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Abstract. It is the aim of this paper to prove the existence of a fixed point for weakly C-contractive and weakly

S-contractive self mappings defined in T0-quasi-metric spaces.
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1. Introduction

There is a growing interest for asymmetric structures, and more specifically for the ”asym-

metric distances”. Recently, many results established in metric spaces which have their equiv-

alent formulations in quasi-pseudometric spaces. However, the technicality of the proofs is

completely different.
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In a recent paper, Gaba [1] proved a fixed point result for C-contractive and S-contractive self

mappings defined in T0-quasi-metric spaces. For recent results concerning the theory, we refer

the reader to [2]-[5].

2. Preliminaries

In this section, we recall some elementary definitions and terminology from the classical

theory as well as for asymmetric topology which are necessary for a good understanding of the

work below. For more information about this theory, the reader is referred to [6].

Definition 2.1. Let (X ,m) be a metric space. A map T : X → X is called a C-contraction iff

there exists 0≤ k < 1
2 such that for all x,y ∈ X , the following inequality holds:

m(T x,Ty)≤ k[m(x,T x)+m(y,Ty)].

Definition 2.2. Let (X ,m) be a metric space. A map T : X → X is called a weak contraction or

said to be weakly contractive iff for all x,y ∈ X , the following inequality holds:

m(T x,Ty)≤ km(x,T x)−ψ(m(x,y)).

where ψ : [0,∞)→ [0,∞) is a continuous and non-decreasing mapping such that ψ(x) = 0 iff

x = 0 and lim
x→∞

ψ(x) = ∞.

Definition 2.3. Let (X ,m) be a metric space. A map T : X → X is called a weak C-contraction

or said to be weakly C-contractive iff for all x,y ∈ X , the following inequality holds:

m(T x,Ty)≤ 1
2
[m(x,T x)+m(y,Ty)]−ψ(m(x,T x),m(y,Ty)).

where ψ : [0,∞)2→ [0,∞) is a continuous mapping such that ψ(x,y) = 0 if and only if x= y= 0.

Definition 2.4. Let (X ,m) be a metric space. A map T : X → X is called a S-contraction iff

there exists 0≤ k < 1
3 such that for all x,y ∈ X , the following inequality holds:

m(T x,Ty)≤ k[m(x,Ty)+m(T x,y)+m(x,y)].
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Definition 2.5. Let (X ,m) be a metric space. A map T : X → X is called a weak S-contraction

or said to be weakly S-contractive iff for all x,y ∈ X , the following inequality holds:

m(T x,Ty)≤ 1
3
[m(x,Ty)+m(T x,y)+m(x,y)]−ψ(m(x,Ty),m(T x,y),m(x,y)).

where ψ : [0,∞)3→ [0,∞) is a continuous mapping such that ψ(x,y,z) = 0 if and only if x =

y = z = 0.

Definition 2.6. Let X be a non empty set. A function d : X ×X → [0;∞) is called a quasi-

pseudometric on X iff

i) d(x,x) = 0 ∀ x ∈ X ,

ii) d(x,z)≤ d(x,y)+d(y,z) ∀ x,y,z ∈ X .

Moreover, if d(x,y) = 0 = d(y,x) =⇒ x = y, then d is said to be a T0-quasi-pseudometric or a

di-metric. The latter condition is referred to as the T0-condition.

Example 2.7. [7] On R×R, we define the real valued map d given by

d(a,b) = a−̇b = max{a−b,0}.

Then (R,d) is a di-metric space.

Remark 2.8.

• Let d be a quasi-pseudometric on X . Then the map d−1 defined by d−1(x,y) = d(y,x)

whenever x,y ∈ X is also a quasi-pseudometric on X , called the conjugate of d. (In the

literature, it is also denoted by dt or d̄).

• It is easy to verify that the function ds defined by ds := d∨d−1, i.e.,

ds(x,y) = max{d(x,y),d(y,x)}

defines a metric on X whenever d is a T0-quasi-pseudometric.

Definition 2.9. The di-metric space (X ,d) is said to be bicomplete if the metric space (X ,ds) is

complete.

Example 2.10. Let X = [0;∞). Define for each x,y ∈ X , n(x,y) = x if x > y, and n(x,y) = 0 if

x ≤ y. It is not difficult to check that (X ,n) is a T0-quasi-pseudometric space. Notice also that
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for x,y ∈ [0;∞), we have ns(x,y) = max{x,y} if x 6= y and ns(x,y) = 0 if x = y. The metric ns is

complete on [0,∞).

Definition 2.11. Let (X ,d) be a quasi-pseudometric space. For x ∈ X and ε > 0,

Bd(x,ε) = {y ∈ X : d(x,y)< ε}

denotes the open ε-ball at x. The collection of all such balls is a base for a topology τ(d)

induced by d on X . Similarly, for x ∈ X and ε ≥ 0,

Cd(x,ε) = {y ∈ X : d(x,y)≤ ε}

denotes the closed ε-ball at x.

In the case where (X ,d) is a T0 quasi-pseudometric space, we know that ds defined by ds :=

d ∨ d−1, i.e. ds(x,y) = max{d(x,y),d(y,x)} defines a metric on X . Hence, we shall say that a

subset E ⊂ X is join closed if it is ds-closed, i.e., closed with respect to the topology generated

by ds.

Definition 2.12. Let X be a nonempty set. Two self mappings F,G : X → X are said to be

weakly compatible iff for all x ∈ X the equality Fx = Gx implies FGx = GFx.

Next, we recall the following interesting results established in Chatterja et al. [8], Shukla et

al. [9] and Vahid [10].

Theorem 2.13. A weak C-contraction on a complete metric space has a unique fixed point. A

weak S-contraction on a complete metric space has a unique fixed point.

Theorem 2.14. Let (X ,d) be a complete metric space and let E be a nonempty closed subset of

X. Let T,S : E→ E be such that

d(T x,Sy)≤ 1
2
[d(Rx,Sy)+d(T x,Ry)]−ψ(d(Rx,Sy),d(T x,Ry))

for every pair (x,y)∈X2, where ψ : [0,∞)2→ [0,∞) is a continuous mapping such that ψ(x,y)=

0 if and only if x = y = 0 and R : E→ X satisfying the following hypothesis:

(i) T E ⊆ RE and SE ⊆ RE,

(ii) the pairs (T,R) and (S,R) are weakly compatible.
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In addition, we assume that RE is a closed subset of X. Then T , R and S have a unique common

fixed point.

The following results generalize the above theorems to the setting of a bicomplete di-metric

space.

Definition 2.15. Let (X ,d) be a quasi-pseudometric space. A map T : X → X is called a weak

C-pseudocontraction or said to be weakly C-pseudocontractive iff for all x,y ∈ X , the following

inequality holds:

d(T x,Ty)≤ 1
2
[d(x,T x)+d(y,Ty)]−ψ(d(x,T x),d(y,Ty)).

where ψ : [0,∞)2→ [0,∞) is a continuous mapping such that ψ(x,y) = 0 if and only if x= y= 0.

Definition 2.16. Let (X ,d) be a quasi-pseudometric space. A map T : X → X is called a weak

S-pseudocontraction or said to be weakly S-pseudocontractive iff for all x,y ∈ X , the following

inequality holds:

d(T x,Ty)≤ 1
3
[d(x,Ty)+d(T x,y)+d(x,y)]−ψ(d(x,Ty),d(T x,y),d(x,y)).

where ψ : [0,∞)3→ [0,∞) is a continuous mapping such that ψ(x,y,z) = 0 if and only if x =

y = z.

Definition 2.17. Let E1, · · · ,En,F be totally ordered spaces with respective orders≤E1
, · · · ,≤En

and ≤F . A map f : E1×E2×·· ·×En→ F is said to be component non-increasing if

f (x1, · · · ,xn)≤F f (a1, · · · ,an)

whenever ai ≤Ei
xi for any i = 1, · · · ,n.

Example 2.18. Let E1 = E2 = F = [0,∞) with the natural order and define the function f :

[0,∞)× [0,∞)→ [0,∞) by f (x,y) =−(x2 + y2). Clearly, if a≤ b and c≤ d, we have f (b,d)≤

f (a,c).

More generally, by setting E1 =E2 = · · ·=En =F = [0,∞) with the natural order and defining

the function f : [0,∞)× ·· ·× [0,∞)→ [0,∞) by f (x1,x2, · · · ,xn) = −(x2
1 + x2

2 + · · ·+ x2
n), f is

component non-increasing.
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3. Main results

We are in a position to state our first fixed point result.

Theorem 3.1. Let (X ,d) be a totally ordered bicomplete di-metric space and let T : X → X be

a weak C-pseudocontraction. Moreover, we assume that ψ is component non-increasing. Then

T has a unique fixed point.

Proof. Since T : X→ X is a a weak C-pseudocontraction, for all x,y∈ X , the following inequal-

ity holds

d(T x,Ty)≤ 1
2
[d(x,Ty)+d(T x,y)]−ψ(d(x,Ty),d(T x,y)).

where ψ : [0,∞)2→ [0,∞) is a continuous mapping such that ψ(x,y) = 0 if and only if x= y= 0.

For any x,y ∈ X , we have

d−1(T x,Ty) = d(Ty,T x)≤ 1
2
[d(y,T x)+d(Ty,x)]−ψ(d(y,T x),d(Ty,x)).

≤ 1
2
[d−1(T x,y)+d−1(x,Ty)]−ψ(d−1(T x,y),d−1(x,Ty),

that is,

d−1(T x,Ty)≤ 1
2
[d−1(T x,y)+d−1(x,Ty)]−ψ(d−1(T x,y),d−1(x,Ty),

and we see that T : (X ,d−1)→ (X ,d−1) is a weak C-pseudocontraction. Therefore, since ψ is

component non-increasing, we have

d(T x,Ty)≤ 1
2
[d(x,Ty)+d(T x,y)]−ψ(d(x,Ty),d(T x,y))

≤ 1
2
[ds(x,Ty)+ds(T x,y)]−ψ(ds(x,Ty),ds(T x,y)),

and

d−1(T x,Ty)≤ 1
2
[d−1(T x,y)+d−1(x,Ty)]−ψ(d−1(T x,y),d−1(x,Ty),

≤ 1
2
[ds(x,Ty)+ds(T x,y)]−ψ(ds(x,Ty),ds(T x,y)),

for all x,y ∈ X . Hence, we have

ds(T x,Ty)≤ 1
2
[ds(x,Ty)+ds(T x,y)]−ψ(ds(x,Ty),ds(T x,y)),
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for all x,y ∈ X and so, T : (X ,ds)→ (X ,ds) is a weak C-contraction. By assumption, (X ,d) is

bicomplete, hence (X ,ds) is complete. Therefore by Theorem 2.13, T has a unique fixed point.

This completes the proof.

Theorem 3.2. Let (X ,d) be a totally ordered bicomplete di-metric space and let E be a nonemp-

ty join closed subset of X. Let T,S : E→ E be such that

d(T x,Sy)≤ 1
2
[d(Rx,Sy)+d(T x,Ry)]−ψ(d(Rx,Sy),d(T x,Ry)),

and

d(Sx,Ty)≤ 1
2
[d(Sx,Ry)+d(Rx,Ty)]−ψ(d(Sx,Ry),d(Rx,Ty)),

for every pair (x,y)∈X2, where ψ : [0,∞)2→ [0,∞) is a continuous mapping such that ψ(x,y)=

0 if and only if x = y = 0 and R : E→ X satisfy the following hypothesis:

(i) T E ⊆ RE and SE ⊆ RE,

(ii) the pairs (T,R) and (S,R) are weakly compatible.

In addition, we assume that RE is a join closed subset of X. Then T , R and S have a unique

common fixed point.

Proof. We prove that T : (E,ds)→ (E,ds) satisfies the assumptions of Theorem 2.14. For every

pair (x,y) ∈ X2, we have

d(T x,Sy)≤ 1
2
[d(Rx,Sy)+d(T x,Ry)]−ψ(d(Rx,Sy),d(T x,Ry)).

It is also very clear that

d−1(T x,Sy) = d(Sy,T x)≤ 1
2
[d−1(Rx,Sy)+d−1(T x,Ry)]−ψ(d−1(Rx,Sy),d−1(T x,Ry)).

Since ψ is component non-increasing, we have

d(T x,Sy)≤ 1
2
[d(Rx,Sy)+d(T x,Ry)]−ψ(d(Rx,Sy),d(T x,Ry))

≤ 1
2
[ds(Rx,Sy)+ds(T x,Ry)]−ψ(ds(Rx,Sy),ds(T x,Ry))
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and

d−1(T x,Sy)≤ 1
2
[d−1(Rx,Sy)+d−1(T x,Ry)]−ψ(d−1(Rx,Sy),d−1(T x,Ry))

1
2
[ds(Rx,Sy)+ds(T x,Ry)]−ψ(ds(Rx,Sy),ds(T x,Ry)).

Hence, we see that

ds(T x,Sy)≤ 1
2
[ds(Rx,Sy)+ds(T x,Ry)]−ψ(ds(Rx,Sy),ds(T x,Ry)).

By assumption, (X ,d) is bicomplete, hence (X ,ds) is complete. Moreover, since E and RE are

join closed, we conclude by Theorem 2.14 that T,R and S have a unique common fixed point.

Theorem 3.3. Let (X ,d) be a totally ordered bicomplete di-metric space and let T : X → X be

a weak S-pseudocontraction. Moreover, we assume that ψ is component non-increasing. Then

T has a unique fixed point.

Proof. It is enough to prove that T : (X ,ds)→ (X ,ds) is a weak S-contraction. Since T : X→ X

is a weak S-pseudocontraction, for all x,y ∈ X the following inequality holds

d(T x,Ty)≤ 1
2
[d(x,Ty)+d(T x,y)+d(x,y)]−ψ(d(x,Ty),d(T x,y),d(x,y)).

where ψ : [0,∞)3→ [0,∞) is a continuous mapping such that ψ(x,y) = 0 if and only if x = y =

z = 0. For any x,y ∈ X , we have

d−1(T x,Ty) = d(Ty,T x)

≤ 1
2
[d(y,T x)+d(Ty,x)+d(x,y)]−ψ(d(y,T x),d(Ty,x),d(x,y))

≤ 1
2
[d−1(T x,y)+d−1(x,Ty)d−1(x,y)]−ψ(d−1(T x,y),d−1(x,Ty),d−1(y,x)),

that is,

d−1(T x,Ty)≤ 1
2
[d−1(T x,y)+d−1(x,Ty)+d−1(x,y)]−ψ(d−1(T x,y),d−1(x,Ty),d−1(y,x)),
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and we see that T : (X ,d−1)→ (X ,d−1) is a weak S-pseudocontraction. Since ψ is component

non-increasing, we have

d(T x,Ty)≤ 1
2
[d(x,Ty)+d(T x,y)+d(x,y)]−ψ(d(x,Ty),d(T x,y),d(x,y)),

≤ 1
2
[ds(x,Ty)+ds(T x,y)+ds(x,y)]−ψ(ds(x,Ty),ds(T x,y),ds(x,y)),

and

d−1(T x,Ty)≤ 1
2
[d−1(T x,y)+d−1(x,Ty)]−ψ(d−1(T x,y),d−1(x,Ty),

≤ 1
2
[ds(x,Ty)+ds(T x,y)+ds(x,y)]−ψ(ds(x,Ty),ds(T x,y),ds(x,y)),

for all x,y ∈ X . Hence, we have

ds(T x,Ty)≤ 1
2
[ds(x,Ty)+ds(T x,y)+ds(x,y)]−ψ(ds(x,Ty),ds(T x,y),ds(x,y)),

for all x,y ∈ X and so, T : (X ,ds)→ (X ,ds) is a weak S-contraction. By assumption, (X ,d) is

bicomplete, hence (X ,ds) is complete. Therefore by Theorem 2.13, T has a unique fixed point.

This completes the proof.
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