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Abstract. In this paper, we introduce the complex valued S-metric space, and we show the existence and the

uniqueness of a common fixed point of two self mappings in such space.
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1. Introduction

Showing the existence and the uniqueness of a fixed point for a self mapping in deferent

metric spaces is a very famous problem, which was inspired by the work of Banach [1]. Since

then till present time, many results on finding a fixed point in different metric spaces and under

many different contraction principles were proved; see, for example, [3], [5], [6], [8] and [10]

and the references therein. Also, as an extension of the fixed point problem there are many

results in finding a common fixed point for two self mappings on different types of metric

spaces; see, for example, [9], [11] and the references therein. But, all of these results were

found in real valued metric spaces. In 2011, a complex valued metric space was introduced in
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[2]. Complex valued metric spaces form a special class of cone metric space, but our contraction

which has a product and quotient of metrics cannot be extended to cone metric.

In this paper, we introduce a complex valued S-metric space, and we investigate the existence

and uniqueness of a common fixed point of two self mappings in such space.

First, we define the partial order - on the set of complex numbers C by for all z1 and z2 in C

we have:

z1 - z2 if and only if Re(z1)≤ Re(z2), Im(z1)≤ Im(z2)

and

z1 ≺ z2 if and only if Re(z1)< Re(z2), Im(z1)< Im(z2).

Also, we write z11 - z2 if one of the following conditions hold:

(i) Re(z1) = Re(z2), and Im(z1)< Im(z2),

(ii) Re(z1)< Re(z2), and Im(z1) = Im(z2),

(iii) Re(z1)< Re(z2), and Im(z1)< Im(z2),

(iv) Re(z1) = Re(z2), and Im(z1) = Im(z2).

We write z1 ≺ z2 if only (iii) is satisfied. Note that

0 - z1 � z2⇒ |z1|< |z2|,

and

z1 - z2,z2 ≺ z3⇒ z1 ≺ z3.

Definition 1.1. Let X be a nonempty set and C the set of all complex numbers. A complex

valued S-metric space on X is a function S : X3→ C that satisfies the following conditions, for

all x,y,z, t ∈ X :

(i) 0 - S(x,y,z),

(ii) S(x,y,z) = 0 if and only if x = y = z,

(iii) S(x,y,z)- S(x,x, t)+S(y,y, t)+S(z,z, t).

The pair (X ,S) is called a complex valued S-metric space.

Example 1.1. Let X = C be the set of complex numbers. Define S : C3→ C by:

S(z1,z2,z3) = |max{Re(z1),Re(z2)}−Re(z2)|+ i|max{Im(z1), Im(z2)}− Im(z2)|.
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It is not difficult to see that (C,S) is a complex valued S-metric space.

Definition 1.2. If (X ,S) is called a complex valued S-metric space, then

1) A sequence {xn} in X converges to x if and only if for all ε such that 0≺ ε ∈ C, there exists

a natural number n0 such that for all n ≥ n0, we have S(xn,xn,x) ≺ ε and we donate this by

limn→∞ xn = x.

2) A sequence {xn} in X is called a Cauchy sequence if for all ε such that 0 ≺ ε ∈ C, there

exists a natural number n0 such that for all n,m≥ n0, we have S(xn,xn,xm)≺ ε.

3) An S-metric space (X ,S) is said to be complete if every Cauchy sequence is convergent.

Definition 1.3. Two families of self mappings { fi}m
i=1 and {gi}n

i=1 are said to be pairwise

commuting if the following three conditions hold:

(i) fi f j = f j fi for all i, j ∈ {1,2, · · · ,m};

(ii) gkgl = glgk for all k, l ∈ {1,2, · · · ,n};

(iii) figk = gk fi for all i ∈ {1,2, · · · ,m} and k ∈ {1,2, · · · ,n}.

Next, we prove the following three lemmas for our purposes.

Lemma 1.1. Let (X ,S) be a complex valued S-metric space and {xn} be a sequence in X . Then

{xn} converges to x if and only if |S(xn,xn,x)| → 0 as n→ ∞.

Proof. Assume that {xn} converges to x. For ε > 0 let

c =
ε√
2
+ i

ε√
2
.

Thus, 0≺ c ∈ C and there is a natural number n0, such that

S(xn,xn,x)≺ c for all n≥ n0.

Hence,

|S(xn,xn,x)|< |c|=
√

(
ε√
2
)2 + i(

ε√
2
)2 = ε for all n≥ n0.

Therefore, we deduce that

|S(xn,xn,x)| → 0 as n→ ∞.
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Now, assume that |S(xn,xn,x)| → 0 as n→ ∞. Hence, given a c ∈ C, where 0≺ c, there exists

a natural number η > 0, such that for z ∈ C

|z|< η implies z≺ c.

Thus, there exists a natural number n0 such that

|S(xn,xn,x)|< η for all n > n0.

Which implies that S(xn,xn,x)≺ c for all n > n0. Therefore, {xn} converges to x as desired.

Lemma 1.2. Let (X ,S) be a complex valued S-metric space and {xn} be a sequence in X . Then

{xn} is a cauchy sequence if and only if |S(xn,xn,xn+m)| → 0 as n→ ∞.

Proof. Assume that {xn} is a cauchy sequence. For ε > 0 let

c =
ε√
2
+ i

ε√
2
.

Thus, 0≺ c ∈ C and there is a natural number n0, such that

S(xn,xn,xn+m)≺ c for all n≥ n0.

Hence,

|S(xn,xn,xn+m)|< |c|=
√
(

ε√
2
)2 + i(

ε√
2
)2 = ε for all n≥ n0.

Therefore, we deduce that

|S(xn,xn,xn+m)| → 0 as n→ ∞.

Now, assume that |S(xn,xn,xn+m)| → 0 as n→ ∞. Hence, given a c ∈ C where 0 ≺ c, there

exists a natural number η > 0, such that for z ∈ C

|z|< η implies z≺ c.

Thus, there exists a natural number n0 such that

|S(xn,xn,xn+m)|< η for all n > n0.

Which implies that S(xn,xn,x) ≺ c for all n > n0. Therefore, {xn} is a cauchy sequence as

required.
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Lemma 1.3. If (X ,S) be a complex valued S-metric space, then

S(x,x,y) = S(y,y,x) for all x,y ∈ X .

Proof. Let x,y ∈ X by condition (iii) of Definition 1.1 we have

S(x,x,y)- 2S(x,x,x)+S(y,y,x).

In view of S(x,x,x)= 0, we find that S(x,x,y)- S(y,y,x). Similarly, we find S(y,y,x)- S(x,x,y).

It follows that S(x,x,y) = S(y,y,x).

2. Common fixed points

In this section, we prove the existence and the uniqueness of a common fixed point for two

self mapping on a complex valued S-metric space.

Theorem 2.1. Let (X ,S) be a complete complex valued S-metric space and f ,g be two self

mappings on X satisfying the following contraction condition:

S( f x, f x,gy)- αS(x,x,y)+
βS(x,x, f x)S(y,y,gy)

2S(x,x,gy)+S(y,y, f x)+S(x,x,y)
(?)

for all x,y ∈ X such that x 6= y, S(x,x,gy)+S(y,y, f x)+S(x,x,y) 6= 0, where α,β are two non-

negative real numbers with α+β < 1 or S( f x, f x,gy) = 0 if S(x,x,gy)+S(y,y, f x)+S(x,x,y) =

0. Then f ,g have a unique common fixed point.

Proof. Let x0 ∈ X and let x2k+1 = f x2k, x2k+2 = gx2k+1, k ∈ {0,1,2, · · ·}. It follows that

S(x2k+1,x2k+1,x2k+2) = S( f x2k, f x2k,gx2k+1)

- αS(x2k,x2k,x2k+1)

+
βS(x2k,x2k, f x2k)S(x2k+1,x2k+1,gx2k+1)

2S(x2k,x2k,gx2k+1)+S(x2k+1,x2k+1, f x2k)+S(x2k,x2k,x2k+1)

- αS(x2k,x2k,x2k+1)

+
βS(x2k,x2k,x2k+1)S(x2k+1,x2k+1,x2k+2)

2S(x2k,x2k,x2k+2)+S(x2k+1,x2k+1,x2k+1)+S(x2k,x2k,x2k+1)
.
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Hence,

|S(x2k+1,x2k+1,x2k+2)| ≤ α|S(x2k,x2k,x2k+1)|

+
β |S(x2k,x2k,x2k+1)||S(x2k+1,x2k+1,x2k+2)|
|2S(x2k,x2k,x2k+2)+S(x2k,x2k,x2k+1)|

.

By condition (iii) of Definition 1.1 and Lemma 1.3, we see that

|S(x2k+1,x2k+1,x2k+2)|= |S(x2k+2,x2k+2,x2k+1)|(1)

≤ |2S(x2k+2,x2k+2,x2k)+S(x2k+1,x2k+1,x2k)|

= |2S(x2k,x2k,x2k+2)+S(x2k,x2k,x2k+1)|.

Thus,

|S(x2k+1,x2k+1,x2k+2)| ≤ α|S(x2k,x2k,x2k+1)|+β |S(x2k,x2k,x2k+1)|

= (α +β )|S(x2k,x2k,x2k+1)|.

Similarly, we get

|S(x2k+2,x2k+2,x2k+3)|= (α +β )|S(x2k+1,x2k+1,x2k+2)|.

If η = α +β < 1, then

|S(xn+1,xn+1,xn+2)| ≤ η |S(xn,xn,xn+1| ≤ · · · ≤ η
n+1|S(x0,x0,x1)|.

Hence, for any m > n we have:

|S(xn,xn,xm)| ≤ 2(|S(xn,xn,xn+1)|+ |S(xn+1,xn+1,xn+2)|+ · · ·+ |S(xm−1,xm−1,xm)|)

≤ 2(ηn +η
n+1 + · · ·+η

m−1)|S(x0,x0,x1)|

≤ 2
ηn

1−η
|S(x0,x0,x1)|.

Therefore, |S(xn,xn,xm)| ≤ 2 ηn

1−η
|S(x0,x0,x1)| → 0, as m,n→ ∞ and hence {xn} is a cauchy

sequence. Since, X is complete, we find that {xn} converge to some v ∈ X . We claim that v
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is the unique fixed common point of f and g. Assume that f v 6= v. Thus, 0 ≺ z = S(v,v, f v).

Therefore,

z - S(v,v,x2k+2)+S(x2k+2,x2k+2, f v)

- S(v,v,x2k+2)+S(gx2k+1,gx2k+1, f v)

- S(v,v,x2k+2)+αS(x2k+1,x2k+1,v)

+
βS(v,v, f v)S(x2k+1,x2k+1,gx2k+1)

2S(v,v,gx2k+1)+S(x2k+1,x2k+1, f v)+S(v,v,x2k+1)

- S(v,v,x2k+2)+αS(x2k+1,x2k+1,v)

+
β zS(x2k+1,x2k+1,gx2k+1)

2S(v,v,x2k+2)+S(x2k+1,x2k+1, f v)+S(v,v,x2k+1)
.

Hence,

|z| ≤ |S(v,v,x2k+2)|+α|S(x2k+1,x2k+1,v)|

+
β |z||S(x2k+1,x2k+1,gx2k+1)|

|2S(v,v,x2k+2)+S(x2k+1,x2k+1, f v)+S(v,v,x2k+1)|
.

It is easy to see that as n→ ∞, S(v,v, f v)→ 0 which contradict our assumption about z. Thus,

f v = v and similarly one can show that gv = v. Therefore, f and g have a common fixed point.

Now, to show uniqueness assume there exist another common fixed point of f and g say w.

Hence,

S(v,v,w) = S( f v, f v,gw)- αS(v,v,w)+
βS(v,v, f v)S(w,w,gw)

2S(v,v,gw)+S(w,w, f v)+S(v,v,w)
= αS(v,v,w),

which implies that |S(v,v,w)| = α|S(v,v,w)|, but given the fact that α < 1 we deduce that

S(v,v,w) = 0 and thus v = w as desired. Next, we assume that for all natural numbers k if

we have:

S(x2k,x2k,gx2k+1)+S(x2k+1,x2k+1, f x2k)+S(x2k,x2k,x2k+1) = 0,

then S( f x2k, f x2k,gx2k+1) = 0, which implies x2k = f x2k = x2k+1 = gx2k+1 = x2k+2. Therefore,

x2k+1 = f x2k = x2k, hence there exist n1,m1 such that n1 = f m1 = m1. Similarly, there exist

n2,m2 such that n2 = gm2 = m2. Note that

S(m1,m1,gm2)+S(m2,m2, f m1)+S(m1,m1,m2) = 0.
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We deduce that S( f m1, f m1,gm2) = 0, which implies that n1 = f m1 = gm2 = n2. Therefore,

n1 = f m1 = f n1. Similarly, we get n2 = gm2 = gn2. Since n1 = n2, we deduce that f n1 = gn1 =

n1. Thus, n1 is a common fixed point of f and g. To show uniqueness, we assume there exist

u,v common fixed points of f and g. Note that S(u,u,gv) + S(v,v, f u) + S(u,u,v) = 0. Thus,

S(u,u,v) = S( f u, f u,gv) = 0, which implies that u = v as required. This completes the proof.

Next, we present a trivial and useful corollary of Theorem 2.1, which is the case when f = g.

Corollary 2.2. Let (X ,S) be a complete complex valued S-metric space and f be a self mapping

on X satisfying the following contraction condition:

S( f x, f x, f y)- αS(x,x,y)+
βS(x,x, f x)S(y,y, f y)

2S(x,x, f y)+S(y,y, f x)+S(x,x,y)

for all x,y∈X such that x 6= y, S(x,x, f y)+S(y,y, f x)+S(x,x,y) 6= 0 where α,β are two nonneg-

ative real numbers with α +β < 1 or S( f x, f x, f y) = 0 if S(x,x, f y)+S(y,y, f x)+S(x,x,y) = 0.

Then f have a unique common fixed point.

Now, as an application of Theorem 2.1, we prove the following for two finite families of self

mappings on a complex valued S-metric space (X ,S).

Theorem 2.3. If { fi}m
1 and {gi}n

1 are two positive commuting families of self mappings defined

on a complete complex valued metric space (X ,S) such that the mappings f = f1 f2 · · · fm and

g = g1g2 · · ·gm satisfies the contraction condition (?) in Theorem 2.1, then the component maps

of the two families{ fi}m
1 and {gi}n

1 have a unique common fixed point.

Proof. Note that the maps f and g satisfy all the hypothesis of Theorem 2.1. Thus, f and g has

a unique common fixed point, that is there exists u ∈ X such that f u = gu = u. Since { fi}m
1 and

{gi}n
1 are two positive commuting families, we have

fku = fkgu = g fku and fku = fk f u = f fku,

which implies that for all k, fku is also a common fixed point of f and g. By the uniqueness of

the common fixed point we deduce that for all k, fku = u and hence u is a common fixed point

of the family { fi}m
1 . Similarly, u is a common fixed point of the family {gi}n

1 as required.

The following result is a corollary of Theorem 2.3.
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Corollary 2.4. Let (X ,S) be a complete complex valued S-metric space and F,G be two self

mappings on X satisfying the following contraction condition:

S(Fmx,Fmx,Gny)- αS(x,x,y)+
βS(x,x,Fmx)S(y,y,Gny)

2S(x,x,Gny)+S(y,y,Fmx)+S(x,x,y)

for all x,y∈X and α,β are two nonnegative real numbers with α+β < 1 or S(Fmx,Fmx,Gny)=

0 if S(x,x,Gny)+S(y,y,Fmx)+S(x,x,y) = 0. Then F,G have a unique common fixed point.

Proof. Note that this corollary is just a special case of Theorem 2.3, just take F = f1 = f2 =

· · ·= fm and G = g1 = g2 = · · ·= gn and the result follows as desired.

Notice that if we assume that β = 0, f = g and n=m in Corollary 2.4, we obtain the following

nice contraction principle result in complex valued S-metric space.

Corollary 2.5. If f is a self mapping on a complete complex valued S-metric space (X ,S) that

satisfies:

S( f nx. f nx. f ny)- αS(x,x,y)

for all x,y ∈ X and α a nonnegative real number such that α < 1, then f has a unique fixed

point in X .

Next we prove the existence and the uniqueness of a common fixed point for a two self

mappings on a complex valued S-metric space under a contraction principle that is different

from (?).

Theorem 2.6. Let (X ,S) be a complete complex valued S-metric space and f ,g be two self

mappings on X that satisfy:

S( f x, f x,gy)- αS(x,x,y)+
β [S2(x,x,gy)+S2(y,y, f x)]

S(x,x,gy)+S(y,y, f x)
+ γ[S(x,x, f x)+S(y,y,gy)] (??)

for all x,y ∈ X such that x 6= y, where α,β ,γ are nonnegative real numbers with the property

α + 4β + 2γ < 1 or S( f x, f x,gy) = 0 if S(x,x,gy)+ S(y,y, f x) = 0. Then f ,g have a unique

common fixed point in X .
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Proof. Let x0 ∈ X and let x2k+1 = f x2k, x2k+2 = gx2k+1, k ∈ {0,1,2, · · ·}. Thus,

S(x2k+1,x2k+1,x2k+2) = S( f x2k, f x2k,gx2k+1)

- αS(x2k,x2k,x2k+1)

+
β [S2(x2k,x2k+1, f x2k)+S2(x2k+1,x2k+1,gx2k)]

S(x2k,x2k,gx2k+1)+S(x2k+1,x2k+1, f x2k)

+ γ[S(x2k,x2k, f x2k)+S(x2k+1,x2k+1,gx2k+1)

= αS(x2k,x2k,x2k+1)

+
β [S2(x2k,x2k,x2k+2)+S2(x2k+1,x2k+1,x2k+1)]

S(x2k,x2k,x2k+2)+S(x2k+1,x2k+1,x2k+1)

+ γ[S(x2k,x2k,x2k+1)+S(x2k+1,x2k+1,x2k+2)].

Using the fact that S(x,x,x) = 0 for all x ∈ X , we get

|S(x2k+1,x2k+1,x2k+2)| ≤ α|S(x2k,x2k,x2k+1)|

+β |S(x2k,x2k,x2k+2)|

+ γ[|S(x2k,x2k,x2k+1)|+ |S(x2k+1,x2k+1,x2k+2)|].

By condition (iii) in Definition 1.1, we obtain

|S(x2k,x2k,x2k+2)| ≤ 2|S(x2k,x2k,x2k+1)|+ |S(x2k+1,x2k+1,x2k+2)|.

Hence,

|S(x2k+1,x2k+1,x2k+2)| ≤ α|S(x2k,x2k,x2k+1)|

+β [2|S(x2k,x2k,x2k+1)|+ |S(x2k+1,x2k+1,x2k+2)|]

+ γ[|S(x2k,x2k,x2k+1)|+ |S(x2k+1,x2k+1,x2k+2)|]

≤ α|S(x2k,x2k,x2k+1)|

+2β [|S(x2k,x2k,x2k+1)|+ |S(x2k+1,x2k+1,x2k+2)|]

+ γ[|S(x2k,x2k,x2k+1)|+ |S(x2k+1,x2k+1,x2k+2)|].
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Thus,

|S(x2k+1,x2k+1,x2k+2)| ≤ (
α +2β + γ

1−2β − γ
)|S(x2k,x2k,x2k+1)|.

Using the argument we obtain

|S(x2k+2,x2k+2,x2k+3)| ≤ (
α +2β + γ

1−2β − γ
)|S(x2k+1,x2k+1,x2k+2)|.

Now, let η = (α+2β+γ

1−2β−γ
). Note that η < 1. Therefore,

|S(x2n+1,x2n+1,x2n+2)| ≤ η |S(x2n,x2n,x2n+1)| ≤ · · · ≤ η
n+1|S(x0,x0,x1)|.

So, for any two natural numbers 0 < n < m and by using Lemma 1.3, and the condition (iii) of

Definition 1.1, we obtain

|S(xn,xn,xm)| ≤ 2|S(xn,xn,xn+1)|+ |S(xn+1,xn+1,xm)|

≤ 2|S(xn,xn,xn+1)|+2|S(xn+1,xn+1,xn+2)|+ |S(xn+2,xn+2,xm)|

≤ · · ·

≤ 2|S(xn,xn,xn+1)|+2|S(xn+1,xn+1,xn+2)|+ · · ·+2|S(xm−1,xm−1,xm)|

≤ 2[ηn +η
n+1 + · · ·+η

m−1]|S(x0,x0,x1)|

≤ 2(
ηn

1−η
)|S(x0,x0,x1)| → 0 as n→ ∞.

Therefore, {xn} is a Cauchy sequence. Since X is complete, there exists u ∈ X such that xn→ u

as n→ ∞. We claim that u is a fixed point of f , so if z = S(u,u, f u), then

z - 2S(u,u,x2k+2)+S(x2k+2,x2k+2, f u) = 2S(u,u,x2k+2)+S(gx2k+1,gx2k+1, f u)

- 2S(u,u,x2k+2)+αS(u,u,x2k+1)

+
β [S2(u,u,gx2k+1)+S2(x2k+1,x2k+1, f u)]

S(u,u,gx2k+1)+S(x2k+1,x2k+1, f u)

+ γ[S(u,u, f u)+S(x2k+1,x2k+1,gx2k+1)]

- 2S(u,u,x2k+2)+αS(u,u,x2k+1)

+
β [S2(u,u,gx2k+1)+S2(x2k+1,x2k+1, f u)]

S(u,u,gx2k+1)+S(x2k+1,x2k+1, f u)

+ γ[z+S(x2k+1,x2k+1,gx2k+1)].
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Hence, we obtain

|z|- 2|S(u,u,x2k+2)|+α|S(u,u,x2k+1)|

+
β [|S2(u,u,gx2k+1)|+ |S2(x2k+1,x2k+1, f u)|]
|S(u,u,gx2k+1)+S(x2k+1,x2k+1, f u)|

+ γ[|z|+ |S(x2k+1,x2k+1,gx2k+1)|].

Note that as n→ ∞ we have |z| = |S(u,u, f u)| → 0. Thus, f u = u as required. Similarly, we

obtain gu = u. Therefore, f and g has a fixed point. Now, to show uniqueness assume there

exist two common fixed point of f and g say v and w. Hence,

S(v,v,w) = S( f v, f v,gw).

So, condition (??) implies that |S(v,v,w)|=α|S(v,v,w)|, but given the fact that α < 1 we deduce

that S(v,v,w) = 0 and thus v = w as desired. Now, we assume that for all natural numbers k if

we have:

S(x2k,x2k,gx2k+1)+S(x2k+1,x2k+1, f x2k) = 0,

then S( f x2k, f x2k,gx2k+1) = 0, which implies x2k = f x2k = x2k+1 = gx2k+1 = x2k+2. Therefore,

x2k+1 = f x2k = x2k, hence there exist n1,m1 such that n1 = f m1 = m1. Similarly, there exist

n2,m2 such that n2 = f m2 = m2. Note that

S(m1,m1,gm2)+S(m2,m2, f m1) = 0.

We deduce that S( f m1, f m1,gm2) = 0, which implies that n1 = f m1 = gm2 = n2. Therefore,

n1 = f m1 = f n1, similarly we get n2 = gm2 = gn2. Since n1 = n2 we deduce that f n1 = gn1 = n1.

Thus, n1 is a common fixed point of f and g. To show uniqueness assume there exist u,v

common fixed points of f and g. Note that

S(u,u,gv)+S(v,v, f u) = 0.

Thus, S(u,u,v) = S( f u, f u,gv) = 0 which implies that u = v as required.

As a consequence of Theorem 2.6, we obtain the following useful corollary.
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Corollary 2.7. Let (X ,S) be a complete complex valued S-metric space and f be two self

mappings on X that satisfy:

S( f x, f x, f y)- αS(x,x,y)+
β [S2(x,x, f y)+S2(y,y, f x)]

S(x,x, f y)+S(y,y, f x)
+ γ[S(x,x, f x)+S(y,y, f y)]

for all x,y ∈ X such that x 6= y, where α,β ,γ are nonnegative real numbers with the property

α +4β +2γ < 1 or S( f x, f x, f y) = 0 if S(x,x, f y)+S(y,y, f x) = 0. Then f have a unique fixed

point in X .

Proof. Putting f = g in Theorem 2.6, we find the desired conclusion immediately.

Next, we prove the following result.

Theorem 2.8. If { fi}m
1 and {gi}n

1 are two positive commuting families of self mappings defined

on a complete complex valued metric space (X ,S) such that the mappings f = f1 f2 · · · fm and

g = g1g2 · · ·gm satisfies the contraction condition (??) in Theorem 2.6, then the component

maps of the two families{ fi}m
1 and {gi}n

1 have a unique common fixed point.

Proof. Note that the maps f and g satisfy all the hypothesis of Theorem 2.6. Thus, f and g has

a unique common fixed point, that is there exists u ∈ X such that f u = gu = u. Since { fi}m
1 and

{gi}n
1 are two positive commuting families, we have

fku = fkgu = g fku and fku = fk f u = f fku.

Which implies that for all k, fku is also a common fixed point of f and g. By the uniqueness of

the common fixed point we deduce that for all k, fku = u and hence u is a common fixed point

of the family { fi}m
1 . Similarly, u is a common fixed point of the family {gi}n

1 as required.

The following result is a corollary of Theorem 2.8.

Corollary 2.9. Let (X ,S) be a complete complex valued S-metric space and F,G be two self

mappings on X satisfying the following contraction condition (??) in Theorem 2.6. Then F,G

have a unique common fixed point.

Proof. Note that this corollary is just a special case of Theorem 2.8, just take F = f1 = f2 =

· · ·= fm and G = g1 = g2 = · · ·= gn and the result follows as desired.
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Notice that if we assume that β = γ = 0, f = g and n = m in Corollary 2.9, we obtain the

following nice contraction principle result in complex valued S-metric space.

Corollary 2.10. If f is a self mapping on a complete complex valued S-metric space (X ,S) that

satisfies:

S( f nx. f nx. f ny)- αS(x,x,y)

for all x,y ∈ X and α a nonnegative real number such that α < 1, then f has a unique fixed

point in X .

In closing, we give the following example which is an application of Theorem 2.1.

Example 1.1. Consider

X1 = {z ∈ C : Re(z)≥ 0, Im(z) = 0} and X2 = {z ∈ C : Im(z)≥ 0,Re(z) = 0}.

Now, let X = X1∪X2 and define S : X3→ C by:

S(z1,z2,z2) =



max{x1,x2,x3}+ i max{x1,x2,x3} if z1,z2,z3 ∈ X1,

max{max{y1,y2},y3}+ i max{y1,y2,y3} if z1,z2,z3 ∈ X2,

(max{x1,x2}+ y3)+ i (max{x1,x2}+ y3) if z1,z2 ∈ X1,z3 ∈ X2,

(x3 +max{y1,y2})+ i (x3 +max{y1,y2}) if z1,z2 ∈ X2,z3 ∈ X1,

where z1 = x1 + iy1, z2 = x2 + iy2 and z3 = x3 + iy3. It is not difficult to see that (X ,S) is a

complete complex valued S-metric space. Now, to apply Theorem 2.1, we set f = g and define

f by:

f z =



Re(z)
2 if z ∈ X1,

i Im(z)
2 if z ∈ X2.

Note that,

0 - S(z1,z1,z2), 0 - S( f z1, f z1, f z2), 0 -
S(z1,z1, f z1)S(z2,z2, f z2)

S(z1,z1, f z2)+S(z2,z2, f z1)+S(z1,z1,z2)
.

Now, let z1 = x1 + iy1 and z2 = x2 + iy2. Hence, we have four cases:

Case 1:
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If z1,z2 ∈ X1, then

S( f z1, f z1, f z2) = S(
x1

2
,
x1

2
,
x2

2
)

= max{x1

2
,
x2

2
}+ i max{x1

2
,
x2

2
}

= max{x1

2
,
x2

2
}(1+ i)

-
1
2

S(z1,z1,z2).

Case 2:

If z1,z2 ∈ X2, then

S( f z1, f z1, f z2) = S(i
y1

2
, i

y1

2
, i

y2

2
)

= max{y1

2
,
y2

2
}+ i max{y1

2
,
y2

2
}

= max{y1

2
,
y2

2
}(1+ i)

-
1
2

S(z1,z1,z2).

Case 3:

If z1 ∈ X1,z2 ∈ X2, then

S( f z1, f z1, f z2) = S(
x1

2
,
x1

2
, i

y2

2
)

= (
x1

2
+

y2

2
)+ i (

x1

2
+

y2

2
)

= (
x1

2
+

y2

2
)(1+ i)

-
1
2

S(z1,z1,z2).

Case 4:

If z2 ∈ X1,z1 ∈ X2, then

S( f z1, f z1, f z2) = S(i
y1

2
, i

y1

2
,
x2

2
)

= (
y1

2
+

x2

2
)+ i (

y1

2
+

x2

2
)

= (
y1

2
+

x2

2
)(1+ i)

-
1
2

S(z1,z1,z2).
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Thus, the self mapping f = g satisfies all the conditions of (?), with α = 1
2 and 0 < β < 1

2 . Also,

notice that all the condition of Theorem 2.1, are satisfied and 0 ∈ X is the unique fixed point.
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