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Abstract. In this paper, strictly pseudocontractive and monotone operators are investigated based on a viscosity

splitting method. Strong convergence theorems for common solutions are established in the framework of Hilbert

spaces.
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1. Introduction-preliminaries

In what follows, we always assume that H is a real Hilbert space with the inner product 〈·, ·〉

and the norm ‖ · ‖. Let C be a nonempty, closed and convex subset of H. Let S : C→ C be a

mapping. F(S) denoted by the fixed point set of S. S is said to be contractive iff there exists a

constant α ∈ (0,1) such that

‖Sx−Sy‖ ≤ α‖x− y‖, ∀x,y ∈C.

S is said to be nonexpansive iff

‖Sx−Sy‖ ≤ ‖x− y‖, ∀x,y ∈C.
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S is said to be strictly pseudocontractive iff there exits a constant λ ∈ [0,1) such that

‖Sx−Sy‖2 ≤ ‖x− y‖2 +λ‖(I−S)x− (I−S)y‖2, ∀x,y ∈C.

The class of strictly pseudocontractive mapping was introduced by Browder and Petryshyn [1].

It is clear that the class strictly pseudocontractive mapping includes the class of nonexpansive

mappings as a special case.

Let A : C→ H be a mapping. Recall that A is said to be monotone iff

〈Ax−Ay,x− y〉 ≥ 0, ∀x,y ∈C.

Recall that A is said to be inverse-strongly monotone iff there exists a constant κ > 0 such that

〈Ax−Ay,x− y〉 ≥ κ‖Ax−Ay‖2, ∀x,y ∈C.

It is not hard to see that every inverse-strongly monotone mapping is monotone and continuous.

Recall that a set-valued mapping B : H ⇒ H is said to be monotone iff, for all x,y∈H, f ∈ Bx

and g ∈ By imply 〈x− y, f − g〉 > 0. In this paper, we use B−1(0) to stand for the zero point

of B. A monotone mapping B : H ⇒ H is maximal iff the graph Graph(B) of B is not properly

contained in the graph of any other monotone mapping. It is known that a monotone mapping

B is maximal if and only if, for any (x, f ) ∈H×H, 〈x−y, f −g〉 ≥ 0, for all (y,g) ∈Graph(B)

implies f ∈ Bx. For a maximal monotone operator B on H, and r > 0, we may define the single-

valued resolvent Jr : H→ Dom(B), where Dom(B) denote the domain of B. It is known that Jr

is firmly nonexpansive, and B−1(0) = F(Jr).

Maximal monotone operators have been extensively studied by many authors; see [2-22] and

the references therein. One well-known example of such a mapping is ∂ f , the subdifferential

of a proper closed convex function f : H→ (−∞,∞] which is defined by

∂ f (x) := {x∗ ∈ H : f (x)+ 〈y− x,x∗〉 ≤ f (y),∀y ∈ H}, ∀x ∈ H.

Rockafellar [5] proved that ∂ f is a maximal monotone operator. It is easy to verify that 0 ∈

∂ f (v) if and only if f (v) = minx∈H f (x). Another example is M +NC, M is a single valued

maximal monotone mapping that is continuous on C, and NC is the normal cone mapping

NC(x) := {x∗ ∈ H : 〈x∗,y− x〉 ≤ 0,∀y ∈C},
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for x ∈ C and is empty otherwise. Then, 0 ∈ Mx +NC(x) iff x ∈ C satisfies the variational

inequalities of 〈Mx,y− x〉 ≥ 0 for all y ∈C.

For approximating zero points of maximal monotone operator T , classical methods for doing

this is the proximal point algorithm, proposed by Martinet [19] and generalized by Rockafellar

[4-6]. In the case of T = A+B, where A and B are monotone operators on H. The following

splitting method

xn+1 = Jrn(I− rnA)xn, n≥ 1,

where {αn} is real number sequence, was proposed by Lions and Mercier [23], by Passty [24]

and, in a dual form for convex programming, by Han and Lou [25].

Since many nonlinear problems arising in applied areas such as image recovery, signal pro-

cessing, and machine learning are mathematically modeled as a nonlinear operator equation

and this operator is decomposed as the sum of two monotone nonlinear operators (T = A+B),

splitting methods recently have been investigated for treating monotone operators; see [26-31]

and the references therein. Splitting methods mean an iterative method for which each itera-

tion involves only with the individual operators A and B , but not the sum A+B. Indeed, the

backward step involves B only, so some portion of T can be put into A to facilitate problem

decomposition.

In this paper, we investigate common solutions of fixed point problems and zero points of

the sum of two monotone operators based on a viscosity splitting method. Strong convergence

theorems for the common solutions of the two problems are established in Hilbert spaces. In

order to prove our main results, we also need the following tools.

Lemma 1.1. [31] Let A : C→ H be a mapping, and B : H ⇒ H a maximal monotone operator.

Then F(Jr(I− rA)) = (A+B)−1(0).

Lemma 1.2 [32] Let E be a Banach space and let A be an m-accretive operator. For λ > 0,

µ > 0, and x ∈ E, we have Jλ x = Jµ

(
µ

λ
x+
(

1− µ

λ

)
Jλ x
)
, where Jλ = (I + λA)−1 and Jµ =

(I +µA)−1.

Lemma 1.3 [33] Let {xn} and {yn} be bounded sequences in a Banach space E, and {βn}

be a sequence in (0,1) with 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1. Suppose that xn+1 = (1−
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βn)yn +βnxn, ∀n≥ 1 and

limsup
n→∞

(‖yn+1− yn‖−‖xn+1− xn‖)≤ 0.

Then limn→∞ ‖yn− xn‖= 0.

Lemma 1.4 [34] Let {an} be a sequence of nonnegative numbers satisfying the condition an+1≤

(1−tn)an+tnbn+en, ∀n≥ 0, where {tn} is a number sequence in (0,1) such that limn→∞ tn = 0

and ∑
∞
n=0 tn = ∞, {bn} is a number sequence such that limsupn→∞ bn ≤ 0 and {en} is a number

sequence such that ∑
∞
n=0 en < ∞. Then limn→∞ an = 0.

Lemma 1.5 [34] Let C be a nonempty closed convex subset of a real Hilbert space H. Let

T : C→C be a λ -strictly pseudocontractive mapping. Define St by St = tx+(1− t)T x, where

t ∈ [λ ,1). Then St is nonexpansive with F(St) = F(T ) and I−T is also demiclosed.

2. Main results

Now, we are in a position to give our main results.

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let

A : C → H be an α-inverse-strongly monotone mapping and let B be a maximal monotone

operator on H. Let f :C→C be a κ-contractive mapping and let T :C→C be a λ -strictly pseu-

docontractive mapping with fixed points. Assume that Dom(B) ⊂C and F(T )∩ (A+B)−1(0)

is not empty. Let {αn} and {βn} be real number sequences in (0,1) and {rn} be a positive real

number sequence in (0,2α). Let {xn} be a sequence generated in the following process: x1 ∈C

and 
yn = αn f (xn)+(1−αn)xn,

xn+1 = βnxn +(1−βn)Sλ Jrn(yn− rnAyn + en), ∀n≥ 1,

where Sλ = λx+(1−λ )T x, Jrn =(I+rnB)−1 and {en} is a sequence in H such that ∑
∞
n=1 ‖en‖<

∞. Assume that the above sequences satisfy the following restrictions:

(a) limn→∞ αn = 0, ∑
∞
n=0 αn = ∞;

(b) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1;

(c) 0 < a≤ rn ≤ b < 2α and ∑
∞
n=1 |rn− rn−1|< ∞,
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where a and b are two real numbers.Then {xn} converges strongly to q = PF(T )∩(A+B)−1(0) f (q).

Proof. For any x,y ∈C, we find that

‖(I− rnA)x− (I− rnA)y‖2

= ‖x− y‖2−2rn〈x− y,Ax−Ay〉+ rn
2‖Ax−Ay‖2

≤ ‖x− y‖2− rn(2α− rn)‖Ax−Ay‖2.

Using the restriction (c), we obtain that I− rnA is nonexpansive. Fixing p ∈ (A+B)−1(0)∩

F(S), we see that

‖yn− p‖ ≤ αn‖ f (xn)− p‖+(1−αn)‖xn− p‖

≤ αn‖ f (xn)− f (p)‖+αn‖ f (p)− p‖+(1−αn)‖xn− p‖

≤
(
1−αn(1−κ)

)
‖xn− p‖+αn(1−κ)

‖ f (p)− p‖
1−κ

.

It follows that

‖xn+1− p‖ ≤ βn‖xn− p‖+(1−βn)‖Sλ Jrn(yn− rnAyn + en)− p‖

≤ βn‖xn− p‖+(1−βn)‖Jrn(yn− rnAyn + en)− p‖

≤ βn‖xn− p‖+(1−βn)‖(yn− rnAyn + en)− p‖

≤ βn‖xn− p‖+(1−βn)‖yn− p‖+‖en‖

≤ βn‖xn− p‖+(1−βn)
(
1−αn(1−κ)

)
‖xn− p‖

+αn(1−βn)(1−κ)
‖ f (p)− p‖

1−κ
+‖en‖

≤
(
1−αn(1−βn)(1−κ)

)
‖xn− p‖+αn(1−βn)(1−κ)

‖ f (p)− p‖
1−κ

+‖en‖.

This implies that the sequence {xn} is bounded. Note that

‖yn− yn−1‖ ≤ αn‖ f (xn)− f (xn−1)‖+‖ f (xn−1)− xn−1‖|αn−αn−1|

+(1−αn)‖xn− xn−1‖

≤
(
1−αn(1−κ)

)
‖xn− xn−1‖+‖ f (xn−1)− xn−1‖|αn−αn−1|

(2.1)
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Set zn = yn− rnAyn + en. Using Lemma 1.2, we find that

‖Jrnzn− Jrn−1zn−1‖

≤ ‖rn−1

rn
(zn− zn−1)+(1− rn−1

rn
)(Jrnzn− zn−1)‖

≤ ‖zn− zn−1‖+
|rn− rn−1|

a
‖Jrnzn− zn‖

≤ ‖yn− yn−1‖+ |rn−1− rn|(‖Ayn−1‖+
‖Jrnzn− zn‖

a
)+‖en‖+‖en−1‖.

(2.2)

Substituting (2.1) into (2.2) yields that

‖Jrnzn− Jrn−1zn−1‖ ≤
(
1−αn(1−κ)

)
‖xn− xn−1‖+‖ f (xn−1)− xn−1‖|αn−αn−1|

+ |rn−1− rn|(‖Ayn−1‖+
‖Jrnzn− zn‖

a
)+‖en‖+‖en−1‖.

It follows that

‖Sλ Jrnzn−Sλ Jrn−1zn−1‖

≤ ‖Jrnzn− Jrn−1zn−1‖

≤
(
1−αn(1−κ)

)
‖xn− xn−1‖+‖ f (xn−1)− xn−1‖|αn−αn−1|

+ |rn−1− rn|(‖Ayn−1‖+
‖Jrnzn− zn‖

a
)+‖en‖+‖en−1‖.

Using the restrictions (a) and (c), we find that

limsup
n→∞

(
‖Sλ Jrnzn−Sλ Jrn−1zn−1‖−‖xn− xn−1‖‖

)
≤ 0.

Using Lemma 1.3, we see that limn→∞ ‖Sλ Jrnzn−xn‖= 0. Since xn+1−xn = (1−βn)(Sλ Jrnzn−

xn), we find that

lim
n→∞
‖xn+1− xn‖= 0. (2.3)

Since yn = αn f (xn)+(1−αn)xn, we find from the restriction (a) that

lim
n→∞
‖yn− xn‖= 0. (2.4)

Note that

‖yn− p‖2 ≤ αn‖ f (xn)− p‖2 +(1−αn)‖xn− p‖2.
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Hence, we have

‖xn+1− p‖2 ≤ βn‖xn− p‖2 +(1−βn)‖Sλ Jrnzn− p‖2

≤ βn‖xn− p‖2 +(1−βn)‖Jrn

(
(I− rnA)yn + en

)
− p‖2

≤ βn‖xn− p‖2 +(1−βn)‖
(
(I− rnA)yn + en

)
− (I− rnA)p‖2

≤ βn‖xn− p‖2 +(1−βn)
(
‖(I− rnA)yn− (I− rnA)p‖+‖en‖

)2

≤ βn‖xn− p‖2 +(1−βn)
(
‖(I− rnA)yn− (I− rnA)p‖2

+‖en‖(‖en‖+2‖yn− p‖)
)

≤
(
1−αn(1−βn)

)
‖xn− p‖2 +(1−βn)αn‖ f (xn)− p‖2

− rn(2α− rn)(1−βn)‖Ayn−Ap‖2 +‖en‖(‖en‖+2‖yn− p‖)

≤ ‖xn− p‖2 +αn‖ f (xn)− p‖2− rn(2α− rn)(1−βn)‖Ayn−Ap‖2

+‖en‖(‖en‖+2‖yn− p‖).

Therefore, we have

rn(1−βn)(2α− rn)‖Ayn−Ap‖2

≤ (‖xn− p‖+‖xn+1− p‖)‖xn+1− xn‖+αn‖ f (xn)− p‖2 +‖en‖(‖en‖+2‖yn− p‖).

Using the restrictions (a), (b) and (c), we find from (2.3) that

lim
n→∞
‖Ayn−Ap‖= 0. (2.5)

Since Jrn is firmly nonexpansive, we see that

‖Jrnzn− p‖2 ≤ 〈Jrnzn− p,(yn− rnAyn)− (p− rnAp)〉

=
1
2

(
‖Jrnzn− p‖2 +‖(yn− rnAyn)− (p− rnAp)‖2

−‖(Jrnzn− p)−
(
(yn− rnAyn)− (p− rnAp)

)
‖2
)

≤ 1
2
(
‖Jrnzn− p‖2 +‖yn− p‖2−‖Jrnzn− yn‖2

−‖rnAyn− rnAp‖2 +2rn‖Ayn−Ap‖‖Jrnzn− yn‖
)
.
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It follows that

‖Jrnzn− p‖2 ≤ ‖yn− p‖2−‖Jrnzn− yn‖2

−‖rnAyn− rnAp‖2 +2rn‖Ayn−Ap‖‖Jrnzn− yn‖

≤ αn‖ f (xn)− p‖2 +(1−αn)‖xn− p‖2−‖Jrnzn− yn‖2

−‖rnAyn− rnAp‖2 +2rn‖Ayn−Ap‖‖Jrnzn− yn‖

Using the convexness of ‖ · ‖2, we find that

‖xn+1− p‖2 ≤ βn‖xn− p‖2 +(1−βn)‖Sλ Jrnzn− p‖2

≤ βn‖xn− p‖2 +(1−βn)‖Jrnzn− p‖2

≤ ‖xn− p‖2 +αn‖ f (xn)− p‖2− (1−βn)‖Jrnzn− yn‖2

+2rn‖Ayn−Ap‖‖Jrnzn− yn‖.

It follows that

(1−βn)‖Jrnzn− yn‖2 ≤ (‖xn− p‖+‖xn+1− p‖)‖xn− xn+1‖+αn‖ f (xn)− p‖2

+2rn‖Ayn−Ap‖‖Jrnzn− yn‖.

Using the restrictions (a) and (b), we from (2.3) and (2.5) see that

lim
n→∞
‖Jrnzn− yn‖= 0. (2.6)

Since PF(T )∩(A+B)−1(0) f is contractive, we see that there exits a unique fixed point. Next, we use

q to denote the unique fixed point. Now, we are in a position to show that limsupn→∞〈 f (q)−

q,yn−q〉 ≤ 0. To show it, we can choose a subsequence {yni} of {yn} such that

limsup
n→∞

〈 f (q)−q,yn−q〉= lim
i→∞
〈 f (q)−q,yni−q〉.

Since {yni} is bounded, we can choose a subsequence {yni j
} of {yni} which converges weakly

some point x. We may assume, without loss of generality, that yni converges weakly to x.

Now, we are in a position to prove that x ∈ F(T ). Setting wn = Jrnzn, we find that

‖Sλ wn− yn‖ ≤
1

1−βn
‖xn+1− yn‖+

βn

1−βn
‖yn− xn‖.
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Using (2.3) and (2.4), we find that This implies that limn→∞ ‖Sλ wn− yn‖= 0. Note that

‖Sλ wn−wn‖ ≤ ‖Sλ wn− yn‖+‖yn−wn‖.

In view of (2.6), we find that ‖Sλ wn−wn‖→ 0. In view of demiclosed of the mapping, we find

that x ∈ F(Sλ ) = F(T ).

Now, we are in a position to show that x ∈ (A+B)−1(0). It follows that

yn− rnAyn + en ∈ (I + rnB)wn

That is, yn−wn
rn
−Ayn + en ∈ Bwn. Since B is monotone, we get, for any (µ,ν) ∈ B, that

〈wn−µ,
yn−wn

rn
−Ayn + en−ν〉 ≥ 0.

It follows from (2.6) that

〈x−µ,−Ax−ν〉 ≥ 0.

This gives that −Ax ∈ Bx, that is, 0 ∈ (A + B)(x). This proves that x ∈ (A + B)−1(0). This

complete the proof that x ∈ F(T )∩ (A+B)−1(0). Hence

limsup
n→∞

〈 f (q)−q,yn−q〉 ≤ 0.

Finally, we show that xn→ q. Notice that

‖yn−q‖2 ≤ αn〈 f (xn)−q,yn−q〉+(1−αn)‖xn−q‖‖yn−q‖

≤
(
1−αn(1−κ)

)
‖xn−q‖‖yn−q‖+αn〈 f (q)−q,yn−q〉

This implies that

‖yn−q‖2 ≤
(
1−αn(1−κ)

)
‖xn−q‖2 +2αn〈 f (q)−q,yn−q〉

It follows that

‖xn+1−q‖2 ≤ βn‖xn−q‖2 +(1−βn)‖Sλ Jrn(y− rnAyn + en)−q‖2

≤ βn‖xn−q‖2 +(1−βn)‖yn−q‖2 +‖+‖en‖(‖en‖+2‖yn−q‖)

≤
(
1−αn(1−βn)(1−κ)

)
‖xn−q‖2 +2αn(1−βn)〈 f (q)−q,yn−q〉

+‖en‖(‖en‖+2‖yn−q‖).



272 YUAN QING

Using the restrictions (a) and (b), we find from Lemma 1.4 that xn → q. This completes the

proof.

If T is nonexpansive, then we have the following.

Corollary 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C→

H be an α-inverse-strongly monotone mapping and let B be a maximal monotone operator on

H. Let f : C→C be a κ-contractive mapping and let T : C→C be a nonexpansive mapping

with fixed points. Assume that Dom(B) ⊂C and F(T )∩ (A+B)−1(0) is not empty. Let {αn}

and {βn} be real number sequences in (0,1) and {rn} be a positive real number sequence in

(0,2α). Let {xn} be a sequence generated in the following process: x1 ∈C and


yn = αn f (xn)+(1−αn)xn,

xn+1 = βnxn +(1−βn)T Jrn(yn− rnAyn + en), ∀n≥ 1,

where Jrn = (I+ rnB)−1 and {en} is a sequence in H such that ∑
∞
n=1 ‖en‖< ∞. Assume that the

above sequences satisfy the following restrictions:

(a) limn→∞ αn = 0, ∑
∞
n=0 αn = ∞;

(b) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1;

(c) 0 < a≤ rn ≤ b < 2α and ∑
∞
n=1 |rn− rn−1|< ∞,

where a and b are two real numbers.Then {xn} converges strongly to q = PF(T )∩(A+B)−1(0) f (q).

If T is the identity mapping, then we have the following.

Corollary 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C→

H be an α-inverse-strongly monotone mapping and let B be a maximal monotone operator on

H. Let f : C→C be a κ-contractive mapping. Assume that Dom(B) ⊂C and (A+B)−1(0) is

not empty. Let {αn} and {βn} be real number sequences in (0,1) and {rn} be a positive real

number sequence in (0,2α). Let {xn} be a sequence generated in the following process: x1 ∈C

and 
yn = αn f (xn)+(1−αn)xn,

xn+1 = βnxn +(1−βn)Jrn(yn− rnAyn + en), ∀n≥ 1,
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where Jrn = (I+ rnB)−1 and {en} is a sequence in H such that ∑
∞
n=1 ‖en‖< ∞. Assume that the

above sequences satisfy the following restrictions:

(a) limn→∞ αn = 0, ∑
∞
n=0 αn = ∞;

(b) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1;

(c) 0 < a≤ rn ≤ b < 2α and ∑
∞
n=1 |rn− rn−1|< ∞,

where a and b are two real numbers.Then {xn} converges strongly to q = P(A+B)−1(0) f (q).

3. Applications

In this section, we give applications of the main results. Let F be a bifunction of C×C into

R, where R denotes the set of real numbers. Recall the following equilibrium problem.

Find x ∈C such that F(x,y)≥ 0, ∀y ∈C. (3.1)

In this paper, we use EP(F) to denote the solution set of the equilibrium problem (3.1).

To study the equilibrium problems (3.1), we may assume that F satisfies the following con-

ditions:

(A1) F(x,x) = 0 for all x ∈C;

(A2) F is monotone, i.e., F(x,y)+F(y,x)≤ 0 for all x,y ∈C;

(A3) for each x,y,z ∈C,

limsup
t↓0

F(tz+(1− t)x,y)≤ F(x,y);

(A4) for each x ∈C, y 7→ F(x,y) is convex and weakly lower semi-continuous.

Lemma 3.1. [30] Let C be a nonempty closed convex subset of a real Hilbert space H, F a

bifunction from C×C to R which satisfies (A1)-(A4) and AF a multivalued mapping of H into

itself defined by

AFx =


{z ∈ H : F(x,y)≥ 〈y− x,z〉, ∀y ∈C}, x ∈C,

/0, x /∈C.

(3.2)

Then AF is a maximal monotone operator with the domain D(AF)⊂C, EP(F) = A−1
F (0) and

Trx = (I + rAF)
−1x, ∀x ∈ H,r > 0,
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where Tr is defined as

Trx = {z ∈C : F(z,y)+
1
r
〈y− z,z− x〉 ≥ 0, ∀y ∈C}

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A :

C→H be an α-inverse-strongly monotone mapping and Let FB be a bifunction from C×C to R

which satisfies (A1)-(A4). Let T : C→C be a λ -strictly pseudocontractive mapping with fixed

points. Assume that F(T )∩EP(F) is not empty. Let {αn} and {βn} be real number sequences in

(0,1) and {rn} be a positive real number sequence in (0,2α). Let {xn} be a sequence generated

in the following process: x1 ∈C and
yn = αn f (xn)+(1−αn)xn,

xn+1 = βnxn +(1−βn)Sλ Trn(yn− rnAyn + en), ∀n≥ 1,

where Sλ = λx+(1−λ )T x, Trn =(I+rAF)
−1 and {en} is a sequence in H such that ∑

∞
n=1 ‖en‖<

∞. Assume that the above sequences satisfy the following restrictions:

(a) limn→∞ αn = 0, ∑
∞
n=0 αn = ∞;

(b) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1;

(c) 0 < a≤ rn ≤ b < 2α and ∑
∞
n=1 |rn− rn−1|< ∞,

where a and b are two real numbers.Then {xn} converges strongly to q = PF(T )∩EP(F) f (q).

If T = I, the identity mapping, we have the following result.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A :

C → H be an α-inverse-strongly monotone mapping and Let FB be a bifunction from C×C

to R which satisfies (A1)-(A4). Assume that EP(F) is not empty. Let {αn} and {βn} be real

number sequences in (0,1) and {rn} be a positive real number sequence in (0,2α). Let {xn} be

a sequence generated in the following process: x1 ∈C and
yn = αn f (xn)+(1−αn)xn,

xn+1 = βnxn +(1−βn)Trn(yn− rnAyn + en), ∀n≥ 1,
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where Trn = (I+ rAF)
−1 and {en} is a sequence in H such that ∑

∞
n=1 ‖en‖< ∞. Assume that the

above sequences satisfy the following restrictions:

(a) limn→∞ αn = 0, ∑
∞
n=0 αn = ∞;

(b) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1;

(c) 0 < a≤ rn ≤ b < 2α and ∑
∞
n=1 |rn− rn−1|< ∞,

where a and b are two real numbers.Then {xn} converges strongly to q = PEP(F) f (q).

Recall the classical variational inequality is to find u ∈C such that

〈Au,v−u〉 ≥ 0, ∀v ∈C.

The solution set of the inequality is denoted by V I(C,A) in this section. Let f : H→ (−∞,+∞]

a proper convex lower semicontinuous function. Then the subdifferential ∂ f of f is defined as

follows:

∂ f (x) = {y ∈ H : f (z)≥ f (x)+ 〈z− x,y〉, z ∈ H}, ∀x ∈ H.

From Rockafellar [5], we know that ∂ f is maximal monotone. It is easy to verify that 0∈ ∂ f (x)

if and only if f (x) = miny∈H f (y). Let IC be the indicator function of C, i.e.,

IC(x) =


0, x ∈C,

+∞, x /∈C.

(3.3)

Since IC is a proper lower semicontinuous convex function on H, we see that the subdifferential

∂ IC of IC is a maximal monotone operator.

Lemma 3.4 [5] Let C be a nonempty closed convex subset of a real Hilbert space H, Pro jC the

metric projection from H onto C, ∂ IC the subdifferential of IC, where IC is as defined in (3.2)

and Jλ = (I +λ∂ IC)−1. Then y = Jλ x⇐⇒ y = Pro jCx, ∀x ∈ H,y ∈C.

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C→

H be an α-inverse-strongly monotone mapping and let T : C→C be a nonexpansive mapping

with fixed points. Assume that F(T )∩V I(C,A) is not empty. Let {αn} and {βn} be real number

sequences in (0,1) and {rn} be a positive real number sequence in (0,2α). Let {xn} be a
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sequence generated in the following process: x1 ∈C and
yn = αn f (xn)+(1−αn)xn,

xn+1 = βnxn +(1−βn)T PC(yn− rnAyn + en), ∀n≥ 1,

where {en} is a sequence in H such that ∑
∞
n=1 ‖en‖ < ∞. Assume that the above sequences

satisfy the following restrictions:

(a) limn→∞ αn = 0, ∑
∞
n=0 αn = ∞;

(b) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1;

(c) 0 < a≤ rn ≤ b < 2α and ∑
∞
n=1 |rn− rn−1|< ∞,

where a and b are two real numbers.Then {xn} converges strongly to q = PF(T )∩V I(C,A) f (q).

Proof. Putting Bx = ∂ IC, we find from Lemma 3.4 the desired conclusion immediately.

If T is the identity mapping, then we have the following.

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A :

C→ H be an α-inverse-strongly monotone mapping. Assume that V I(C,A) is not empty. Let

{αn} and {βn} be real number sequences in (0,1) and {rn} be a positive real number sequence

in (0,2α). Let {xn} be a sequence generated in the following process: x1 ∈C and
yn = αn f (xn)+(1−αn)xn,

xn+1 = βnxn +(1−βn)PC(yn− rnAyn + en), ∀n≥ 1,

where {en} is a sequence in H such that ∑
∞
n=1 ‖en‖ < ∞. Assume that the above sequences

satisfy the following restrictions:

(a) limn→∞ αn = 0, ∑
∞
n=0 αn = ∞;

(b) 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1;

(c) 0 < a≤ rn ≤ b < 2α and ∑
∞
n=1 |rn− rn−1|< ∞,

where a and b are two real numbers.Then {xn} converges strongly to q = PV I(C,A) f (q).
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