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Abstract. In this paper, the notation of TF -contractive conditions are investigated for Kannan and Chatterjea type

mappings. It is shown that these mappings have a unique fixed point in complete metric spaces.
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1. Introduction and Preliminaries

It is well known that the first important result on fixed point theory is Banach Contraction Princible. Due to the

importance, there exist many extension of it.

A mapping T : X → X , where (X ,d) is a metric space, is said to be a contraction if there exists k ∈ [0,1)

such that for all x,y ∈ X ,

(1) d (T x,Ty)≤ kd (x,y) .

If the metric space (X ,d) is complete then the mapping satisfying (1) has a unique fixed point.
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In 1968, Kannan [2] established a generalization of Banach Contraction Principle that need not continuity.

If a mapping T : X → X where (X ,d) is a complete metric space, satisfies the inequality

(2) d (T x,Ty)≤ a [d (x,T x)+d (y,Ty)] ,

where a ∈
[
0, 1

2

)
and x,y ∈ X , then T has a unique fixed point. The mappings satisfying (2) are called Kannan

type mappings.

A similar contractive condition was introduced by Chatterjea [3] as following:

If a mapping T : X → X where (X ,d) is a complete metric space, satisfies the inequality

(3) d (T x,Ty)≤ b [d (x,Ty)+d (y,T x)]

such that b ∈
[
0, 1

2

)
and x,y ∈ X , then T has a unique fixed point. The mappings satisfying (3) are called

Chatterjea type mappings.

In 2010, Moradi and Beiranvand introduced concept of the TF -contraction mappings as follows:

Definition 1.1. [4] Let (X ,d) be a metric space. A mapping T : X → X is said to be sequentially convergent

if we have, for every sequence {yn}, if {Tyn} is convergence then {yn} also is convergence. T is said to

be subsequentially convergent if we have, for every sequence {yn}, if {Tyn} is convergence then {yn} has a

convergent subsequence.

Definition 1.2. [4] Let (X ,d) be a metric spaces and f ,T : X → X be two mappings. A mapping f is said

to be a TF -contraction if there exists α ∈ [0,1) such that for all x,y ∈ X

(4) F (d (T f x,T f y))≤ αF (d (T x,Ty)) ,

where

1) F : [0,∞)→ [0,∞), F is nondecreasing continuous from the right and F−1 (0) = {0} .

2) T is one to one and graph closed ( or subsequentially convergent and continuous ).

Moradi and Beiranvand proved that if f is a TF -contraction mapping then, f has a unique fixed point in

complete metric space (X ,d) .

In this study, we plan to introduce TF -contractive conditions for Kannan and Chatterjea fixed point theorems.
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2. Main Results

Theorem 2.1. ( TF Kannan Contractive Mapping Theorem) Let (X ,d) be a complete metric space and T, f :

X → X be mappings such that T is continuous, one to one and subsequentially convergent. If λ ∈
[
0, 1

2

)
and

x,y ∈ X

(5) F (d (T f x,T f y))≤ λ [F (d (T x,T f x))+F (d (Ty,T f y))]

where; F : [0,∞)→ [0,∞) is nondecreasing continuous from the right and F−1 (0) = {0} .

Then, f has a unique fixed point in X . Also, if T is sequentially convergent then for every x0 ∈ X the sequence

of iterates { f nx0} converges to the fixed point.

Proof. Let x0 ∈ X be an arbitrary point and xn = f xn−1 = f nx0

F (d (T xn,T xn+1)) = F (d (T f xn−1,T f xn))

≤ λ [F (d (T xn−1,T xn))+F (d (T xn,T xn+1))](6)

therefore we have

(7) F (d (T xn,T xn+1))≤
λ

1−λ
F (d (T xn−1,T xn)) .

Also, by continuing the process (7), we obtain that

(8) F (d (T xn,T xn+1))≤
(

λ

1−λ

)n

F (d (T x0,T x1)) .

Letting n→ ∞ in (8), we obtain that

(9) F (d (T xn,T xn+1))→ 0+ as n→ ∞.

Again using (8), for all m,n ∈ N, taking m > n,we have

F (d (T xn,T xm)) = F (d (T f nx0,T f mx0))

≤
(

λ

1−λ

)n

F
(
d
(
T x0,T f m−nx0

))
.(10)

Letting m,n→ ∞, we have

(11) F (d (T xn,T xm))→ 0+ as m,n→ ∞.
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So, we have d (T xn,T xm)→ 0 as, m,n→ ∞.

Thus, we hold that {T xn} is Cauchy sequence in metric space (X ,d). By taking in view of the completeness

of X , we obtain that there exists v ∈ X such that

(12) lim
n→∞

T xn = v.

Note that T is subsequentially convergent, then {xn} has a convergent subsequence, so there is u ∈ X such

that

(13) lim
k→∞

xn(k) = u.

Also, T is continious and xn(k)→ u, therefore

(14) lim
k→∞

T xn(k) = Tu.

Note that
{

T xn(k)
}

is a subsequence of {T xn}, so Tu = v.

Now, we will show that u ∈ X is a fixed point of f . Indeed, we have

F (d (Tu,T f u)) ≤ F(d
(
Tu,T xn(k)

)
+d

(
T xn(k),T f u

)
)

= F(d
(
Tu,T xn(k)

)
+d

(
T f n(k)x0,T f u

)
)

≤ F(d
(
Tu,T xn(k)

)
+d

(
T f n(k)x0,T f n(k)x1

)
+d

(
T f n(k)x1,T f u

)
)

= F(d
(
Tu,T xn(k)

)
+d

(
T f xn(k),T f xn(k)+1

)
+d

(
T f xn(k),T f u

)
).(15)

Letting k→ ∞ in (15), we have

(16) F(d (Tu,T f u))≤ 0.

Last inequality (16) is contradiction unless d (Tu,T f u) = 0. Thus, we obtained Tu = T f u. Also, T is one

to one, we obtain f u = u. Thus, we provide u ∈ X is a fixed point of f .

Now, we show that the fixed point is unique. Assume u′ is an other fixed point of f then we have f u′ = u′ and
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F(d
(
Tu,Tu′

)
) = F(d

(
T f u,T f u′

)
)

≤ λ
[
F(d (Tu,T f u))+F(d

(
Tu′,T f u′

)
)
]

= λ
[
F(d (Tu,Tu))+F(d

(
Tu′,Tu′

)
)
]
.(17)

The inequality (17) is contradiction unless F(d (Tu,Tu′)) = 0. Thus, we obtain Tu = Tu′and take in view

of one to one of T , we obtain u = u′. Thus, we obtain that the fixed point is unique.

Also, if we take T is sequentially convergent, by replacing {n} with {n(k)} we conclude that

(18) lim
n→∞

xn = u.

Thus, the inequality (18) shows that {xn} converges to the fixed point of f . Thus, the proof is completed.

In 2011, Moradi and Davood [5] introduced a new extension of Kannan fixed point theorem as following:

Let (X ,d) be a complete metric space and T,S : X → X be mappings such that T is continuous, one to one

and subsequentially convergent. If λ ∈
[
0, 1

2

)
and x,y ∈ X ,

(19) d (T Sx,T Sy)≤ λ [d (T x,T Sx)+d (Ty,T Sy)] ,

then, S has a unique fixed point. Also, if T is sequentially convergent then for every x0 ∈ X the sequence of

iterates {Snx0} converges to the fixed point.

Now, we will give some important results of Theorem 1.1.

Corollary 2.1.If F is of the form Fx = x, we obtain the result of Moradi and Davood.

Corollary 2.2. If we take Fx = T x = x then, we obtain well-known Kannan fixed point theorem.

Theorem 2.2. ( TF Chatterjea Contractive Mapping Theorem ) Let (X ,d) be a complete metric space and

T, f : X → X be mappings such that T is continuous, one to one and subsequentially convergent. If µ ∈
[
0, 1

2

)
and x,y ∈ X
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(20) F (d (T f x,T f y))≤ µ [F (d (T x,T f y))+F (d (Ty,T f x))] ,

where F : [0,∞)→ [0,∞) is nondecreasing continuous from the right and F−1 (0) = {0} .Then, f has a

unique fixed point in X . Also, if T is sequentially convergent then for every x0 ∈ X the sequence of iterates

{ f nx0} converges to the fixed point.

Proof. Let x0 ∈ X be an arbitrary point and xn = f xn−1 = f nx0

F(d (T xn,T xn+1)) = F(d (T f xn−1,T f xn))

≤ µ [F(d (T xn−1,T xn+1))+F(d (T xn,T xn))]

= µF(d (T xn−1,T xn))

≤ µF(d (T xn−1,T xn))+µF(d (T xn,T xn+1)).(21)

Therefore, we have

(22) F(d (T xn,T xn+1))≤
µ

1−µ
F(d (T xn−1,T xn)).

Also, by continuing the process (22), we obtain that

(23) F(d (T xn,T xn+1)≤
(

µ

1−µ

)n

F(d (T x0,T x1)).

Letting n→ ∞ in (23), we obtaiın that

(24) F (d (T xn,T xn+1))→ 0+ as n→ ∞.

Again using (23), for all m,n ∈ N, taking m > n,we have
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F (d (T xn,T xm)) = F (d (T f nx0,T f mx0))

≤
(

µ

1−µ

)n

F
(
d
(
T x0,T f m−nx0

))
.(25)

Letting m,n→ ∞, we have

(26) F (d (T xn,T xm))→ 0+ as m,n→ ∞.

Thus, we hold that {T xn} is Cauchy sequence in complete metric space (X ,d). From completeness of X ,

we obtain that there exists v ∈ X such that

(27) lim
n→∞

T xn = v.

Note that T is subsequentially convergent, then {xn} has a convergent subsequence, so there is u ∈ X such that

(28) lim
k→∞

xn(k) = u.

Also, T is continious and xn(k)→ u, therefore

(29) lim
k→∞

T xn(k) = Tu.

Note that
{

T xn(k)
}

is a subsequence of {T xn}, so Tu = v. Now, we will show that u ∈ X is a fixed point of

f .

F(d (Tu,T f u) ≤ F(d
(
Tu,T xn(k)

)
+d

(
T xn(k),T f u

)
)

= F(d
(
Tu,T xn(k)

)
+d

(
T f n(k)x0,T f u

)
≤ F

(
d
(
Tu,T xn(k)

)
+d

(
T f n(k)x0,T f n(k)x1

)
+d

(
T f n(k)x1,T f u

))
= F

(
d
(
Tu,T xn(k)

)
+d

(
T xn(k),T xn(k)+1

)
+d

(
T f xn(k),T f u

))
.(30)

Since, F is subsequentially convergent and nondecreasing, if we let k→ ∞ in (30), we hold
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(31) F(d (Tu,T f u))≤ 0.

The inequality (31) is contradiction unless F(d (Tu,T f u)) = 0. This implies that d (Tu,T f u) = 0 so Tu =

T f u. Also, T is one to one, so f u = u. Thus, we provide u ∈ X is a fixed point of f .

It is easy to see uniqueness of the fixed point. Now, we will give some important results of Theorem 2.2.

Corollary 2.3. Let (X ,d) be a complete metric space and T,S : X → X be mappings such that T is continuous,

one to one and subsequentially convergent. If µ ∈
[
0, 1

2

)
and x,y ∈ X ,

(32) d (T Sx,T Sy)≤ µ [d (T x,T Sy)+d (Ty,T Sx)] ,

then, S has a unique fixed point. Also, if T is sequentially convergent then for every x0 ∈ X the sequence of

iterates {Snx0} converges to the fixed point.

Corollary 2.4. If we take Fx = T x = x, then we obtain well-known Chatterjea fixed point theorem.
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