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Abstract. In this paper, a fixed point principle for a pair of operators ( fi,X ,d), i = 1,2, where (X ,d) is a metric

space and f1, f2 : X → X , is established under the generalized uniform equivalence condition of different orbits

generated by the maps f1 and f2 separately, which gives another generalization of the fixed point principle of

Leader [1] and estimates approximations to the fixed points of both the operators simultaneously.
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1. Introduction

Consider two operators ( fi,X ,d), i = 1,2, where (X ,d) is a metric space and f1, f2 : X → X .

From Meir and Keeler [2], an operator is said to have a contractive fixed point if the limit of

every orbit generated by the operator is fixed. This can be easily obtained by imposing graph
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completeness condition on the operator. The fixed point principle given by Leader [1] needs

the uniform equivalence condition of all orbits generated by the operator to have a contractive

fixed point. In the present paper, the idea of equivalence condition of orbits by a single oper-

ator is further extended to generalized equivalence condition of two different orbits generated

separately by two mappings f1 and f2 and a fixed point principle for them is derived.

Let x,y ∈ X ,{x, f1x, f 2
1 x, ...} and {y, f2y, f 2

2 y, ...} be the orbits of x and y generated by the

repeated application of f1 and f2 separately on x and y, respectively. We say that the above two

orbits are generalized equivalent if d( f m
1 x, f m

2 y)→ 0 as m,n→ ∞.

2. Main Result

Now we are ready to prove the main Theorem in this section.

Theorem 2.1. Let ( fi,X ,d), i = 1,2 be a pair of operators on a metric space (X ,d). Given

c > 0, define a sequence of positive real numbers {εn} by

εn = sup{d( f i
1x, f i

2y) : i≥ n,d(x,y)≤ c}. (2.1)

If (m+1)εn +2εm ≤ c and d(x,y)≤ c, d(x, f2y)≤ c, d( f1x,y)≤ c then

d( f i
1x, f i+ j

1 x)≤ (m+1)εn +2εm, (2.2)

d( f i
2y, f i+ j

2 y)≤ (m+1)εn +2εm, (2.3)

for all i≥ n and all j ∈ N. Further if

d( f n
1 x, f n

2 y)→ 0 as n→ ∞ (2.4)

uniformly for all x,y ∈ X with d(x,y)≤ c, then the orbits

{ f n
1 x} and { f n

2 y} are uniformly Cauchy. (2.5)

If the graphs of both ( fi,X ,d), i= 1,2 are complete and (2.4) holds, then d(x,y)≤ c, d(x, f2y)≤

c and d( f1x,y)≤ c imply that the orbits { f n
1 x} and { f n

2 y} converge to the fixed points p = f1 p
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and q = f2q, respectively, where p and q are the limits of { f n
1 x} and { f n

2 y} respectively. So

p = q. Further for εn as defined in (2.1), we have

d( f n
1 x, p)≤ (m+1)εn +2εm if (m+1)εn +2εm ≤ c, (2.6)

d( f n
2 y,q)≤ (m+1)εn +2εm if (m+1)εn +2εm ≤ c. (2.7)

Proof. Using induction on k, we prove (2.2) and (2.3) for j ≤ km for all k ∈ N under the

given condition that (m+ 1)εn + 2εm ≤ c for a given m,n and d(x,y) ≤ c, d(x, f2y) ≤ c and

d( f1x,y)≤ c x,y ∈ X . Let xi = f i
1x and yi = f i

2y. Then for k = 1, (2.1) implies for all i≥ n and

j ≤ m, where m is even. It follows that

d(xi,xi+ j)≤ d(xi,yi+1)+d(yi+1,xi+2)+ ...+d(yi+ j−1,xi+ j)

≤ d((x)i,(y1)i)+d((y)i+1,(x1)i+1)+ ...+d((y)i+ j−1,(x1)i+ j−1)

≤ jεn ≤ mεn.

If m is odd, we get

d(xi,xi+ j)≤ d(xi,yi+1)+d(yi+1,xi+2)+ ...+d(xi+ j−1,yi+ j)+d(yi+ j,xi+ j)

≤ d((x)i,(y1)i)+d((y)i+1,(x1)i+1)+ ...+d((x)i+ j−1,(y1)i+ j−1)+d((y)i+ j,(x)i+ j)

≤ ( j+1)εn ≤ (m+1)εn.

Thus, we have

d(xi,xi+ j)≤ (m+1)εn∀i≥ n and j ≤ m (2.8)

independent of m even or odd, that is, (2.2) holds for all j ≤ m . Similarly, we find that (2.3)

holds for all j ≤ m. Now, suppose for a given k ∈ N that (2.2), (2.3) hold for all j ≤ km, we

prove it for j ≤ (k+1)m . Taking km < j ≤ (k+1)m, we find 0 < j−m≤ (k+1)m and so the

induction process gives that

d(xi,xi+ j−m)≤ (m+1)εn +2εm ≤ c

for all i≥ n. Then iterating xi and xi+ j−m by f1 and f2 respectively m times, we get

d(xi+m,x′p+m)≤ εm for all i≥ n where x′p = xi+ j−m.
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Note that

d(xi+m,xi+ j)≤ d(xi+m,x′p+m)+d(x′p+m,xi+ j)

= d(xi+m,x′p+m)+d( f m
2 (xi+ j−m), f m

1 (xi+ j−m))

≤ εm + εm = 2εm for all i≥ n.

(2.9)

Therefore, from (2.8) with j = m and (2.9), we get

d(xi,xi+ j)≤ (m+1)εn +2εm for all i≥ n.

Thus (2.2) holds for all j ≤ (k+ 1)m and hence for all j ∈ N. (2.3) can be proved in a similar

way. So (2.2) and (2.3) holds for all i ≥ n and j ∈ N. Now (2.1) and (2.4) gives εn ↓ 0.

Then for a given 0 < ε < c, we take m so large that 2εm < ε . Further choose n so large that

εn < (m+ 1)−1(ε − 2εm) giving (m+ 1)εn + 2εm < ε < c and therefore d( f i
1x, f i+ j

1 x) < ε and

d( f i
2y, f i+ j

2 y) < ε for all i ≥ n and all j ∈ N. Hence (2.5) holds. Further considering graph

completeness of both the maps it can be easily obtained that fi pi = pi, i = 1,2 and that p1 = p2

by (2.4). Finally in (2.2) and (2.3) taking i = n and letting j→∞ we obtain (2.6) and (2.7). The

theorem is completed.

3. A Fixed-point principle

In this section, we extend Theorem 3 of Som and Mukherjee [3] to three and four mappings

under some weaker condition than the condition of commutativity of the mappings, used in The-

orem 3 of Som and Mukherjee [3]. Next, we give here the definition of a weakly commutative

pair of mappings with an example [4].

Definition 3.1. Let S and T be a pair of self mappings of a metric space (X ,d). Then {S,T} is

said to be a weakly commutative pair if

d(ST x,T Sx)≤ d(T x,Sx), ∀x ∈ X .

Clearly every commutative pair of mappings is weakly commutative but the converse is not

true in general.
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Example 3.2. Let X = [0,1] with the usual metric. Let T,S :→ X be defined by T x = 3x
5 ,

Sx = x
x+3 for every x ∈ X . Then for all x ∈ X , we have

d(ST x,T Sx) =
3x

3x+15
− 3x

5x+15

≤ 3x2 +4x
5x+15

=
3x
5
− x

x+3

= d(T x,Sx)

So, S and T are commute weakly. However S and T are not a commuting pair for

ST x =
3x

3x+15
>

3x
5x+15

= T Sx,∀x (x 6= 0) ∈ X .

Theorem 3.3. Let (X ,d) be a metric space and f ,g and h be three self mappings of X with f

continuous and g(X)⊂ f (X),h(X)⊂ f (X). Let for some x0 ∈ X ,{yn} be a sequence defined by

y1 = f (x1) = g(x0),y2 = f (x2) = h(x1),

and in general,

y2n+1 = f (x2n+1) = g(x2n),y2n+2 = f (x2n+2) = h(x2n+1),n = 0,1, ...

Similarly, for some u0 ∈ X , we have a sequence {zn} , that is, for n = 0,1, ....

z2n+1 = f (u2n+1) = g(u2n),z2n+2 = f (u2n+2) = h(u2n+1).

For some c > 0, define

εn+1 = sup{d(yp+i,zq+i) : i≥ n,d(yp,zq)≤ c for some p,q ∈ N}. (3.1)

If mεn + εm+1 ≤ c and d( f (x),g(x))≤ c,d( f (x),h(x))≤ c, then for all i≥ n and all j ∈ N ,

(yi,yi+ j)≤ mεn + εm+1. (3.2)

Hence if d(yn,zn)→ 0 uniformly for all x0,u0 ∈ X with d(yp,zq)≤ c for some p,q ∈ N then the

sequence {yn} is uniformly Cauchy. Further if g,h satisfy

d(g(x),h(y))≤ d( f (x), f (y)) for all x 6= y ∈ X (3.3)
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and either { f ,g} or { f ,h} is a weakly commutative pair then f ,g and h have a coincidence

point. Moreover if

d( f x,y)≤ d(x,y),x 6= y ∈ X , (3.4)

then f ,g and h have a common fixed point in X.

Proof. The proofs of (3.2) and that {yn} is Cauchy follows in the lines of Theorem 3 of Som

and Mukherjee [4]. So we omit the proof here. Let yn→ t ∈ X . Since f is continuous, we have

f (yn)→ f (t). From (3.3), we have

d(g(yn),h(t))≤ d( f (yn), f (t)),

which in the limiting case implies that g(yn)→ h(t). Similarly it can be shown that h(yn)→ g(t).

Further putting x = yn,y = yn+1 in (3.3) and taking the limits we get g(t) = h(t). Let { f ,g} be

weakly commutative. then we have

d( f g(x2n),g f (x2n))≤ d(g(x2n), f (x2n)),

which in the limiting case gives that d( f (t),h(t)) ≤ d(t, t) and therefore g(t) = h(t) = f (t).

Similarly, we have the same result if { f ,g} is weakly commutative. Thus we conclude that t is

a coincidence point of f ,g and h. Finally, putting x = t,y = yn in (3.4) and taking the limit, we

obtain a common fixed point for f ,g and h. This completes the proof of the theorem.

Remark 3.4. If g= h in theorem 3.3, then our theorem improves theorem 3 of Som and Mukher-

jee [4]. Moreover from (3.4), we observe that f is not necessarily an identity mapping to have

a common fixed point result.

Theorem 3.5. Let (X ,d) be a metric space and gk, fk,k = 1,2 , be four self mappings of X

with each fk continuous for each k = 1,2 and gk(X) ⊂ fk(X). Let for some x0 ∈ X, {yn} be a

sequence defined by

y1 = f1(x1) = g1(x0),y2 = f2(x2) = g2(x1), ...

and in general

y2n+1 = f1(x2n+1) = g1(x2n) and y2n+2 = f2(x2n+2) = g2(x2n+1),n = 0,1, ...
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Similarly, for some u0 ∈ X, define a sequence {zn}, that is, for n = 0,1, ..., z2n+1 = f1(u2n+1) =

g1(u2n) and z2n+2 = f2(u2n+2) = g2(u2n+1). For some c > 0, we define

εn+1 = sup{d(yp+i,zq+i) : i≥ n,d(yp,zq)≤ c for some p,q ∈ N}.

If mεn + εm+1 ≤ c and d( fk(x),gl(x))≤ c,k 6= l (k, l = 1,2), then for all i≥ n and all j ∈ N,

d(yi,yi+ j)≤ mεn + εm+1.

Hence, if d(yn,zn)→ 0 uniformly for all x0,u0 ∈ X with d(yp,zq) ≤ c for some p,q ∈ N, then

the sequence {yn} is uniformly Cauchy. Further if g1,g2 satisfy

d(g1(x),g2(y))≤ d(x,y) ∀ x,y ∈ X

and { f1,g2},{ f2,g1} are weakly commutative pairs, then fk,gk,k = 1,2 have a coincidence

point. Moreover if

d( fkx,y)≤ d(x,y) ∀ x 6= y ∈ X for k = 1,2,

then fk,gk have a common fixed point in X.

Proof. From Theorem 4 of Som and Mukherjee [3], we find the desired conclusion immediately.
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