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Abstract. In this paper, we prove some fixed point results for new weakly contractive maps in G− metric spaces.

It is proved that these maps satisfy property P. The results obtained in this paper generalize several well known

comparable results in the literature.
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1. Introduction

The study of fixed points of nonlinear mappings satisfying certain contractive conditions has

been at the center of rigorous research activity, see [13, 14, 15, 16, 17, 19, 20, 22]. The notion

of D-metric space is a generalization of usual metric spaces and it is introduced by Dhage

[1, 2]. Recently, Mustafa and Sims [25, 26, 27] have shown that most of the results concerning
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Dhage’s D-metric spaces are invalid. In [25, 28, 29, 30], they introduced a improved version of

the generalized metric space structure which they called G-metric spaces. For more results on

G-metric spaces and fixed point results, one can refer to the papers [3, 4, 5, 6, 7, 8, 9, 10, 11, 18,

21, 23, 31, 32, 33], some of them have given some applications to matrix equations, ordinary

differential equations, and integral equations.

2. Preliminaries

Definition 2.1. [24] Let X be a non-empty set, G : X×X×X→R+ be a function satisfying the

following properties:

(1) G(x,y,z) = 0 if x = y = z,

(2) 0 < G(x,x,y) for all x, y ∈ X with x 6= y,

(3) G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with y 6= z,

(4) G(x,y,z) = G(x,z,y) = G(y,z,x) = :::: (symmetry in all three variables),

(5) G(x,y,z)≤ G(x,a,a)+G(a,y,z) for all x,y,z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric, or, more specially, a G-metric on X , and

the pair (X ,G) is called a G−metric space.

Definition 2.2. [24] Let (X ,G) be a G-metric space, and let (xn) be a sequence of points of X .

We say that (xn) is G−convergent to x ∈ X if lim
n,m→∞

G(x;xn,xm) = 0, that is, for any ε > 0, there

exists N ∈ N such that G(x;xn,xm)< ε , for all n;m≥ N. We call x the limit of the sequence xn

and write xn→ x or limn→∞ xn = x.

Proposition 2.3. [24] Let (X ,G) be a G-metric space. The following are equivalent:

(1) (xn) is G-convergent to x;

(2) G(xn,xn,x)→ 0 as n→ ∞;

(3) G(xn,x,x)→ 0 as n→ ∞;

(4) G(xn,xm,x)→ 0 as n,m→ ∞.
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Definition 2.4. [24] Let (X ,G) be a G-metric space. A squence (xn) is called a G− Cauchy

sequence if, for any ε > 0, there is N ∈ N such that G(xn,xm,xl) < ε for all m,n, l ≥ N, that is

G(xn,xm,xl)→ 0 as n,m, l→ ∞.

Proposition 2.5. [24] Let (X ,G) be a G-metric space. Then the following are equivalent:

(1) The sequence (xn) is G-Cauchy;

(2) For any ε > 0, there exists N ∈ N such that G(xn,xm,xm)< ε , for all n;m≥ N.

Proposition 2.6. [26] Let (X ,G) be a G-metric space. Then for any x,y,z,a ∈ X, it follows that:

(1) G(x,y,z)≤ 2
3 [G(x,y,a)+G(x,a,z)+G(a,y,z)] ,

(2) G(x,y,z)≤ G(x,a,a)+G(y,a,a)+G(z,a,a).

Proposition 2.7. [24] Let (X ,G) be a G-metric space. A mapping f : X → X is G−continuous

at x ∈ X if and only if it is G− sequentially continuous at x, that is, whenever (xn) is G-

convergent to x, f (xn) is G-convergent to f (x).

Proposition 2.8. [24] Let (X ,G) be a G-metric space. Then the function G(x,y,z) is jointly

continuous all three of its variables.

Definition 2.9. [24] A G-metric space (X ,G) is called G− complete if every G−Cauchy se-

quence is G−convergent in (X ,G).

Definition 2.10. [24]. Two mappings f ,g : X → X are weakly compatible if they commute at

their coincidence points, that is f t = gt for some t ∈ X implies that f gt = g f t.

Definition 2.11. [24] Let X be a non-empty set and S,T self-mappings of X . A point x ∈ X

is called a coincidence point of S and T if Sx = T x. A point w ∈ X is said to be a point of

coincidence of S and T if there exists x ∈ X so that w = Sx = T x.

Definition 2.12. [24]. Suppose (X ,�) is a partially ordered set and f ,g : X → X are mappings.

f is said to be g−Non decreasing if for x,y ∈ X , gx� gy implies f x� f y.

Khan et al. [34] introduced the concept of altering distance function that is a control function

employed to alter the metric distance between two points enabling one to deal wity relatively

new classes of fixed point problems.
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Let us denote by Ψ the class of the set of altering distance functions ψ : [0,+∞[→ [0,+∞[

which satisfies the following conditions:

(1) ψ is nondecreasing,

(2) ψ is continuous,

(3) ψ(t) = 0 ⇐⇒ t = 0

and by Φ the class of the set of continuous functions ϕ : [0,+∞[→ [0,+∞[ and nondecreasing.

Definition 2.13. Let (X ,G) be a G- a complete metric space and T self-mapping of X . We say

that T satisfies the property P if F(T ) = F(T n) for each n ∈ N, where F(T ) denotes the set of

fixed point of T .

Remark 2.14. In general F(T ) 6= F(T n) for n≥ 2.

Example 2.15. We consider X = [0,1] and T x = 1−x. T has a unique fixed point x = 1
2 . Every

point of X is a fixed point of T n, n≥ 2.

Example 2.16. X = [0,π] and T x = cosx, T has a unique fixed point and every iterate of T has

the same fixed point as T .

Jeong and Rhoades [32] showed that maps satisfying many contractive conditions have prop-

erty P. An interesting fact about map satisfying property P is that they have no non trivial

periodic points; see [32, 34] and the references therein. In this paper, we will prove some

general point theorem for a new weakly contractive maps in G-complete metric spaces.

3. Main Results

We start with the following remark.

Remark 3.1. If ψ ∈Ψ and if ϕ ∈Φ with the condition ψ (t)> ϕ(t) for all t > 0, then ϕ(0) = 0.

Proof. Since ϕ(t)< ψ (t) for all t > 0, then we have

0≤ ϕ(0)≤ liminf
t→0

ϕ(t)≤ lim
t→0

ψ (t) = ψ (0) = 0.

This completes the proof.



PROPERTY P AND SOME FIXED POINT RESULTS 173

Lemma 3.2. Let (X ,G) be a G- metric space and (xn) be a sequence in X such that G(xn+1,

xn+1, xn) is decreasing and

lim
n→∞

G(xn+1,xn+1,xn) = 0. (1)

If (x2n) is not a Cauchy sequence, then there exists ε > 0 and two sequences (mk) and (nk) of

positive integers such that the following four sequences tends to ε as k→ ∞ :

G(x2mk ,x2mk ,x2nk),G(x2mk ,x2mk ,x2nk+1) (2)

G(x2mk−1,x2mk−1,x2nk),G(x2mk−1,x2mk−1 ,x2nk+1).

Proof. If (x2n) is not a Cauchy sequence, then there exists ε > 0 and two sequences (mk) and

(nk) of positive integers such that

nk > mk > k;G(x2mk ,x2mk ,x2nk−2)< ε , G(x2mk ,x2mk ,x2nk)≥ ε

for all integer k. Then

ε ≤ G(x2mk ,x2mk ,x2nk)≤ G(x2mk ,x2mk ,x2nk−2)

+G(x2nk−2,x2nk−2,x2nk−1)+G(x2nk−1,x2mk−1,x2nk)

< ε +G(x2nk−2,x2nk−2,x2nk−1)+G(x2nk−1,x2nk−1 ,x2nk).

Using (1), we conclude that

lim
k→∞

G(x2mk ,x2mk ,x2nk) = ε. (3)

Further, we have

G(x2mk ,x2mk ,x2nk)≤ G(x2mk ,x2mk ,x2nk+1)+G(x2nk+1,x2nk+1 ,x2nk)

and

G(x2mk ,x2mk ,x2nk+1)≤ G(x2mk ,x2mk ,x2nk)+G(x2nk ,x2nk ,x2nk+1).

Passing to the limit when k→ ∞ and using (1) and (3), we obtain

lim
k→∞

G(x2mk ,x2mk ,x2nk+1) = ε.

The remaining two sequences in (2) tend to ε can be proved in a similar way.
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Theorem 3.3 Let (X ,G) be a complete G-metric space and let f : X → X be a mapping. If

there exist ψ ∈Ψ and ϕ ∈Φ with the condition ψ (t)> ϕ(t) for all t > 0, such that

ψ (G( f x, f y, f z))≤ ϕ

max



G(x,y,y),G(x, f x, f x),G(y, f y, f y),

G(z, f z, f z)

αG( f x, f x,y)+(1−α)G( f y, f y,z)

βG(x, f x, f x)+(1−β )G(y, f y, f y)



 (4)

for all x,y,z ∈ X, where 0 < α,β < 1. Then f has a unique fixed point (say u), where f is

G-continuous at u.

Proof. Fix x0 ∈ X . Then construct a sequence (xn) by xn+1 = f xn = f nx0. We may assume that

xn 6= xn+1 for each n≥ 0. Since, if there exist n ∈N such that xn = xn+1, then xn is a fixed point

of f . From (4), substituting x = xn−1,y = z = xn then, for all n ∈ N, we have

ψ (G(xn,xn+1,xn+1) (5)

≤ ϕ

max



G(xn−1,xn,xn),G(xn−1,xn,xn),G(xn,xn+1,xn+1),

G(xn,xn+1,xn+1)

αG(xn,xn,xn)+(1−α)G(xn+1,xn+1,xn)

βG(xn−1,xn,xn)+(1−β )G(xn+1,xn+1,xn)




≤ ϕ

max

 G(xn−1,xn,xn),G(xn,xn+1,xn+1)

βG(xn−1,xn,xn)+(1−β )G(xn+1,xn+1,xn)


 .

Let Mn = max{G(xn−1,xn,xn),G(xn,xn+1,xn+1)}. then , (5) gives

ψ (G(xn,xn+1,xn+1)≤ ϕ(Mn). (6)

We have two cases, either Mn = G(xn,xn+1,xn+1) or Mn = G(xn−1,xn,xn). Suppose that, for

some n ∈ N, Mn = G(xn,xn+1,xn+1). Then we have

ψ (G(xn,xn+1,xn+1)≤ ϕ (G(xn,xn+1,xn+1)). (7)

Therefore from the condition of the theorem, we have G(xn,xn+1,xn+1) = 0. Hence xn = xn+1.

which is a contraduction with the element of xn are distinct.
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Thus, Mn = G(xn−1,xn,xn), and (6) becomes

ψ (G(xn,xn+1,xn+1)≤ ϕ(G(xn−1,xn,xn)). (8)

By using the condition of the theorem, we get from (8)

G(xn,xn+1,xn+1)≤ G(xn−1,xn,xn), for all n ∈ N. (9)

Therefore, {G(xn,xn+1,xn+1) for all n ∈ N} is a positive non increasing sequence. Hence there

exists r ≥ 0 such that

lim
n→∞

G(xn,xn+1,xn+1) = r. (10)

Letting n→ ∞ and using (8), (10) and the continuity of ψ and ϕ , we get

ψ (r)≤ ϕ(r). (11)

Hence, using the condition of the theorem, we have r = 0, which implies that

lim
n→∞

G(xn,xn+1,xn+1) = 0. (12)

Now we prove that {xn} is a Cauchy sequence. Suppose that (xn) is not a Cauchy sequence.

Using Lemma, we know that there exist ε > 0 and two sequences (mk) and (nk) of positive

integers such that the following four sequences tend to ε as k goes to infinity:

G( f x2mk , f x2mk , f x2nk),G( f x2mk , f x2mk , f x2nk+1)

G( f x2mk−1, f x2mk−1, f x2nk),G( f x2mk−1 , f x2mk−1, f x2nk+1).

Putting in the contractive condition x = y = x2mk and z = x2nk+1 , using (4) and we proceed as

before, it follows that

ψ(G(x2mk ,x2mk ,x2nk+1)≤ ϕ(G(x2mk−1,x2mk−1,x2nk) (13)

and so, by the condition of the Theorem, we have

lim
k→∞

G(x2mk−1 ,x2mk−1,x2nk) = 0.

Since ψ is a continuous mapping, using (13) letting k→ ∞, we have

ψ (ε)≤ ϕ(ε).
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Then, the condition of the theorem implies that ε = 0, which contradicts ε > 0. Therefore, (xn)

is a Cauchy sequence in (X ,G). Since (X ,G) is a complete metric space, there exists u ∈ X

such that lim
n→∞

xn = u. For n ∈ N, we have

ψ (G( f u, f u,xn)) = ψ (G( f u, f u, f xn−1)) (14)

≤ ϕ

max



G(u,u,xn−1),G(u,u, f u),G(u,u, f u),

G(xn−1,xn,xn)

αG( f u, f u,u)+(1−α)G( f u, f u,xn−1)

βG(u, f u, f u)+(1−β )G(u, f u, f u)





≤ ϕ

max


G(u,u,xn−1),G(u,u, f u)

,G(xn−1,xn,xn)

αG( f u, f u,u)+(1−α)G( f u, f u,xn−1)


 .

Letting n→ ∞, and the using the fact that ψ , ϕ are continuous and G is continuous on its

variables, we get that G( f u, f u,u) = 0. Hence f u = u. So u is a fixed point of f . Now to show

uniqueness, let v be another fixed point of f with v 6= u. Therefore,

ψ (G(u,u,v)) = ψ (G( f u, f u, f v)) (15)

≤ ϕ

max



G(u,u,v),G(u, f u, f u),G(u, f u, f u),

G(v, f v, f v)

αG( f u, f u,u)+(1−α)G( f u, f u,v)

βG(u, f u, f u)+(1−β )G(v, f v, f v)




= ϕ (max{G(u,u,v),(1−α)G( f u, f u,v)})

= ϕ (G(u,u,v)) .

Hence, we have

ψ (G(u,u,v))≤ ϕ (G(u,u,v)) . (16)

Therefore, by using the condition of the theorem, we get G(u,u,v) and u = v.
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Now we are in a position to to show that f is continuous at u. Let {xn} be a sequence in X

such that xn→ u. Using (4) , we have

ψ (G( f xn,u,u)) = ψ (G( f xn, f u, f u)) (17)

≤ ϕ

max



G(xn,u, f u),G(xn, f xn, f xn),G(u,u, f u),

G(u,u, f u)

αG( f xn, f xn,u)+(1−α)G( f u, f u,u)

βG(xn, f xn, f xn)+(1−β )G(u, f u, f u)




= ϕ (max{G(xn,u,u),αG( f xn, f xn,u),βG(xn, f xn, f xn)})

≤ ϕ

max

 G(xn,u,u),αG(xn+1,xn+1,u),

βG(xn,u,u)+βG(u,xn+1,xn+1)


 .

Using the condition of the theorem and (17), we get

G( f xn,u,u)≤max

 G(xn,u,u),αG(xn+1,xn+1,u),

βG(xn,u,u)+βG(u,xn+1,xn+1)

 . (18)

Therefore, we obtain limn→∞ G( f xn,u,u)= 0. Using the continuity of G, we obtain limn→∞ f xn =

f (u). This completes the proof.

Corollary 3.4. Let (X ,G) be a complete G-metric space and Let f be a map satisfying

G( f x, f y, f z)≤ λ

max



G(x,y,y),G(x, f x, f x),G(y, f y, f y),

G(z, f z, f z)

αG( f x, f x,y)+(1−α)G( f y, f y,z)

βG(x, f x, f x)+(1−β )G(y, f y, f y)



 (19)

for all x,y,z ∈ X, where 0 < α,β ,λ < 1, Then f has a unique fixed point (say u), where f is

G-continuous at u.

Proof. We obtain the result by taking ψ (t) = t and ϕ (t) = λ t, in Theorem 3.3.

Corollary 3.5. Let (X ,G) be a complete G-metric space, Let f be a map satisfying

G( f x, f y, f z)≤ λ

max


G(x,y,y),G(x, f x, f x),G(y, f y, f y),G(z, f z, f z)

αG( f x, f x,y)+(1−α)G( f y, f y,z)

βG(x, f x, f x)+(1−β )G(y, f y, f y)


 (20)
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for all x,y,z ∈ X, where 0 < α,β ,λ < 1. Then f has a unique fixed point (say u), where f is

G-continuous at u.

Proof. We obtain the result by taking ψ (t) = t and ϕ (t) = λ t,α = β = 1
2 in Theorem 3.3

Corollary 3.6. Let (X ,G) be a complete G-metric space. Let f be a map satisfying

ψ (G( f x, f y, f z)) ≤ ψ

max



G(x,y,y),G(x, f x, f x),G(y, f y, f y),

G(z, f z, f z)

αG( f x, f x,y)+(1−α)G( f y, f y,z)

βG(x, f x, f x)+(1−β )G(y, f y, f y)



 (21)

−φ

max



G(x,y,y),G(x, f x, f x),G(y, f y, f y),

G(z, f z, f z)

αG( f x, f x,y)+(1−α)G( f y, f y,z)

βG(x, f x, f x)+(1−β )G(y, f y, f y)




for all x,y,z ∈ X, where 0 < α,β < 1, ψ ∈Ψ and φ ∈Φ with ϕ (t) = 0⇐⇒ t = 0. Then f has

a unique fixed point (say u), where f is G-continuous at u.

Proof. We obtain the result by taking ϕ (t) = ψ (t)−φ (t) , in Theorem 3.3.

Theorem 3.7. Under the condition of theorem 3.3, f has the property P.

Proof. Note that f has a fixed point. Therefore F( f n) 6= φ for each n > 1, assume that u ∈

F( f n). We claim that u ∈ F( f ). To prove the claim, suppose that u 6= f u. Using (4), we have

ψ (G(u, f u, f u)) = ψ
(
G( f nu, f n+1u, f n+1u

)
) (22)

= ψ
(
G( f f n−1u, f f nu, f f nu

)
)

≤ ϕ

max


G( f n−1u,u,u),G(u, f u, f u)

αG(u,u,u)+(1−α)G( f u, f u,u)

βG( f n−1,u,u)+(1−β )G(u, f u, f u)




= ϕ
(
max

{
G( f n−1u,u,u),G(u, f u, f u))

})
.

Letting M = max
{

G( f n−1u,u,u),G(u, f u, f u))
}

, we deduce from (22)

ψ (G(u, f u, f u))≤ ϕ (max{M)}) . (23)
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If M = G(u, f u, f u), then

ψ (G(u, f u, f u))≤ ϕ (G(u, f u, f u)) .

Then by using the condition of the theorem, we get G(u, f u, f u) = 0, therefore u = f u, which

is a contradiction. On the other hand, if M = G( f n−1u,u,u), then (4) gives that

ψ (G(u, f u, f u)) = ψ
(
G( f nu, f n+1u, f n+1u

)
) (24)

≤ ϕ
(
G( f n−1u, f nu, f nu

)
).

By using the condition of the theorem, we have

G( f nu, f n+1u, f n+1u)≤ G( f n−1u, f nu, f nu).

Therefore,
{

G( f nu, f n+1u, f n+1u) for all n ∈ N
}

is a positive non increasing sequence. Hence

there exists γ ≥ 0 such that

lim
n→∞

G( f nu, f n+1u, f n+1u) = γ. (25)

Letting n→ ∞ in (24), using (25) and the continuity of ψ and ϕ , we get

ψ (γ)≤ ϕ(γ). (26)

Hence, using the condition of the theorem, we have γ = 0, which implies that

lim
n→∞

G( f nu, f n+1u, f n+1u) = 0. (27)

Thus G(u, f u, f u) = 0, and we have u = f u, which is a contradiction. Therefore, u ∈ F ( f ) and

f has the property P.

Let

Mα,β (x,y,z) = max



G(x,y,y),G(x, f x, f x),G(y, f y, f y),

G(z, f z, f z)

αG( f x, f x,y)+(1−α)G( f y, f y,z)

βG(x, f x, f x)+(1−β )G(y, f y, f y)


, (28)

where α ,β ∈ (0,1].
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Example 3.8. Let X = [0,1] and G(x,y,z) = max{|x− y| , |y− z| , |x− z|} be a G−metric space

on X. Define f : X → X by f (x) = 1
8t. We take ψ (t) = t and ϕ (t) = 1

8t, for t ∈ [0,∞) and

α ,β ∈ (0,1]. So that

ψ
(
Mα,β (x,y,z)

)
= Mα,β (x,y,z) . (29)

We have

ψ (G( f x, f y, f z)) = max
{
|x− y|

8
,
|y− z|

8
,
|x− z|

8

}
=

1
8

G(x,y,z) (30)

=
1
8

Mα,β (x,y,z)

≤ ϕ
(
Mα,β (x,y,z)

)
.

From theorem 3.3, we deduce that f has a unique fixed point u = 0 and f satisfies the property

P.

4. Applications

Denote by Λ the set of functions χ : [0,∞)→ [0,∞) satisfying the following hypotheses.

(1) χ is a Lebesgue integrable on each compact of [0,∞),

(2) For every ε > 0,we have
∫ t

0 χ(s)ds > 0.

It is an easy matter to see that the mapping ψ : [0,∞)→ [0,∞), defined by ψ (t) =
∫ t

0 χ(s)ds

is an altering distance function.

Theorem 4.1. Let (X ,G) be a complete G-metric space and f : X → X be a mapping. If there

exist ψ ∈Ψ and ϕ ∈Φ with the condition ψ (t)> ϕ(t) for all t > 0, such that

∫
ψ(G( f x, f y, f z))

0
χ (t)dt ≤

∫
ϕ(Mα,β (x,y,z))

0
χ (t)dt

for all x,y,z ∈ X, where 0 < α,β < 1. Then f has a unique fixed point (say u), where f is

G-continuous at u.

Conflict of Interests

The authors declare that there is no conflict of interests.



PROPERTY P AND SOME FIXED POINT RESULTS 181

REFERENCES

[1] B.C. Dhage, Generalized metric space and mapping with fixed point, Bull. Calcutta Math. Soc. 84 (1992),

329-336.

[2] B.C. Dhage, Generalized metric spaces and topological structure I, Annalele Stintifice ale Universitatii Al.I.

Cuza, 46 (2000), 3-24.

[3] M. Abbas, T. Nazir, S. Radenovic, Some periodic point results in generalized metric spaces, Appl. Math.

Comput. 217 (2010), 4094-4099.

[4] Z. Kadelburg, H.K. Nasine, S. Radenovic, Common coupled fixed point results in partially ordered G-metric

spaces, Bull. Math. Anal. Appl. 4 (2012), 51-63.

[5] W. Long, M. Abbas, T. Nazir, S. Radenovic, Common Fixed Point for Two Pairs of Mappings Satisfying

(E.A) Property in Generalized Metric Spaces, Abst. Appl. Anal. 2012 (2012), Article ID 394830.

[6] B.S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Math. Comput. Modelling

54 (2011), 73-79.

[7] H. Aydi, B. Damjanovic, B. Samet, W. Shatanawi, Coupled fixed point theorems for nonlinear contractions

in partially ordered G-metric spaces, Math. Comput. Modelling 54 (2011), 2443-2450.

[8] H. Aydi, W. Shatanawi, C. Vetro, On generalized weakly G-contraction mapping in G- metric spaces, Comput.

Math. Appl. 62 (2011), 4222-4229.

[9] H. Aydi, A fixed point result involving a generalized weakly contractive condition in G-metric spaces, Bull.

Math. Anal. Appl. 3 (2011), 180-188.

[10] H. Aydi, W. Shatanawi, M. Postolache, Coupled fixed point results for (ψ ,φ)-weakly contractive mappings

in ordered G-metric spaces, Comput. Math. Appl. 63 (2012), 298-309.

[11] H. Aydi, A common fixed point of integral type contraction in generalized metric spaces, J. Adv. Math. Stud.

5 (2012), 111-117.

[12] JJ. Nieto, R. Rodriguez-Lopez, Contractive mapping theorems in partially ordered sets and applications to

ordinary differential equations. Order 22 (2005), 223-239.

[13] Y.J. Cho, R. Saadati, S. Wang, Common fixed point theorems on generalized distance in ordered cone metric

spaces. Comput. Math. Appl. 61 (2011), 1254-1260.

[14] H. K. Nashine, Z. Kadelburg, S. Radenovic, J. K. Kim, Fixed point theorems under Hardy-Rogers contractive

conditions on 0-complete ordered partial metric spaces. Fixed Point Theory Appl. 2012 (1012), Article ID

180.

[15] L. Gajic, Z.L. Crvenkovic, On mappings with contractive iterate at a point in generalized metric spaces, Fixed

Point Theory Appl. 2010 (2010) Article ID 458086.

[16] M. Abbas, B.E. Rhoades, Common fixed point results for non-commuting mappings with-out continuity in

generalized metric spaces, Appl. Math. Comput. 215 (2009), 262-269.



182 MAHMOUD BOUSSELSAL, SIDI HAMIDOU JAH

[17] M. Abbas, A.R. Khan, T. Nazir, Coupled common fixed point results in two generalized metric spaces, Appl.

Math. Comput. 217 (2011), 6328-6336.

[18] M. E. Gordji, M. Ramezani, Y.J. Cho, C. S. Pirbavafa, A generalization of Geraghty’s theorem in partially or-

dered metric space and application to ordinary differential equations, Fixed Point Theory Appl. 2012 (2012),

Article ID74.

[19] N.V. Luong, N.X. Thuan: Coupled fixed point in partially ordered metric spaces and applications. Nonlinear

Anal. 74 (2011), 983-992.

[20] R. Saadati, S.M. Vaezpour, L.B. Ciric, Generalized distance and some common fixed point theorems, J.

Comput. Anal. Appl. 12 (2010), 157-162.

[21] R. Saadati, S.M. Vaezpour, P. Vetro, B.E. Rhoades, Fixed point theorems in generalized partially ordered

G-metric spaces, Math. Comput. Modelling 52 (2010), 797-801..

[22] T.G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications,

Nonlinear Anal. 65 (2006), 1379-1393.

[23] W. Shatanawi, Coupled fixed point theorems in generalized metric spaces, Hacet. J. Math. Stat. 40 (2011),

441-447.

[24] W. Shatanawi, Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces, Fixed

Point Theory Appl. 2010 (2010), Article ID 181650.

[25] Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, Ph.D. thesis,

The University of Newcastle, Callaghan, Australia, (2005).

[26] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006),

289-297.

[27] Z. Mustafa, B. Sims, Some remarks concerning D-metric spaces, in: Proc. Int. Conf. on Fixed Point Theory

and Applications, Valencia, Spain, July 2003, pp. 189-198.

[28] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G- metric spaces, Fixed

Point Theory Appl. 2009 (2009), Article ID 917175.

[29] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete G-metric

spaces, Fixed Point Theory Appl. 2008 (2008), Article ID 189870.

[30] Z. Mustafa, W. Shatanawi, M. Bataineh, Existence of fixed point results in G-metric spaces, Int. J. Math.

Math. Sci. 2009 (2009), Article ID 283028.

[31] M. Bousselsal, Z. Mostefaoui, (ψ,α,β )−weak contraction in partially ordered G-metric spaces, Thai J.

Math. in press.

[32] G.S. Jeong, B.E. Rhoades, More maps for which F(T ) = F(T n), Demonstration Math. 40 (2007), 671-680.

[33] M. Khandaqgi, S. A. Sharif, M. Al khaleel, Property and some fixed point results on (ψ,ϕ)-weakly contrac-

tive G-metric spaces, Int. J. Math. Math. Sci. 2012 (2012), Article ID 675094.



PROPERTY P AND SOME FIXED POINT RESULTS 183

[34] G.S. Jeong, B.E. Rhoades, maps for which F(T ) = F(T n), in Fixed Point Theory and Applications, vol 6,

pp.71-105, Nova science Publishers, New York, USA, 2007.


