
Available online at http://scik.org

Adv. Fixed Point Theory, 4 (2014), No. 3, 344-354

ISSN: 1927-6303

COMMON FIXED POINT THEOREMS FOR A PAIR OF MAPPINGS IN
COMPLEX VALUED b-METRIC SPACES

AIMAN A. MUKHEIMER

Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

Copyright c© 2014 Aiman A. Mukheimer. This is an open access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we generalize the results of Verma and Pathak [9], by improving the conditions of the

contraction to establish the existence and the uniqueness of common fixed points for a pair of self mappings on

complex valued b-metric spaces. Some examples are given to illustrate the main results.
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1. Introduction

The fixed point theorem introduced by Banach in [4], was the source of metric fixed point

theory in the field of Nonlinear Analysis. In 1989, Bakhtin [3], introduced the concept of b-

metric space as a generalization of metric spaces. The concept of complex valued b-metric

spaces was introduced in 2013 by Rao et al [6], which was more general than the well known

complex valued metric spaces that was introduced in 2011 by Azam et al [2]. The main purpose

of this paper is to present common fixed point results of a pair of self mappings satisfying some

conditions on complex valued b-metric spaces.
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2. Preliminaries

Let C be the set of complex numbers and z1,z2 ∈C. Define a partial order - on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z1), Im(z1) ≤ Im(z2).

Thus z1 - z2 if one of the following holds:

(1) Re(z1) = Re(z2) and Im(z1) = Im(z2),

(2) Re(z1)< Re(z2) and Im(z1) = Im(z2),

(3) Re(z1) = Re(z2) and Im(z1)< Im(z2),

(4) Re(z1)< Re(z2) and Im(z1)< Im(z2).

We will write z1 � z2 if z1 6= z2 and one of (2),(3) and (4) is satisfied, also we will write

z1 ≺ z2 if only (4) is satisfied.

Remark 2.1. We can easily check that the following statements are hold:

(i) If a,b ∈ R and a≤ b, then az - bz for all z ∈ C,

(ii) If 0 - z1 � z2, then |z1| < |z2|,

(iii) If z1 - z2 and z2 ≺ z3, then z1 ≺ z3.

Definition 2.1. [1] Let X be a nonempty set and let s ≥ 1 be a given real number. A function

d : X×X → [0,∞) is called a b-metric if for all x,y,z ∈ X the following conditions are satisfied:

(i) d(x,y) = 0 if and only if x = y;

(ii) d(x,y) = d(y,x);

(iii) d(x,y)≤ s[d(x,z)+d(z,y)].

The pair (X ,d) is called a b-metric space. The number s≥ 1 is called the coefficient of (X ,d).

Example 2.1. [7] Let (X ,d) be a metric space and ρ(x,y) = (d(x,y))p, where p > 1 is a real

number. Then (X ,ρ) is a b-metric space with s = 2p−1.

Definition 2.2. [2] Let X be a nonempty set. A function d : X ×X → C is called a complex

valued metric on X if for all x,y,z ∈ X the following conditions are satisfied:

(i) 0 - d(x,y) and d(x,y) = 0 if and only if x = y;
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(ii) d(x,y) = d(y,x);

(iii) d(x,y)- d(x,z)+d(z,y).

The pair (X ,d) is called a complex valued metric space.

Example 2.2. [5] Let X = C. Define the mapping d : X×X → C by

d(x,y) = i|x− y|, for all x,y ∈ X .

Then (X ,d) is a complex valued metric space.

Example 2.3. [8] Let X = C. Define the mapping d : X×X → C by

d(x,y) = eik|x− y|, where k ∈ R and for all x,y ∈ X .

Then (X ,d) is a complex valued metric space.

Definition 2.3. [6] Let X be a nonempty set and let s ≥ 1 be a given real number. A function

d : X ×X → C is called a complex valued b-metric on X if for all x,y,z ∈ X the following

conditions are satisfied:

(i) 0 - d(x,y) and d(x,y) = 0 if and only if x = y;

(ii) d(x,y) = d(y,x);

(iii) d(x,y)- s[d(x,z)+d(z,y)].

The pair (X ,d) is called a complex valued b-metric space.

Example 2.4. [6] Let X = [0,1]. Define the mapping d : X×X → C by

d(x,y) = |x− y|2 + i|x− y|2, for all x,y ∈ X .

Then (X ,d) is a complex valued b-metric space with s = 2.

Definition 2.4. [6] Let (X ,d) be a complex valued b-metric space.

(i) A point x ∈ X is called interior point of a set A ⊆ X whenever there exists 0 ≺ r ∈ C such

that B(x,r) := {y ∈ X : d(x,y)≺ r} ⊆ A.

(ii) A point x ∈ X is called a limit point of a set A whenever for every 0≺ r ∈ C, B(x,r)∩ (A−

X) 6= /0.

(iii) A subset A⊆ X is called open whenever each element of A is an interior point of A.
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(iv) A subset A⊆ X is called closed whenever each element of A belongs to A.

(v) A sub-basis for a Hausdorff topology τ on X is a family F = {B(x,r) : x ∈ X and 0≺ r}.

Definition 2.5. [6] Let (X ,d) be a complex valued b-metric space, {xn} be a sequence in X and

x ∈ X .

(i) If for every c ∈ C, with 0≺ r there is N ∈ N such that for all n > N,d(xn,x)≺ c, then {xn}

is said to be convergent, {xn} converges to x and x is the limit point of {xn}. We denote this by

limn→∞ xn = x or {xn}→ x as n → ∞.

(ii) If for every c ∈ C, with 0≺ r there is N ∈ N such that for all n > N,d(xn,xn+m)≺ c, where

m ∈ N, then {xn} is said to be Cauchy sequence.

(iii) If every Cauchy sequence in X is convergent, then (X ,d) is said to be a complete complex

valued b-metric space.

Lemma 2.1. [6] Let (X ,d) be a complex valued b-metric space and let {xn} be a sequence in

X . Then {xn} converges to x if and only if |d(xn,x)| → 0 as n→ ∞.

Lemma 2.2. [6] Let (X ,d) be a complex valued b-metric space and let {xn} be a sequence in

X . Then {xn} is a Cauchy sequence if and only if |d(xn,xn+m)| → 0 as n→ ∞, where m ∈ N.

3. Main results

Theorem 3.1. Let (X ,d) be a complete complex valued b-metric space with the coefficient s≥ 1

and let λ be nonnegative real number such that 0≤ λ < 1
s2+s . Suppose that S,T : X → X are a

pair of self mappings satisfying:

d(Sx,Ty)- λ max{d(x,y),d(x,Sx),d(y,Ty),d(x,Ty),d(y,Sx)}, (3.1)

for all x,y ∈ X. Then S,T have a unique common fixed point in X.

Proof. For any arbitrary point x0 ∈ X , define sequence {xn} in X such that

x2n+1 = Sx2n,x2n+2 = T x2n+1, for n = 0,1,2,3, ....
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Let x = x2n and y = x2n+1 in (3.1). It follows that

d(x2n+1,x2n+2) = d(Sx2n,T x2n+1)

- λ max{d(x2n,x2n+1),d(x2n,Sx2n),d(x2n+1,T x2n+1),

d(x2n,T x2n+1),d(x2n+1,Sx2n)}

= λ max{d(x2n,x2n+1),d(x2n,x2n+1),d(x2n+1,x2n+2),

d(x2n,x2n+2),d(x2n+1,x2n+1)}

= λ max{d(x2n,x2n+1),d(x2n+1,x2n+2),d(x2n,x2n+2),0}

- λ max{d(x2n,x2n+1),d(x2n+1,x2n+2),

s[d(x2n,x2n+1)+d(x2n+1,x2n+2)]}.

(3.2)

If x2n+1 = x2n, for some n then by using (3.2) we get

d(x2n+1,x2n+2) - sλd(x2n+1,x2n+2),

which implies that

|d(x2n+1,x2n+2)| ≤ sλ |d(x2n+1,x2n+2)|. (3.3)

By using the fact that 0≤ λ < 1
s2+s , it is easy to see that 0 < sλ < 1

2 . The inequality (3.3) is true

only if |d(x2n+1,x2n+2)| = 0, which implies that d(x2n+1,x2n+2) = 0. Hence, x2n+1 = x2n+2.

Continuing this process one easily can show that x2n = x2n+1 = x2n+2 = x2n+3 = .... Hence,

{xn} is a Cauchy sequence. Assume that x2n+1 6= x2n, for all n in (3.2) and if

max{d(x2n,x2n+1),d(x2n+1,x2n+2),s[d(x2n,x2n+1)+d(x2n+1,x2n+2)]}= d(x2n+1,x2n+2)

then

d(x2n+1,x2n+2)- λd(x2n+1,x2n+2),

which implies that

|d(x2n+1,x2n+2)| ≤ λ |d(x2n+1,x2n+2)|. (3.4)

Since 0 < λ < 1
2 . The inequality (3.4) is true only if |d(x2n+1,x2n+2)| = 0, which implies that

d(x2n+1,x2n+2) = 0. Hence, x2n+1 = x2n+2. Which is a contradiction with x2n+1 6= x2n, for all n.
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Therefore, (3.2) becomes

d(x2n+1,x2n+2)- λ max{d(x2n,x2n+1),s[d(x2n,x2n+1)+d(x2n+1,x2n+2)]}.

Thus,

d(x2n+1,x2n+2)- max{λ , sλ

1− sλ
}d(x2n,x2n+1).

Let β = max{λ , sλ

1−sλ
}, then

d(x2n+1,x2n+2)- βd(x2n,x2n+1). (3.5)

So, we have two cases

Case 1: If β = λ then

sβ =
s

s2 + s
=

1
1+ s

≤ 1
2
< 1.

Case 2: If β = sλ

1−sλ
then

sβ = s
sλ

1− sλ
< s

s
s2+s

1− s
s2+s

= 1.

From the two cases, we conclude that sβ < 1. Taking the modulus of (3.5), we get

|d(x2n+1,x2n+2)| ≤ β |d(x2n,x2n+1)|. (3.6)

Similarly, we obtain

|d(x2n+2,x2n+3)| ≤ β |d(x2n+1,x2n+2)|.

Therefore, for all n≥ 0 and consequently, we have

|d(x2n+1,x2n+2)| ≤ β |d(x2n,x2n+1)| ≤ β
2|d(x2n−1,x2n)| ≤ ...≤ β

2n+1|d(x0,x1)|. (3.7)



350 AIMAN A. MUKHEIMER

Thus for any m > n, m,n ∈ N, we get

|d(xn,xm)| ≤ s|d(xn,xn+1)|+ s|d(xn+1,xm)|

≤ s|d(xn,xn+1)|+ s2|d(xn+1,xn+2)|+ s2|d(xn+2,xm)|

≤ s|d(xn,xn+1)|+ s2|d(xn+1,xn+2)|+ s3|d(xn+2,xm)|+ s3|d(xn+2,xm)|

≤ s|d(xn,xn+1)|+ s2|d(xn+1,xn+2)|+ s3|d(xn+2,xm)|

+ ...+ sm−n−2|d(xm−3,xm−2)|+ sm−n−1|d(xm−2,xm−1)|+ sm−n−1|d(xm−1,xm)|

≤ s|d(xn,xn+1)|+ s2|d(xn+1,xn+2)|+ s3|d(xn+2,xm)|

+ ...+ sm−n−2|d(xm−3,xm−2)|+ sm−n−1|d(xm−2,xm−1)|+ sm−n|d(xm−1,xm)|.

Using (3.7), we get

|d(xn,xm)| ≤ sβ
n|d(x0,x1)|+ s2

β
n+1|d(x0,x1)|+ s3

β
n+2|d(x0,x1)|

+ ...+ sm−n−2
β

m−3|d(x0,x1)|+ sm−n−1
β

m−2|d(x0,x1)|+ sm−n
β

m−1|d(x0,x1)|.

= sβ
n|d(x0,x1)|

m−n−1

∑
i=0

(sβ )i

≤ sβ
n|d(x0,x1)|

∞

∑
i=0

(sβ )i =
sβ n

1− sβ
|d(x0,x1)|.

Since sβ ,β < 1, we deduce

|d(xn,xm)| ≤
sβ n

1− sβ
|d(x0,x1)| → 0 as m,n → ∞.

Thus, {xn} is a Cauchy sequence in X . Since X is complete, there exists some u ∈ X such that

xn→ u as n→ ∞. Assume not, then there exist z ∈ X such that

|d(u,Su)|= |z|> 0. (3.8)
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Using the triangular inequality and (3.1), we get

z = d(u,Su)

- sd(u,x2n+2)+ sd(x2n+2,Su)

= sd(u,x2n+2)+ sd(T x2n+1,Su)

- sd(u,x2n+2)+ sλ max{d(u,x2n+1),d(u,Su),d(x2n+1,T x2n+1),

d(u,T x2n+1),d(x2n+1,Su)}

= sd(u,x2n+2)+ sλ max{d(u,x2n+1),d(u,Su),d(x2n+1,x2n+2),

d(u,x2n+2),d(x2n+1,Su)}.

(3.9)

Taking the modulus of (3.9) and using |a+b| ≤ |a|+ |b| for all a,b ∈ C we get

|z|= |d(u,Su)|

≤ s|d(u,x2n+2)|+ sλ max{|d(u,x2n+1)|, |d(u,Su)|, |d(x2n+1,x2n+2)|,

|d(u,x2n+2)|, |d(x2n+1,Su)|}.

(3.10)

Letting n→ ∞ for (3.10), we have

|z|= |d(u,Su)| ≤ sλ max{0, |z|,0,0, |z|},

we obtain that |z| = |d(u,Su)| ≤ sλ |z| < |z|, which is a contradiction with (3.8). So |z| = 0.

Hence Su = u. Similarly, we obtain that Tu = u. Now, we show that S and T have unique

common fixed point of S and T . To show this, we assume that u∗ is another common fixed point

of S and T . Then

d(u,u∗) = d(Su,Tu∗)

- λ max{d(u,u∗),d(u,Su),d(u∗,Tu∗),d(u,Tu∗),d(u∗,Su)}

= λ max{d(u,u∗),0,0,d(u,u∗),d(u∗,u)}

= λd(u,u∗).

This implies that |d(u,u∗)|< λ |d(u,u∗)|, which leads us to a contradiction. Hence, |d(u,u∗)|=

0, and that is u = u∗ which proves the uniqueness of common fixed point in X as required. This

completes the proof.
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Corollary 3.1. Let (X ,d) be a complete complex valued b-metric space with the coefficient

s≥ 1 and let λ be nonnegative real number such that 0≤ λ < 1
s2+s . Suppose that S,T : X → X

are a pair of self mappings satisfying:

d(Sx,Ty)- λ max{d(x,y),d(x,Sx),d(y,Ty)}, (3.11)

for all x,y ∈ X. Then S,T have a unique common fixed point in X.

Proof. For any arbitrary point x0 ∈ X , define sequence {xn} in X such that

x2n+1 = Sx2n,x2n+2 = T x2n+1, for n = 0,1,2,3, ....

Now, we show that the sequence {xn} is Cauchy. Letting x = x2n and y = x2n+1 in (3.11), we

have

d(x2n+1,x2n+2) = d(Sx2n,T x2n+1)

- λ max{d(x2n,x2n+1),d(x2n,Sx2n),d(x2n+1,T x2n+1)}

= λ max{d(x2n,x2n+1),d(x2n,x2n+1),d(x2n+1,x2n+2)}

= λ max{d(x2n,x2n+1),d(x2n+1,x2n+2)}

- λd(x2n,x2n+1).

We can prove this corollary by following the same procedure in Theorem 3.1. This completes

the proof.

Corollary 3.2. Let (X ,d) be a complete complex valued b-metric space with the coefficient

s≥ 1 and let λ be nonnegative real number such that 0≤ λ < 1
s2+s . Suppose that T : X → X is

a self mapping satisfying:

d(T x,Ty)- λd(x,y),

for all x,y ∈ X. Then T has a unique fixed point in X.

Proof. Putting S = T in Corollary 3.1, we can include the desired conclusion easily.

Remark 3.1. Corollary 3.2. is the generalization of the Banach contraction principle in [4], on

the complex valued b-metric spaces.

Remark 3.2. By taking s = 1 in Theorem 3.1. we can get Verma and Pathak Theorem in [9]
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Example 3.1. Let X = [0,1] . Define a function d : X×X → C such that

d(z1,z2) = |z1− z2|2 + i|z1− z2|2.

To verify that (X ,d) is a complete complex valued b-metric space with s = 2, it’s enough to

verify the triangular inequality condition. Let z1,z2 and z3 ∈ X , then

d(z1,z2) = |z1− z2|2 + i|z1− z2|2

= |z1− z3 + z3− z2|2 + i|z1− z3 + z3− z2|2

- |z1− z3|2 + |z3− z2|2 +2|z1− z3||z3− z2|

+ i[|z1− z3|2 + |z3− z2|2 +2|z1− z3||z3− z2|]

- |z1− z3|2 + |z3− z2|2 + |z1− z3|2 + |z3− z2|2

+ i[|z1− z3|2 + |z3− z2|2 + |z1− z3|2 + |z3− z2|2]

= 2{|z1− z3|2 + |z3− z2|2 + i[|z1− z3|2 + |z3− z2|2]}

= 2[d(z1,z3)+d(z3,z2)].

Therefore, s = 2. Now, define a self mapping T : X → X such that:

T x =
x
3
.

Note that,

d(T z1,T z2) = d(
z1

3
,
z2

3
)

= |z1

3
− z2

3
|2 + i|z1

3
− z2

3
|2

=
1
9
(|z1− z2|2 + i|z1− z2|2)

=
1
9

d(z1,z2)

- λd(z1,z2)

≺ 1
6

d(z1,z2),

for all z1,z2 ∈ X and 0≤ λ < 1
s2+s . So all conditions in Corollary 3.2 are satisfied to get a unique

fixed point 0 of T .
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