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Abstract. In this paper, a convergence theorem is proved for a three-step iterative scheme in the framework of

CAT (0) spaces by using a generalized Z-type condition which is more general than the Zamfirescu operator.
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1. Introduction-preliminaries

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic

triangle in X is at least as ”thin” as its comparison triangle in the Euclidean plane. It is well

known that any complete, simply connected Riemannian manifold having nonpositive sectional

curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces [1], R-trees [2], Eu-

clidean buildings [3], the complex Hilbert ball with a hyperbolic metric [4], and many others.

For a thorough discussion of these spaces and of the fundamental role they play in geometry,

we refer the reader to Bridson and Haefliger [1].
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Fixed point theory in CAT(0) spaces was first studied by Kirk; see [5,6] and the references

therein. He showed that every nonexpansive (single-valued) mapping defined on a bounded

closed convex subset of a complete CAT(0) space always has a fixed point. Since, then the fixed

point theory for single-valued and multi-valued mappings in CAT(0) spaces has been rapidly

developed, and many papers have appeared; see, e.g., [7]-[18] and the references therein. It is

worth mentioning that the results in CAT(0) spaces can be applied to any CAT(k) space with

k ≤ 0 since any CAT(k) space is a CAT(k′) space for every k′ ≥ k; see, e.g., [1].

Let (X ,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a

geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x,

c(l) = y, and let d(c(t),c(t ′)) = |t− t ′| for all t, t ′ ∈ [0, l]. In particular, c is an isometry, and

d(x,y) = l. The image α of c is called a geodesic (or metric) segment joining x and y. We say X

is (i) a geodesic space if any two points of X are joined by a geodesic and (ii) uniquely geodesic

if there is exactly one geodesic joining x and y for each x,y∈ X , which we will denoted by [x,y],

called the segment joining x to y.

A geodesic triangle4(x1,x2,x3) in a geodesic metric space (X ,d) consists of three points in

X (the vertices of 4) and a geodesic segment between each pair of vertices (the edges of 4).

A comparison triangle for geodesic triangle4(x1,x2,x3) in (X ,d) is a triangle4(x1,x2,x3) :=

4(x1,x2,x3) in R2 such that dR2(xi,x j) = d(xi,x j) for i, j ∈ {1,2,3}. Such a triangle always

exists; see [1].

A geodesic metric space is said to be a CAT (0) space if all geodesic triangles of appropriate

size satisfy the following CAT (0) comparison axiom.

Let 4 be a geodesic triangle in X , and let 4⊂ R2 be a comparison triangle for 4. Then 4

is said to satisfy the CAT (0) inequality if for all x,y ∈4 and all comparison points x,y ∈4,

d(x,y) ≤ dR2(x,y).(1)

Complete CAT (0) spaces are often called Hadamard spaces; see [19]. If x,y1,y2 are points

of a CAT (0) space and y0 is the mid point of the segment [y1,y2] which we will denote by

(y1⊕ y2)/2, then the CAT (0) inequality implies

d2
(

x,
y1⊕ y2

2

)
≤ 1

2
d2(x,y1)+

1
2

d2(x,y2)−
1
4

d2(y1,y2).(2)
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The inequality (2) is the (CN) inequality of Bruhat and Tits [20]. The above inequality has been

extended in [21] as

d2(z,αx⊕ (1−α)y) ≤ αd2(z,x)+(1−α)d2(z,y)

−α(1−α)d2(x,y)(3)

for any α ∈ [0,1] and x,y,z ∈ X .

Let us recall that a geodesic metric space is a CAT (0) s pace if and only if it satisfies the

(CN) inequality; see [1, page 163]). Moreover, if X is a CAT (0) metric space and x,y ∈ X , then

for any α ∈ [0,1], there exists a unique point αx⊕ (1−α)y ∈ [x,y] such that

d(z,αx⊕ (1−α)y) ≤ αd(z,x)+(1−α)d(z,y),(4)

for any z ∈ X and [x,y] = {αx⊕ (1−α)y : α ∈ [0,1]}.

A subset C of a CAT (0) space X is convex if for any x,y ∈C, we have [x,y]⊂C.

We recall the following definitions in a metric space (X ,d). A mapping T : X → X is called

an a-contraction if

d(T x,Ty) ≤ ad(x,y) for all x, y ∈ X ,(5)

where a ∈ (0,1).

The mapping T is called Kannan mapping [22] if there exists b ∈ (0, 1
2) such that

d(T x,Ty) ≤ b [d(x,T x)+d(y,Ty)] for all x, y ∈ X .(6)

Following definition is due to Chatterjea [23]: there exists c ∈ (0, 1
2) such that

d(T x,Ty) ≤ c [d(x,Ty)+d(y,T x)] for all x, y ∈ X .(7)

Combining these three definitions, Zamfirescu [24] proved the following important result.

Theorem Z. Let (X ,d) be a complete metric space and T : X → X a mapping for which there

exists the real numbers a, b and c satisfying a ∈ (0,1), b, c ∈ (0, 1
2) such that for any pair

x, y ∈ X, at least one of the following conditions holds:

(z1) d(T x,Ty)≤ ad(x,y),

(z2) d(T x,Ty)≤ b [d(x,T x)+d(y,Ty)],
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(z3) d(T x,Ty)≤ c [d(x,Ty)+d(y,T x)].

Then T has a unique fixed point p and the Picard iteration {xn}∞
n=0 defined by

xn+1 = T xn, n = 0,1,2, . . .

converges to p for any arbitrary but fixed x0 ∈ X.

An operator T which satisfies at least one of the contractive conditions (z1), (z2) and (z3) is

called a Zamfirescu operator or a Z-operator.

In 2004, Berinde [25] proved the strong convergence of Ishikawa iterative process defined

by: for x0 ∈C, the sequence {xn}∞
n=0 given by

xn+1 = (1−αn)xn +αnTyn,

yn = (1−βn)xn +βnT xn, n≥ 0,(8)

to approximate fixed points of Zamfirescu operators in an arbitrary Banach space E. While

proving the theorem, he made use of the condition,

‖T x−Ty‖ ≤ δ ‖x− y‖+2δ ‖x−T x‖,(9)

which holds for any x, y ∈ E where 0≤ δ < 1.

Iteration procedures in fixed point theory are lead by the considerations in summability the-

ory. For example, if a given sequence converges, then we don’t look for the convergence of the

sequence of its arithmetic means. Similarly, if the sequence of Picard iterates of any mapping

T converges, then we don’t look for the convergence of other iteration procedures.

In 2002, Xu and Noor [26] introduced a three-step iterative scheme as follows:

x0 ∈C,

xn+1 = (1−αn)xn +αnT nyn,

yn = (1−βn)xn +βnT nzn,

zn = (1− γn)xn + γnT nxn, n≥ 0,

where {αn}, {βn} and {γn} are real sequences in [0,1].
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The three-step iterative approximation problems were studied extensively by Noor [27,28],

Glowinsky and Le Tallec [29], and Haubruge et al., [30]. It has been shown [29] that three-

step iterative scheme gives better numerical results than the two step and one step approximate

iterations. Thus we conclude that three step scheme plays an important and significant role in

solving various problems, which arise in pure and applied sciences.

In this paper, inspired and motivated [24,25], we employ a condition introduced in [31] which

is more general than condition (9) and establish fixed point theorem of three-step iteration

scheme in the framework of CAT(0) spaces. The condition is defined as follows:

Let C be a nonempty, closed, convex subset of a CAT(0) space X and T : C→C a self map

of C. There exists a constant L≥ 0 such that for all x, y ∈C, we have

d(T x,Ty) ≤ eLd(x,T x)
(

δ d(x,y)+2δ d(x,T x)
)
,(10)

where 0≤ δ < 1 and ex denotes the exponential function of x ∈C.

Throughout this paper, we call this condition as the generalized Z-type condition.

Remark 1.1. If L = 0, in the above condition, we obtain

d(T x,Ty)≤ δ d(x,y)+2δ d(x,T x),

which is the Zamfirescu condition used by Berinde [25] where

δ = max
{

a,
b

1−b
,

c
1− c

}
, 0≤ δ < 1,

while constants a, b and c are as defined in Theorem Z.

Example 1.2. Let X be the real line with the usual norm ‖.‖ and suppose K = [0,1]. Define

T : K→ K by Tx = x+1
2 for all x,y ∈ K. Obviously T is self-mapping with a unique fixed point

1. Now we check that condition (10) is true. If x,y ∈ [0,1], then ‖T x−Ty‖ ≤ eL‖x−T x‖[δ ‖x−
y‖+2δ ‖x−T x‖

]
where 0≤ δ < 1. In fact

‖T x−Ty‖ = ‖x− y
2
‖

and

eL‖x−T x‖[
δ ‖x− y‖+2δ ‖x−T x‖

]
= eL‖ x−1

2 ‖
[
δ ‖x− y‖+δ ‖x−1‖

]
.
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Clearly, if we chose x = 0 and y = 1, then contractive condition (10) is satisfied since

‖T x−Ty‖= ‖x− y
2
‖= 1

2
,

and for L≥ 0, we chose L = 0, then

eL‖x−T x‖[
δ ‖x− y‖+2δ ‖x−T x‖

]
= eL‖ x−1

2 ‖
[
δ ‖x− y‖+δ ‖x−1‖

]
= e0(1/2)(2δ ) = 2δ , where 0 < δ < 1.

Therefore, one has

‖T x−Ty‖ ≤ eL‖x−T x‖[
δ ‖x− y‖+2δ ‖x−T x‖

]
.

Hence T is a self mapping with unique fixed point satisfying the contractive condition (10).

Let C be a nonempty closed convex subset of a complete CAT(0) space X and let T : C→C

be a given operator. Then for a given x1 = x0 ∈C, compute the sequence {xn} by the iterative

scheme as follows:

zn = γnT xn⊕ (1− γn)xn,

yn = βnT zn⊕ (1−βn)xn,

xn+1 = αnTyn⊕ (1−αn)xn, n≥ 0,(11)

where {αn}∞
n=0, {βn}∞

n=0, {γn}∞
n=0 are appropriate sequences in [0,1]. If γn = 0 for all n ≥ 0,

then (11) reduces to Ishikawa iteration scheme in CAT (0) spaces:

yn = βnT xn⊕ (1−βn)xn,

xn+1 = αnTyn⊕ (1−αn)xn, n≥ 0,(12)

where {αn}∞
n=0 and {βn}∞

n=0 are appropriate sequences in [0,1].

We note if βn = 0 for all n≥ 0, then (12) reduces to Mann iteration scheme in CAT (0) spaces:

xn+1 = αnT xn⊕ (1−αn)xn, n≥ 0,(13)

where {αn}∞
n=0 is a sequence in (0,1).

We need the following useful lemmas to prove our main result in this paper.
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Lemma 1.3. [27] Let X be a CAT(0) space.

(i) For x, y ∈ X and t ∈ [0,1], there exists a unique point z ∈ [x, y] such that

d(x, z) = t d(x, y) and d(y, z) = (1− t)d(x, y). (A)

We use the notation (1− t)x⊕ ty for the unique point z satisfying (A).

(ii) For x, y ∈ X and t ∈ [0,1], we have

d((1− t)x⊕ ty,z)≤ (1− t)d(x,z)+ td(y,z).

Lemma 1.4. [32] Let {pn}∞
n=0, {qn}∞

n=0 and {rn}∞
n=0 be sequences of nonnegative numbers

satisfying the following condition:

pn+1 ≤ (1− sn)pn +qn + rn, ∀n≥ 0,

where {sn}∞
n=0 ⊂ [0,1]. If ∑

∞
n=0 sn = ∞, limn→∞ qn = O(sn) and ∑

∞
n=0 rn < ∞, then limn→∞ pn =

0.

2. Convergence theorems in CAT(0) Spaces

In this section, we establish strong convergence result of the three-step iteration scheme (11)

for fixed points of generalized Z-type condition in the framework of CAT(0) spaces.

Theorem 2.1. Let C be a nonempty closed convex subset of a complete CAT(0) space X and

let T : C → C be a self mapping satisfying generalized Z-type condition given by (10) with

F(T ) 6= /0. For any x0 ∈C, let {xn}∞
n=0 be the sequence defined by (11). If ∑

∞
n=0 αn = ∞, then

{xn}∞
n=0 converges strongly to the unique fixed point of T .

Proof. From the assumption F(T ) 6= /0, it follows that T has a fixed point in C, say u. Since T

satisfies the generalized Z-type condition given by (10). Taking x = u and y = xn, we see from
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(10) that

d(Tu,T xn) ≤ eLd(u,Tu)
(

δ d(u,xn)+2δ d(u,Tu)
)

= eLd(u,u)
(

δ d(u,xn)+2δ d(u,u)
)

= eL(0)
(

δ d(u,xn)+2δ (0)
)
,

which implies that

d(T xn,u) ≤ δ d(xn,u).(14)

Similarly by taking x = u and y = yn, zn in (10), we have

d(Tyn,u) ≤ δ d(yn,u),(15)

and

d(T zn,u) ≤ δ d(zn,u).(16)

Now using (11), (14) and Lemma 1.3 (ii), we have

d(zn,u) = d(γnT xn⊕ (1− γn)xn,u)

≤ γnd(T xn,u)+(1− γn)d(xn,u)

≤ γnδ d(xn,u)+(1− γn)d(xn,u)

≤ [1− γn +δ γn]d(xn,u).(17)

By using (11), (16), (17) and Lemma 1.3 (ii), we have

d(yn,u) = d(βnT zn⊕ (1−βn)xn,u)

≤ βnd(T zn,u)+(1−βn)d(xn,u)

≤ βnδ d(zn,u)+(1−βn)d(xn,u)

≤ βnδ [1− γn +δ γn]d(xn,u)+(1−βn)d(xn,u)

= [1−βn +δ βn(1− γn +δ γn)]d(xn,u).(18)

Note that

1−βn +δ βn(1− γn +δ γn) = 1− [βn(1−δ )(1+δ γn)].
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Since (1+δγn)≥ (1−δ ), we have

1−βn +δ βn(1− γn +δ γn) ≤ 1− (1−δ )2
βn.(19)

It follows that

d(yn,u) ≤ [1− (1−δ )2
βn]d(xn,u).(20)

By using (11), (15), (20) and Lemma 1.3 (ii), we have

d(xn+1,u) = d(αnTyn⊕ (1−αn)xn,u)

≤ αnd(Tyn,u)+(1−αn)d(xn,u)

≤ αnδ d(yn,u)+(1−αn)d(xn,u)

≤ αnδ [1− (1−δ )2
βn]d(xn,u)+(1−αn)d(xn,u)

≤ [1−αn +δ αn−δ (1−δ )2
αnβn]d(xn,u)

= [1− (1−δ )αn−δ (1−δ )2
αnβn]d(xn,u)

= [1− (1−δ )αn{1+δ (1−δ )βn}]d(xn,u).(21)

Since (1+δ (1−δ )βn)≥ (1−δ )2, we have

1− (1−δ )αn{1+δ (1−δ )βn} ≤ 1− (1−δ )3
αn.(22)

Hence, we find that

d(xn+1,u) ≤ [1− (1−δ )3
αn]d(xn,u)

≤ (1−Bn)d(xn,u),(23)

where Bn = (1− δ )3αn, since 0 ≤ δ < 1 and by assumption of the theorem ∑
∞
n=0 αn = ∞, it

follows that ∑
∞
n=0 Bn = ∞, therefore by Lemma 1.4, we get that limn→∞ d(xn,u) = 0. Thus

{xn}∞
n=0 converges strongly to a fixed point of T .

To show uniqueness of the fixed point u, assume that u1, u2 ∈ F(T ) and u1 6= u2.
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Applying the generalized Z-type condition given by (10) and using the fact that 0 ≤ δ < 1,

we obtain

d(u1,u2) = d(Tu1,Tu2)

≤ eLd(u1,Tu1)
{

δ d(u1,u2)+2δ d(u1,Tu1)
}

= eLd(u1,u1)
{

δ d(u1,u2)+2δ d(u1,u1)
}

= eL(0)
{

δ d(u1,u2)+2δ (0)
}

= δ d(u1,u2)

< d(u1,u2),

which is a contradiction. Therefore u1 = u2. Thus {xn}∞
n=0 converges strongly to the unique

fixed point of T .

Corollary 2.2. Let C be a nonempty closed convex subset of a complete CAT(0) space and

let T : C → C be a self mapping satisfying generalized Z-type condition given by (10) with

F(T ) 6= /0. For any x0 ∈C, let {xn}∞
n=0 be the sequence defined by (12). If ∑

∞
n=0 αn = ∞, then

{xn} converges strongly to the unique fixed point of T .

Proof. The proof of Corollary 2.2 follows by taking γn = 0 for all n ≥ 0 in Theorem 2.1. This

completes the proof.

Corollary 2.3. Let C be a nonempty closed convex subset of a complete CAT(0) space and

let T : C → C be a self mapping satisfying generalized Z-type condition given by (10) with

F(T ) 6= /0. For any x0 ∈C, let {xn}∞
n=0 be the sequence defined by (13). If ∑

∞
n=0 αn = ∞, then

{xn} converges strongly to the unique fixed point of T .

Proof. The proof of Corollary 2.3 follows by taking βn = γn = 0 for all n≥ 0 in Theorem 2.1.

This completes the proof.

The contraction condition (5) makes T continuous function on X while this is not the case

with contractive conditions (6), (7) and (10).



412 G.S. SALUJA

Remark 2.4. Our result extends and improves the corresponding result proved by Berinde [33],

Yildirim et al. [34] and Bosede [31] to the case of three-step iteration schemes and from Banach

spaces or normed linear space to the setting of CAT(0) spaces.

3. Conclusion

The generalized Z-type condition is more general than Zamfirescu operators and the Noor

iterative scheme is more general than iterative schemes comparing with Mann, Ishikawa and

Picard iterative schemes. Thus the result presented in this paper is an extension and general-

ization of corresponding result proved in [31, 33, 34] and some others given in the existing

literature.
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