. Math. Anal. 7 (2013),

343-348.

[10] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488.

[11] J. J. Nieto and R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications

to ordinary differential equations, Order 22 (2005), 223-239.

[12] J .J. Nieto and R. Rodriguez-Lopez, Existence and uniqueness of fixed points in partially ordered sets and

applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007), 2205-2212.



746 ROMMEL O. GREGORIO AND PRISCILLA S. MACANSANTOS

[13] A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications

to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435-1443.

[14] U. Straccia, M. Ojeda-Aciego, and C. V. Damasio, On fixed points of multivalued function on complete

lattices and their applications to generalized logic programs, SIAM J. Comp. (2009), 1881-1911.


