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Abstract. In this paper, we establish some coupled common fixed point results on a generalized complete metric

spaces (X ,G). These results extend and generalize well-known comparable results in the literature.
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1. Introduction

The study of fixed points of mappings satisfying certain contractive conditions has been at the

center of rigorous research activity; see, [1-20]. The notion of D-metric space is a generalization

of usual metric spaces and it is introduced by Dhage [13] and [14]. Recently, Mustafa and Sims

[15-17] have shown that most of the results concerning Dhage’s D-metric spaces are invalid.

In [16] and [17], they introduced a improved version of the generalized metric space structure

which they called G-metric spaces. For more results on G-metric spaces, one can refer to the

articles [18-20]. Subsequently, several authors proved fixed point results in these spaces. Some
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of them have been applied to solve matrix equations, ordinary differential equations and integral

equations.

2. Preliminaries

Definition 2.1. [22] Let X be a non-empty set and let G : X × X × X → R+ be a function

satisfying the following properties:

(G1) G(x,y,z) = 0 if x = y = z.

(G2) 0 < G(x,x,y) for all x;y ∈ X with x 6= y.

(G3) G(x,x,y)≤ G(x,y,z) forall x,y,z ∈ X with y 6= z.

(G4) G(x,y,z) = G(x,z,y) = G(y,z,x).

(G5) G(x,y,z)≤ G(x,a,a)+G(a,y,z) for all x,y,z,a ∈ X .

(G6) G(x,y,y)≤ 2G(y,x,x) for all x;y ∈ X .

Then the function G is called a generalized metric, or, more specially, a G-metric on X , and the

pair (X ,G) is called a G-metric space.

Definition 2.2. [22]. Let (X ,G) be a G-metric space, and let (xn) be a sequence of points of

X . We say that (xn) is G−convergent to x ∈ X if limn,m→∞ G(x;xn,xm) = 0, that is, for any ε

> 0, there exists N ∈ N such that G(x;xn,xm) < ε , for all n,m ≥ N. We call x the limit of the

sequence and write xn→ x or limn,m→∞ xn = x.

Proposition 2.3. [22]. Let (X ,G) be a G-metric space. The following are equivalent:

(1) (xn) is G-convergent to x.

(2) G(xn,xn,x)→ 0 as n→ ∞.

(3) G(xn,x,x)→ 0 as n→ ∞.

(4) G(xn,xm,x)→ 0 as n,m→ ∞.

Definition 2.4. [22]. Let (X ,G) be a G-metric space. A sequence (xn) is called a G-Cauchy

sequence if, for any ε > 0, there is N ∈ N such that G(xn,xm,xl) < ε for all m,n, l ≥ N, that is

G(xn,xm,xl)→ 0 as n,m, l→ ∞.

Proposition 2.5. [22]. Let (X ,G) be a G-metric space. Then the following are equivalent
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(1) The sequence (xn) is G-Cauchy

(2) For any ε > 0, there exists N ∈ N such that G(xn,xm,xm)< ε , for all n;m≥ N.

Proposition 2.6. [22]. Let (X ,G) be a G-metric space. A mapping f : X → X is G-continuous

at x∈ X if and only if it is G-sequentially continuous at x, that is, whenever (xn) is G-convergent

to x, f (xn) is G-convergent to f (x).

Proposition 2.7. [10]. Let (X ,G) be a G-metric space. Then the function G(x,y,z) is jointly

continuous all three of its variables.

Definition 2.8. [10]. A G-metric space (X ,G) is called G− complete if every G-Cauchy se-

quence is G-convergent in (X ,G).

Definition 2.9. [22]. Two mappings f ,g : X → X are weakly compatible if they commute at

their coincidence points, that is f t = gt for some t ∈ X implies that f gt = g f t.

Definition 2.10. [22]. Suppose (X ,�) is a partially ordered set and f ,g : X → X are mappings.

f is said to be g-Nondecreasing if for x,y ∈ X , gx� gy implies f x� f y.

Definition 2.11. [21,22]. An element (x,y)∈X× X is called a coupled fixed point of a mapping

F : X× X → X if x = F(x,y) and y = F(y,x).

Definition 2.12. [21,22]. An element (x,y) ∈ X× X is called:

(C1) A coupled coincidence point of mappings F : X×X→X and g : X→X if g(x) =F(x,y)

and g(y) = F(y,x), and (gx,gy) is called coupled point of coincidence.

(C2) A common coupled fixed point of mappings F : X×X→ X and g : X→ X if x = g(x) =

F(x,y) and y = g(y) = F(y,x).

Definition 2.13. [21,22]. Let (X ,≤) be a partially ordered set. A map F : X× X → X is said to

has the g-mixed monotone property where g : X → X if for x1,x2,y1,y2 ∈ X , gx1 ≤ gx2 implies

F(x1,y)≤ F(x2,y) for all y ∈ X and gy1 ≤ gy2 implies F(x,y2)≤ F(x,y1) for all x ∈ X .

Definition 2.14. [21,22]. Let X be a nonempty set. Mappings F : X ×X → X and g : X → X

are said to be commutative if g(F(x,y)) = F(gx,gy) for all x,y ∈ X .

Now, we are ready to state our results.
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Let Φ denotes the class of the function ϕ : [0,+∞[→ [0,+∞[ which satisfies the following

conditions:

(1) ϕ is nondecreasing and continuous.

(2) ϕ(t + s)≤ ϕ(t)+ϕ (s), for all t,s ∈ [0,+∞[.

(3) ϕ(t) = 0 ⇐⇒ t = 0.

The elements of Φ are called altering distance functions.

Let Ψ denotes the class of the function ψ : [0,+∞[→ [0,+∞[, which satisfies the following

conditions:

lim
t→r

ψ (t)> 0, ∀r > 0, lim
t→0

ψ (t) = 0.

Let (X ,≤) be a partially ordered set and endow the product space X ×X with the following

partial order: For (x,y), (u,v) ∈ X×X , (u,v)≤ (x,y) ⇐⇒ x≥ u and y≤ v.

3. Main results

Theorem 3.1. Let (X ,≤) be a partially ordered set and suppose that there is a G-metric on

X such that (X ,G) is a complete G-metric space. Let F : X ×X → X and g: X → X be two

mappings such that F has the mixed g-monotone property for which there exist ψ ∈ Ψ and

ϕ ∈Φ, such that

ϕ (αG(F(x,y),F(u,v),F(z,w))+βG(F(y,x),F(v,u),F(w,z)))

≤ ϕ (αG(gx,gu,gz)+βG(gy,gv,gw))−ψ (αG(gx,gu,gz)+βG(gy,gv,gw))

for all x,y,z,u,v,w∈ X with gx≥ gu≥ gw and gy≤ gv≤ gz with α,β ∈R∗+ . We suppose F(X×

X) is contained in a closed subspace g(X) and g is G−continuous, injective and commutes with

F and we suppose either

(a) F is continuous

(b) for a nondecreasing sequence {xn} with xn→ x, we have xn ≤ x for all n;

(c) for a nonincreasing sequence {yn} with yn→ x, we have y≤ yn for all n.

Then F and g have a coupled common fixed point provided that there exist x0, y0 ∈ X such that

gx0 ≤ F(x0,y0) and F(y0,x0)≤ gy0 or gx0 ≥ F(x0,y0) and F(y0,x0)≥ gy0.
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Proof. Consider the functional Gα,β : X2×X2×X2→ R+ defined by

Gα,β (X ,Y,Z) = αG(x,u,z)+βG(y,v,w), for all X = (x,y) ∈ X2,

Y = (u,v) ∈ X2, Z = (z,w) ∈ X2.

It is easy to see that Gα,β is a G-metric space on X2 and moreover, if (X ,G) is a complete space,

then (X2,Gα,β ) is a complete metric space, too. Now consider the operator T : X2→ X2 defined

by

T (X) = (F(x,y),F(y,x)) for all X = (x,y) ∈ X2.

Clearly, for X = (x,y),Y = (u,v), Z = (z,w). In view of the definition of Gα,β , we have

Gα,β (T (X),T (Y ),T (Z)) = αG(F(x,y),F(u,v),F(z,w))+βG(F(y,x),F(v,u),F(w,z)).

Thus, by the contractive condition, we obtain that F satisfies the following (ϕ,ψ)-contractive

condition:

ϕ
(
Gα,β (T (X),T (Y ),T (Z))

)
≤ ϕ

(
Gα,β (gX ,gY,gZ)

)
−ψ

(
Gα,β (gX ,gY,gZ)

)
(3.1)

for all gX ≥ gY ≥ gZ and gX ,gY,gZ ∈ X2. Assume that there exist x0, y0 ∈ X such that

gx0 ≤ F(x0,y0) and F(y0,x0) ≤ gy0. Denote gX0 = (gx0,gy0) ∈ X2 and consider the Picard

iteration associated to T with the initial value gX0, that is the sequence {gXn} ⊂ X2, defined by

gXn+1 = T gXn, ∀n≥ 0. (3.2)

with gXn = (gxn,gyn) ∈ X2, n≥ 0. Since F is mixed monotone, we have

gX0 = (gx0,gy0)≤ (F(x0,y0),F(y0,x0)) = (gx1,gy1) = gX1.

By induction, we have

gXn = (gxn,gyn)≤ (F(xn,yn),F(yn,xn)) = (gxn+1,gyn+1) = gXn+1,

which shows that the mapping T is monotone and the sequence {Xn} is nondecreasing. Take

X = Xn and Y = Z = Xn+1 in (3.1), we obtain

ϕ
(
Gα,β (T (gXn),T (gXn+1),T (gXn+1))

)
≤ ϕ

(
Gα,β (gXn,gXn+1,gXn+1)

)
−ψ

(
Gα,β (gXn,gXn+1,gXn+1)

) (3.3)
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with X = gXn ≥ Y = Z = gXn+1. Since ψ ≥ 0, (3.3) implies that

ϕ
(
Gα,β (gXn+1,gXn+2,gXn+2)

)
≤ ϕ

(
Gα,β (gXn,gXn+1,gXn+1)

)
, ∀n≥ 0.

So, by the property of monotonocity of ϕ , we have

Gα,β (Xn+1,Xn+2,Xn+2)≤ Gα,β (Xn,Xn+1,Xn+1) , ∀n≥ 0. (3.4)

This shows that the sequence
{

δ n
α,β = Gα,β (gXn,gXn+1,gXn+1)

}
, n ≥ 0, is nondecreasing.

Therefore, there exists δα,β ≥ 0 such that

lim
n→∞

δ
n
α,β = αG(gxn,gxn+1,gxn+1)+βG(gyn,gyn+1,gyn+1) = δα,β . (3.5)

We shall prove that δα,β = 0. Assume that we have the contrary, that is δα,β > 0. Then by

letting n→ ∞ in (3.3), we have

ϕ
(
δα,β

)
= lim

n→∞
ϕ

(
δ

n
α,β

)
≤ lim

n→∞
ϕ

(
δ

n
α,β

)
− lim

n→∞
ψ

(
δ

n
α,β

)
= ϕ

(
δα,β

)
− lim

δ n
α,β
→δ

+
α,β

ψ

(
δ

n
α,β

)
< ϕ

(
δα,β

)
,

which is a contradiction. Thus δα,β = 0 and hence

lim
n→∞

δ
n
α,β = αG(gxn,gxn+1,gxn+1)+βG(gyn,gyn+1,gyn+1) = 0. (3.6)

Now we prove that {gXn} is a Cauchy sequence in
(
X2,Gα,β

)
that is {gxn} ,{gyn} are Cauchy

sequence in (X ,G). Suppose that the contrary, that is at least one of the sequences {gxn} ,{gyn}

is not a Cauchy sequence. Then there exists an ε > 0 for which we find subsequences {gxnk} ,{gxmk}

of {gxn} and {gynk} ,{gymk} of {gyn} with nk ≥ mk ≥ k such that

αG(gxmk ,gxnk ,gxnk)+βG(gymk ,gynk ,gynk)≥ ε. (3.7)

Further, corresponding to mk we can choose nk in such a way that it is the smallest integer with

nk > mk which satisfy (3.6). Then

αG(gxmk ,gxnk−1,gxnk−1)+βG(gymk ,gynk−1
,gynk−1)< ε. (3.8)
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By using the rectangle inequality of generalized metric and (3.8) we have

ε ≤ αG(gxmk ,gxnk ,gxnk)+βG(gymk ,gynk ,gynk)

≤ αG(gxmk ,gxnk−1,gxnk−1)+βG(gxnk−1,gxnk ,gxnk)

+αG(gymk ,gynk−1,gynk−1)+βG(gynk−1,gynk ,gynk)

≤ ε +αG(gxnk−1,gxnk ,gxnk)+βG(gynk−1,gynk ,gynk).

Letting k→ ∞ and using (3.6), we have

lim
k→∞

rα,β
k := αG(gxmk ,gxnk ,gxnk)+βG(gymk ,gynk ,gynk = ε. (3.9)

By using the rectangular inequality and the property (G6), we have

G(gxmk ,gxnk ,gxnk)≤ G(gxmk ,gxnk ,gxnk+1)+G(gxmk ,gxnk+1,gxnk+1)

≤ 2G(gxnk+1,gxnk+1,gxnk)+G(gxnk+1,gxnk+1,gxmk+1)

+G(gxmk+1,gxmk+1,gxmk)

(3.10)

and

G(gymk ,gynk ,gynk)≤ G(gymk ,gynk ,gynk+1)+G(gymk ,gynk+1,gynk+1)

≤ 2G(gynk+1,gynk+1,gynk)+G(gynk+1,gynk+1,gymk+1)

+G(gymk+1,gymk+1,gymk).

(3.11)

From (3.10) and (3.11), we have

αG(gxmk ,gxnk ,gxnk)+βG(gymk ,gynk ,gynk)

≤
(

2δ
nk
α,β +δ

mk
α,β +αG(gxnk+1,gxnk+1,gxmk+1)+βG(gynk+1,gynk+1,gymk+1)

)
.

(3.12)
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Since nk ≥ mk, gxnk ≥ gxmk and gynk ≤ gymk and hence, we find from x = xnk ,y = ynk ,u =

xmk ,v = ymk ,z = ynk+1,w = ymk+1 that

ϕ
(
αG(gxnk+1,gxnk+1,gxmk+1)+βG(gynk+1 ,gynk+1,gymk+1)

)
= ϕ

 αG(F(xnkynk),F(xnkynk),F(xmk ,ymk))

+βG(F(ynk ,xnk),F(ynk ,xnk),F(ymk ,xmk))


≤ ϕ (αG(gxnk ,gxnk ,gxmk)+βG(gynk ,gynk ,gymk))

−ψ (αG(gxnk ,gxnk ,gxmk)+βG(gynk ,gynk ,gymk))

= ϕ

(
rα,β

k

)
−ψ

(
rα,β

k

)
.

Therefore, we have

ϕ
(
αG(gxnk+1,gxnk+1,gxmk+1)+βG(gynk+1,gynk+1,gymk+1)

)
≤ ϕ

(
rα,β

k

)
−ψ

(
rα,β

k

)
. (3.13)

On the other hand, by (3.12) and using the property of ϕ , we get

ϕ

(
rα,β

k

)
≤ ϕ

(
2δ

nk
α,β +δ

mk
α,β

)
+ϕ

(
rα,β

k

)
−ψ

(
rα,β

k

)
. (3.14)

Let k→ ∞ in (3.14). Using (3.6), (3.9) and the properties of ϕ , we get

ϕ (ε)≤ ϕ (0)+ϕ (ε)− lim
k→∞

ψ

(
rα,β

k

)
= ϕ (ε)− lim

rk→ε+
ψ

(
rα,β

k

)
< ϕ (ε) ,

which is a contradiction. This shows that {gxn} and {gyn} are G-Cauchy sequences in complete

subspace g(X). And this implies that there exist a,b in X such that

ga = lim
n→∞

gxn+1 and gb = lim
n→∞

gyn+1.

Now, let us suppose that F is continuous. Then

ga = lim
n→∞

gxn+1 = lim
n→∞

g(F(xn,yn)) = lim
n→∞

F(gxn,gyn) = F(ga,gb)

and

gb = lim
n→∞

gyn+1 = lim
n→∞

g(F(yn,xn)) = lim
n→∞

F(gyn,gxn) = F(gb,ga).
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Suppose now the assumption (ba) holds. Since {gxn}n≥0 is a nondecreasing sequence that

converges to ga, we have gxn ≤ ga for all n≥ 0. Similarly, gyn ≥ gb for all n≥ 0. Then

G(ga,ga,F(ga,gb)) ≤ G(ga,ga,gxn+1))+G(gxn+1,ga,F(ga,gb))

= G(ga,ga,gxn+1))+G(F(gxn,gyn),F(ga,gb),F(ga,gb)).

So, G(ga,ga,F(ga,gb))−G(ga,ga,gxn+1))≤ G(F(gxn,gyn),F(ga,gb),F(ga,gb)) and

G(gb,gb,F(gb,ga))−G(gb,gb,gyn+1))≤ G(F(gyn,gxn),F(gb,ga),F(gb,ga)).

Hence, we have

αG(ga,ga,F(ga,gb))−αG(ga,ga,gxn+1))

+βG(gb,gb,F(gb,ga))−βG(gb,gb,gyn+1))

≤ αG(F(gxn,gyn),F(ga,gb),F(ga,gb))+βG(F(gyn,gxn),F(gb,ga),F(gb,ga)),

which implies by monotonoticity of ϕ

ϕ

 αG(ga,ga,F(ga,gb))−αG(ga,ga,gxn+1))

+βG(gb,gb,F(gb,ga))−βG(gb,gb,gyn+1))


≤ ϕ (αG(F(gxn,gyn),F(ga,gb),F(ga,gb))+βG(F(gyn,gxn),F(gb,ga),F(gb,ga)))

≤ ϕ (αG(gxn,ga,ga)+βG(gyn,gb,gb))−ψ (αG(gxn,ga,ga)+βG(gyn,gb,gb)) .

Letting n→ ∞ in the above inequality, we obtain

ϕ

 αG(F(gxn,gyn),F(ga,gb),F(ga,gb))

+βG(F(gyn,gxn),F(gb,ga),F(gb,ga))


≤ ϕ (0)−0 = 0,

which implies by the properties of ϕ that G(ga,ga,F(ga,gb)) = 0 and G(gb,gb,F(gb,ga)).

Hence ga = F(ga,gb) and gb = F(gb,ga).

Corollary 3.2. Let (X ,≤) be a partially ordered set and suppose that there is a G-metric on

X such that (X ,G) is a complete G-metric space. Let F : X ×X → X and g: X → X be two
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mappings such that F has the mixed g-monotone property for which there exist ψ ∈ Ψ and

ϕ ∈Φ, such that

ϕ

(
G(F(x,y),F(u,v),F(z,w))+G(F(y,x),F(v,u),F(w,z))

2

)
≤ ϕ

(
G(gx,gu,gz)+G(gy,gv,gw)

2

)
−ψ

(
G(gx,gu,gz)+G(gy,gv,gw)

2

)
for all x,y,z,u,v,w∈ X with gx≥ gu≥ gw and gy≤ gv≤ gz. We suppose F(X×X) is contained

in a closed subspace g(X) and g is G−continuous, injective map which commutes with F and

we suppose either

(a) F is continuous

(b) for a nondecreasing sequence {xn} with xn→ x, we have xn ≤ x for all n;

(c) for a nonincreasing sequence {yn} with yn→ x, we have y≤ yn for all n.

Then F and g have a coupled common fixed point provided that there exist x0, y0 ∈ X such that

gx0 ≤ F(x0,y0) and F(y0,x0)≤ gy0 or gx0 ≥ F(x0,y0) and F(y0,x0)≥ gy0.

Proof. Putting α = β = 1
2 in Theorem 3.1, we can conclude the desired conclusion immediately.

Corollary 3.3. Let (X ,≤) be a partially ordered set and suppose that there is a G-metric on

X such that (X ,G) is a complete G−metric space. Let F : X ×X → X and g: X → X be two

mappings such that F has the mixed g-monotone property for which there exist ψ ∈ Ψ and

ϕ ∈Φ such that

G(F(x,y),F(u,v),F(z,w))+G(F(y,x),F(v,u),F(w,z))

≤ G(gx,gu,gz)+G(gy,gv,gw)−ψ (G(gx,gu,gz)+G(gy,gv,gw))

for all x,y,z,u,v,w ∈ X with gx ≥ gu ≥ gw and gy ≤ gv ≤ gz with α,β ∈ R∗+ . We suppose

F(X ×X) is contained in a closed subspace g(X). and g is a G−continuous, injective maps

which commutes with Fand we suppose either

(a) F is continuous

(b) for a nondecreasing sequence {xn} with xn→ x, we have xn ≤ x for all n;

(c) for a nonincreasing sequence {yn} with yn→ x, we have y≤ yn for all n.
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Then F and g have a coupled common fixed point provided that there exist x0, y0 ∈ X such that

gx0 ≤ F(x0,y0) and F(y0,x0)≤ gy0 or gx0 ≥ F(x0,y0) and F(y0,x0)≥ gy0.

Proof. Putting ϕ = idX and α = β = 1 in Theorem 3.1, we can conclude the desired conclusion

immediately.

Example 3.4. Let X = R, G(x,y,z) = |x− y|+ |y− z|+ |x− z|, F(x,y) = x−2y
4 , ϕ (t) = 1

2t ,

ψ (t) = 5
16t, g(x) = 2x

α = β = 1
2 , g commutes with F . F has the g-mixed monotone property

G(F(x,y),F(u,v),F(z,w)) = G(
x−2y

4
,
u−2v

4
,
z−2w

4
)

=

∣∣∣∣x−2y
4
− u−2v

4

∣∣∣∣+ ∣∣∣∣u−2z
4
− v−2w

4

∣∣∣∣
+

∣∣∣∣x−2z
4
− y−2w

4

∣∣∣∣
≤ 1

4
|x−u|+ 1

2
|y− v|+ 1

4
|u− z|+ 1

2
|v−w|

1
4
|z− x|+ 1

2
|w− y| + 1

4
|x−u|+ 1

2
|y− v|

+
1
4
|u− z|+ 1

2
|v−w|

≤ 1
8

G(gx,gu,gz)+
1
4

G(gy,gv,gw), ∀gx≥ gu≥ gz

and

G(F(y,x),F(v,u),F(w,z))≤ 1
4

G(gx,gu,gz)+
1
8

G(gy,gv,gw), ∀gy≤ gv≤ gw.

Hence, we have

ϕ

(
G(F(x,y),F(u,v),F(z,w))+G(F(y,x),F(v,u),F(w,z))

2

)
≤ 3

16

(
G(gx,gu,gz)+G(gy,gv,gw

2
)

)
1
2

(
G(gx,gu,gz)+G(gy,gv,gw)

2

)
− 5

16

(
G(gx,gu,gz)+G(gy,gv,gw)

2

)
ϕ

(
G(gx,gu,gz)+G(gy,gv,gw)

2

)
−ψ

(
G(gx,gu,gz)+G(gy,gv,gw)

2

)
.
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We choose x0 =−2≤ F(−2,3) and 3≥ F(3,−2). So by Corollary 3.2, we obtain that F and

g have (0,0) as coincidence point.

From the previous obtained results, we deduce some coincidence point results for mappings

satisfying a contraction of an integral type. For this purpose, let

Y =


χ,χ : R+→ R+, satisfies that χ is Lesbesgue integrable,

summable on each compact of subset of R+, subaddittive

and
∫

ε

0 χ (t)dt > 0 for each ε > 0

 .

Theorem 3.4. Let (X ,≤) be a partially ordered set and suppose that there is a G-metric on

X such that (X ,G) is a complete G-metric space. Let F : X ×X → X and g: X → X be two

mappings such that F has the mixed g-monotone property for which there exist ψ ∈ Ψ and

ϕ ∈Φ such that∫
ϕ(αG(F(x,y),F(u,v),F(z,w))+βG(F(y,x),F(v,u),F(w,z)))

0
χ (t)dt

≤
∫

ϕ(αG(gx,gu,gz)+βG(gy,gv,gw))

0
χ (t)dt−

∫
ψ(αG(gx,gu,gz)+βG(gy,gv,gw))

0
χ (t)dt, ∀χ ∈ Y

(3.15)

for all x,y,z,u,v,w ∈ X with gx ≥ gu ≥ gw and gy ≤ gv ≤ gz with α,β ∈ R∗+. We suppose

F(X×X) is contained in a closed subspace g(X) and g is a G-continuous, injective map which

commutes with F and we suppose either

(a) F is continuous

(b) for a nondecreasing sequence {xn} with xn→ x, we have xn ≤ x for all n;

(c) for a nonincreasing sequence {yn} with yn→ x, we have y≤ yn for all n.

Then F and g have a coupled common fixed point provided that there exist x0, y0 ∈ X such that

gx0 ≤ F(x0,y0) and F(y0,x0)≤ gy0 or gx0 ≥ F(x0,y0) and F(y0,x0)≥ gy0.

Proof. For χ ∈ Y , consider the function Λ : R+→ R+ defined by Λ(x) =
∫ x

0 χ (t)dt. We note

that Λ ∈Ψ. Thus the inequality (31.5) becomes

Λ(ϕ(αG(F(x,y),F(u,v),F(z,w))+βG(F(y,x),F(v,u),F(w,z)))

≤ Λ(ϕ (αG(gx,gu,gz)+βG(gy,gv,gw)))−Λ(ψ (αG(gx,gu,gz)+βG(gy,gv,gw))) .
(3.16)
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Setting Λ◦ψ = ψ1 ,ψ1 ∈Ψ and Λ◦ϕ = ϕ1 , ϕ1 ∈Φ, we obtain

ϕ1 (αG(F(x,y),F(u,v),F(z,w))+βG(F(y,x),F(v,u),F(w,z)))

≤ ϕ1 (αG(gx,gu,gz)+βG(gy,gv,gw))−ψ1 (αG(gx,gu,gz)+βG(gy,gv,gw)) .

Using Theorem 3.1, we see that F and g have a coupled common fixed point.

Corollary 3.5. Let (X ,≤) be a partially ordered set and suppose that there is a G−metric on

X such that (X ,G) is a complete G-metric space. Let F : X ×X → X and g: X → X be two

mappings such that F has the mixed g-monotone property for which there exist ψ ∈ Ψ and

ϕ ∈Φ such that∫
ϕ

(
G(F(x,y),F(u,v),F(z,w))+G(F(y,x),F(v,u),F(w,z))

2

)
0

χ (t)dt ≤
∫

ϕ

(
G(gx,gu,gz)+G(gy,gv,gw)

2

)
0

χ (t)dt

−
∫

ψ

(
G(gx,gu,gz)+G(gy,gv,gw)

2

)
0

χ (t)dt.

for all χ ∈ Y and x,y,z,u,v,w ∈ X with gx ≥ gu ≥ gw and gy ≤ gv ≤ gz with α,β ∈ R∗+. We

suppose F(X ×X) is contained in a closed subspace g(X)and g is a G−continuous, injective

map which commutes with Fand we suppose either

(a) F is continuous

(b) for a nondecreasing sequence {xn} with xn→ x, we have xn ≤ x for all n;

(c) for a nonincreasing sequence {yn} with yn→ x, we have y≤ yn for all n.

Then F and g have a coupled common fixed point provided that there exist x0, y0 ∈ X such that

gx0 ≤ F(x0,y0) and F(y0,x0)≤ gy0 or gx0 ≥ F(x0,y0) and F(y0,x0)≥ gy0.

Remark 3.6. Let us note that, since the contractivity condition in Theorem 3.1 is valid only

for comparable elements of X2, Theorem 3.1 cannot guarantee in general the uniqueness of the

coupled fixed point.

Let us add hypothesis of Theorem 3.1, the following condition. Every pair of elements in X2

has either a lower bound or an upper bound, which is known to be equivalent to the following

condition: For all Y = (x,y),A = (a,b) ∈ X2,∃Z = (z1,z2) ∈ X2, that is comparable to Y and A.

Theorem 3.7 In addition to the hypotheses of Theorem 15, suppose that the above condition

holds. Then F has a unique coincidence point.
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Proof. From Theorem 3.1, we have the set of coupled fixed point of F is nonempty. Assume

that A1 = (a1,a2) ∈ X2 and B = (b1,b2) ∈ X2 are two coupled coincidence points of F . We

shall prove that A = B. By the above assumption, there exists (u,v) ∈ X2 that is comparable to

(a1,a2) and (b1,b2). We define the sequence {un}, {vn} as follows:

u0 = u, v0 = v, gun+1 = F(un,vn), gvn+1 = F(vn,un), n≥ 0.

Since (u,v) is comparable to (b1,b2), we may assume (b1,b2)≥ (u,v) = (u0,v0). Using Theo-

rem 3.1, we obtain inductively

(b1,b2)≥ (gun,gvn), ∀n≥ 0. (3.17)

It follows that
ϕ (αG(gb1,gun+1, gun+1)+βG(gb2, gvn+1, gvn+1))

= ϕ

 αG(F(b1,b2), F(un,vn), F(un,vn))

+βG(F(b2,b1), F(vn,un), F(vn,un)


≤ ϕ (αG(gb1, gun,gun)+βG(gb2, gvn, gvn))

−ψ (αG(gb1,gun, gun)+βG(gb2, gvn, gvn)) ,

(3.18)

which implies from ψ ≥ 0 that

ϕ (αG(gb1,gun+1, gun+1)+βG(gb2, gvn+1, gvn+1))

≤ ϕ (αG(gb1, gun,gun)+βG(gb2, gvn, gvn)) .

Thus, by the monotonicity of ϕ , we obtain that the sequence {ηn
α,β} defined by

η
n
α,β = αG(gb1, gun,gun)+βG(gb2, gvn, gvn), n≥ 0

is nonincreasing. Hence there exists ηα,β ≥ 0 such that lim
n→∞

ηn
α,β = ηα,β . We shall prove that

ηα,β = 0. Suppose, to the contrary, that is ηα,β > 0. Letting n→ ∞ in (3.18), we get

ϕ
(
ηα,β

)
≤ ϕ

(
ηα,β

)
− lim

n→∞
ψ

(
η

n
α,β

)
= ϕ

(
ηα,β

)
− lim

ηn
α,β
→η

+
α,β

ψ

(
η

n
α,β

)
< ϕ

(
ηα,β

)
,

which is a contradiction. Thus ηα,β = 0. That is

lim
n→∞

αG(gb1, gun,gun) = lim
n→∞

βG(gb2, gvn, gvn) = 0.
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Similarly, we obtain

lim
n→∞

αG(a1, un, un) = lim
n→∞

βG(a2, vn, vn) = 0.

By the uniqueness of the limit, we have ga1 = gb1 and ga2 = gb2.

Theorem 3.8 In addition to the hypotheses of Theorem 3.1, suppose that gx0,gy0 are compara-

ble. Then F has a unique fixed point, that is, there exists γ such that gγ = F(γ,γ).

Proof. Assume gx0 ≤ F(x0,y0) and F(y0,x0) ≤ gy0. Since gx0,gy0 are comparable, we have

gx0 ≥ gy0 or gx0 ≤ gy0. Suppose we are in the second case. Then, by the mixed monotone

property of F , we have

gx1 = F(x0,y0)≥ F(y0,x0) = gy1

and hence, by induction one obtains

gxn+1 = F(xn,yn)≥ F(yn,xn) = gyn+1, n≥ 0.

Since

ga1 = lim
n→∞

F(xn,yn) and gb1 = lim
n→∞

F(yn,xn),

we find from the continuity of the distance G that

G(ga1,gb1,gb1) = G( lim
n→∞

F(xn,yn), lim
n→∞

F(yn,xn), lim
n→∞

F(yn,xn))

= lim
n→∞

G(F(xn,yn),F(yn,xn),F(yn,xn))

= lim
n→∞

G(gxn+1,gyn+1,gyn+1).

On the other hand, we have

ϕ ((α +β )G(F(xn,yn),F(yn,xn),F(yn,xn)))

≤ ϕ ((α +β )G(gxn,gyn,gyn))−ψ ((α +β )G(gxn,gyn,gyn)) , n≥ 0,

which means

ϕ((α +β )G(gxn+1,gyn+1,gyn+1))

≤ ϕ ((α +β )G(gxn,gyn,gyn))−ψ ((α +β )G(gxn,gyn,gyn)) , n≥ 0.
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Suppose that G(ga1,gb1,gb1)> 0. Taking the limit as n→ ∞, we obtain

ϕ((α +β )G(ga1,gb1,gb1))

≤ ϕ ((α +β )G(ga1,gb1,gb1))− lim
n→∞

ψ ((α +β )G(gxn,gyn,gyn)) , n≥ 0,

which leads to lim
n→∞

ψ ((α +β )G(gxn,gyn,gyn))≤ 0, which contradicts the hypothese of ψ . So

G(ga1,gb1,gb1) = 0, hence ga1 = gb1.
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