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Abstract. The authors present some local nonumique random fixed point theorems for random mappings in a

separable complete metric space satisfying certain Dhage type contractive condition. A case of a metric space with

three metrics is also considered for discussion. The established local nnonunique fixed point theorems also have

extended to partially ordered polish space and fixed point theorems with PPF dependence.
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1. Introduction

Throughout the rest of the paper, let X denote a polish space, i.e., a complete, separable metric

space with a metric d. Let (Ω,A ) denote a measurable space with σ -algebra A . A function

x : Ω→ X is said to be a random variable if it is measurable. A mapping T : Ω×X → X is

called random mapping if T (.,x) is measurable for each x ∈ X . A random mapping on a metric

space X is denoted by T (ω,x) or simply T (ω)x for ω ∈Ω and x ∈ X . A random mapping T (ω)

is said to be continuous on X into itself if the mapping T (ω, ·) is continuous on X for each
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ω ∈Ω. A measurable function x : Ω→ X is called a random fixed point of the random mapping

T (ω) if T (ω)x(ω) = x(ω) for all ω ∈ Ω. Random fixed point theory for random operators

in separable Banach spaces is initiated by Hans [8] and Spacek [13] and further developed by

several authors in the literature. A brief survey of such random fixed point theorems appear in

Joshi and Bose [9]. The details of random operators and random solutions of random equations

appears in Bharucha-Reid [3], Hans [8] and Spacek [13].

The following is the key result for the development of random fixed point theory and appli-

cations to random equations.

Theorem 1.1. Let X be a Polish space, that is, a complete and separable metric space. Then,

(a) If {xn(ω)} is a sequence of random variables converging to x(ω) for all ω ∈ Ω, then

x(ω) is also a random variable.

(b) If T (ω, ·) is continuous for each ω ∈ Ω and x : Ω→ X is a random variable, then

T (ω)x is also a random variable.

Given a metric space (X ,d), we define a closed ball Bd[x0,r] in X centered at x0 of radius r

for some x0 ∈ X and for some real number r > 0 by

Bd[x0,r] = {x ∈ X | d(x0,x)≤ r}.

The deterministic or classical local nonunique fixed pint theorems for the contractive maps in

a closed ball B[x0,r] have been proved in Achari [1] and Dhage [5]. However, the random local

nonunique fixed point theorems seem to have not been proved so ar in the literature. The aim of

the present study is to establish a couple of local random fixed point theorems for the random

mappings on Polish spaces. In he following section we prove the main results of this paper.

2. Main results

Our first local nonunique random fixed point theorem (in short RFPT) is as follows.

Theorem 2.1 Let (Ω,A ) be a measurable space and let (X ,d) be a Polish space. Let Bd[x0,r]

be a closed ball centered at x0 of radius r w.r.t. the metric d for some x0 ∈ X and for some

real number r > 0. Let T (ω) be a continuous random selfmapping of a complete and separable
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metric space X into itself satisfying for each ω ∈Ω,

0≤min
{

d(T (ω)x,T (ω)y),d(x,T (ω)x),d(y,T (ω)y),

d(x,T (ω)x)[1+d(y,T (ω)y)]
1+d(x,y)

,
d(y,T (ω)y)[1+d(x,T (ω)x)]

1+d(x,y)

}
+b(ω) min

{
d(x,T (ω)y),d(y,T (ω)x)

}
≤ q(ω) max

{
d(x,y), [min{d(x,T (ω)x),d(y,T (ω)y)}]

}
(2.1)

for all x,y ∈ X, where b : Ω→ R and q : Ω→ R+ are measurable functions satisfying 0 ≤

q(ω)< 1. Furthermore if

d(x0,T (ω)x0)≤ [1−q(ω)]r (2.2)

for all ω ∈Ω, then T (ω) has a random fixed point in Bd[x0,r] which is unique if b(ω)> q(ω)

for all ω ∈Ω.

Proof. Let x : Ω→ X be arbitrary measurable function and consider the sequence of successive

iterates of T (ω) at x defined by

x0 = x, x1 = T (ω)x, ....,xn = T (ω)xn−1 (2.3)

for each n ∈ N. Clearly,
{

xn
}

is a sequence of measurable functions on Ω into X . If xn = xn+1

for some n ∈ N, then the result follows immediately. Now we assume that xn 6= xn+1 for each

n ∈ N. We shall show that
{

xn
}

is Cauchy sequence of measurable functions on Ω into X .

Taking x = x0 and y = x1 in (2.2), we obtain

0≤min
{

d(T (ω)x0,T (ω)x1),d(x0,T (ω)x0),d(x1,T (ω)x1),

d(x0,T (ω)x0)[1+d(x1,T (ω)x1)]

1+d(x0,x1)
,
d(x1,T (ω)x1)[1+d(x0,T (ω)x0)]

1+d(x0,x1)

}
+b(ω) min

{
d(x0,T (ω)x1),d(x1,T (ω)x0)

}
≤ q(ω) max

{
d(x0,x1), [min{d(x0,T (ω)x0),d(x1,T (ω)x1)}]

}
,

which further gives

0≤min
{

d(x1,x2),d(x0,x1),d(x1,x2),
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d(x0,x1)[1+d(x1,x2)]

1+d(x0,x1)
,
d(x1,x2)[1+d(x0,x1)]

1+d(x0,x1)

}
+b(ω) min

{
d(x0,x2),d(x1,x1)

}
≤ q(ω) max

{
d(x0,x1), [min{d(x0,x1),d(x1,x2)}]

}
,

or,

0≤min
{

d(x1,x2),d(x0,x1),
d(x0,x1)[1+d(x1,x2)]

1+d(x0,x1)

}
+b(ω) min

{
d(x0,x2),0

}
≤ q(ω) max

{
d(x0,x1), [min{d(x0,x1),d(x1,x2)}]

}
.

This further gives

min
{

d(x1,x2),d(x0,x1),
d(x0,x1)[1+d(x1,x2)]

1+d(x0,x1)

}
≤ q(ω) max

{
d(x0,x1), [min{d(x0,x1),d(x1,x2)}]

}
.

(2.4)

If

min{d(x1,x2),d(x0,x1)}= d(x0,x1),

then

d(x0,x1)≤
d(x0,x1)[1+d(x1,x2)]

1+d(x0,x1)
.

Hence, from (2.3) it follows that

d(x0,x1)≤ q(ω)d(x0,x1),

which is a contraction since q = q(ω)< 1 for all ω ∈Ω. So

min{d(x1,x2),d(x0,x1)}= d(x1,x2).

Now there are two cases. In the first case we have

d(x1,x2)≤ qd(x0,x1).

In the second case we have

d(x0,x1)[1+d(x1,x2)]

1+d(x0,x1)
≤ qd(x0,x1),



466 SHYAM B. DHAGE, BAPURAO C. DHAGE

which further gives

d(x1,x2)≤ qd(x0,x1).

Proceeding in this way, by induction, it follows that

d(xn,xn+1)≤ qd(xn−1,xn)

for each n ∈ N. From (2.3) it follows that

d(xn,xn+1)≤ qd(xn−1,xn)

≤ q2d(xn−2,xn−1)

...

≤ qnd(x0,x1).

(2.5)

Now for any positive integer p, we obtain by triangle inequality,

d(xn,xn+p)≤ d(xn,xn+1)+ ...+d(xn+p−1,xn+p)

≤ qnd(x0,x1)+ ...+qn+p−1d(x0,x1)

≤
[
qn +qn+1 + ...+qn+p−1]d(x0,x1)

≤ qn(1−qp−1)

1−q

≤ qn

1−q

→ 0 as n→ ∞.

(2.6)

This shows that
{

xn
}

is a Cauchy sequence in X .

Next we show that {xn} ⊂ Bd[x0,r]. Now,

d(x0,x1) = d(x0,T (ω)x0)≤
[
1−q

]
r ≤ r.

Again,

d(x0,x2)≤ d(x0,x1)+d(x1,x2)

≤ (1−q)r+qd(x0,x1)

≤ (1−q)r+q(1−q)r
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≤
[
1−q2]r

≤ r. [q < 1
]

In general for any n ∈ N, one has

d(x0,xn)≤ d(x0,x1)+d(x1,x2)+ · · ·+d(xn−1,xn)

≤
[
1+q+q2 + · · ·+qn]d(x0,x1)

≤
[
1+q+q2 + · · ·+qn](1−q

)
r

≤
[
1−qn]
1−q

(
1−q

)
r

≤ r. [q < 1
]

Hence {xn} is a Cauchy sequence in the closed ball Bd[x0,r]. The metric space X being T (ω)-

orbitally complete, Bd[x0,r] is also T (ω)-orbitally complete. Hence, there is a measurable

function x∗ : Ω→Bd[x0,r] such that limn→∞ xn = x∗. Again as T (ω) is continuous, we have

T (ω)x∗(ω) = lim
n→∞

T (ω)xn(ω) = lim
n→∞

xn+1(ω) = x∗(ω)

for each ω ∈Ω. Thus x∗ is a random fixed point of the random mapping T (ω) in Bd[x0,r] and

the sequence {T nx0} of successive iterations converges to x∗(ω). Next, we assume that b > q

on Ω. If y∗(6= x∗) is another random fixed point of the random mapping T (ω) in Bd[x0,r], then

from (2.2) we get a contradiction. This completes the proof.

Corollary 2.1. Let (X ,d) be a complete metric space. Let Bd[x0,r] be a closed ball centered

at x0 of radius r w.r.t the metric d for some x0 ∈ X and for some real number r > 0. Let T be a

continuous selfmapping of X into itself satisfying

0≤min
{

d(T x,Ty),d(x,T x),d(y,Ty),

d(x,T x)[1+d(y,Ty)]
1+d(x,y)

,
d(y,Ty)[1+d(x,T x)]

1+d(x,y)

}
+b min

{
d(x,Ty),d(y,T x)

}
≤ q max

{
d(x,y), [min{d(x,T x),d(y,Ty)}]

}
(2.7)
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for all x,y ∈ X, where b ∈ R and q ∈ R+ are two numbers satisfying 0≤ q < 1. Furthermore if

d(x0,T x0)≤ [1−q]r. (2.8)

Then T has a fixed point in Bd[x0,r] which is unique if b > q.

Remark 2.1. We remark that Corollary 2.1 includes the nonunique local fixed point theorems

of Achari [1] and Dhage [5] as special cases.

Next we prove a local nonunique random fixed point theorem in a metric space X with three

metrics on it. It is possible that a metric space may be complete w.r.t. a metric, but may not

be complete w.r.t. another metric on X . The study of fixed point theorems along these lines is

initiated by Maia [10]. In these circumstance we prove the following local nonunique random

fixed point result in the area of random fixed point theory.

Theorem 2.2. Let (Ω,A ) be a measurable space and let X be a Polish space with three metrics

d, d1 and d2. Let Bd2[x0,r], Bd1[x0,r] and Bd[x0,r] denote the closed balls centered at x0 of

radius r w.r.t. the metrics d2, d1 and d respectively. Suppose that T : Ω×X → X be a random

mapping satisfying (2.1). Assume that the following conditions hold in X.

(a) d2(x,y)≤ d1(x,y)≤ d(x,y) for all x,y ∈ X.

(b) X is complete w.r.t. d1.

(b) T (ω) is continuous w.r.t. d2.

Furthermore, if the condition (2.2) holds, then T (ω) has a random fixed point in Bd2[x0,r] and

which is unique if b(ω)> q(ω) for each ω ∈Ω.

Proof. Let x : Ω→ X be arbitrary measurable function and consider the sequence of successive

iterates of T (ω) at x defined by

x0 = x, x1 = T (ω)x, ....,xn = T (ω)xn−1 (2.9)

for each n ∈ N. Clearly,
{

xn
}

is a sequence of measurable functions on Ω into X . If xn = xn+1

for some n ∈ N, then the result follows immediately. Now we assume that xn 6= xn+1 for each

n ∈ N. It can be shown as in the proof of Theorem 2.2 that {xn} ⊂Bd[x0,r] satisfying

d(xn,xn+p)≤
qn

1−q
d(x0,x1)
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for some positive integer p. By hypothesis (a),

d1(xn,xn+p)≤
qn

1−q
d(x0,x1)→ 0 as n→ ∞.

This shows that {xn} is Cauchy sequence of measurable functions in X w.r.t. the metric d1.

From hypothesis (a) it follows that

Bd[x0,r]⊆Bd1 [x0,r]⊆Bd2[x0,r].

Hence,

{xn} ⊆Bd1[x0,r]⊆Bd2[x0,r].

Since the metric space (X ,d1) is complete, the closed ball Bd1 [x0,r] is also complete. Hence,

there is a point x∗ ∈Bd1[x0,r] such that lim
n→∞

xn(ω) = x∗(ω) for each ω ∈ Ω. Again, by hy-

potheses (a), x∗ ∈Bd2 [x0,r] and

d2(xn,x∗)≤ d1(xn,x∗)→ 0 as n→ ∞.

Now the random operator T (ω) is orbitally continuous w.r.t. d2, so we have

T (ω)x∗(ω) = lim
n→∞

T (ω)xn(ω) = lim
n→∞

xn+1(ω) = x∗(ω)

for each ω ∈ Ω. Thus x∗ is a random fixed point of the random mapping T (ω) in Bd2[x0,r].

Next assume that b > q on Ω. If y∗(6= x∗) is another random fixed point of the random mapping

T (ω) in Bd2[x0,r], then from (2.1) we get a contradiction. This completes the proof.

Corollary 2.2. Let X be a metric space with three metrics d, d1 and d2. Let Bd2[x0,r],

Bd1 [x0,r] and Bd[x0,r] denote the closed balls centered at x0 of radius r w.r.t. the metrics d2,

d1 and d respectively. Suppose that T : X → X be a mapping satisfying (2.7). Assume that the

following conditions hold in X.

(a) d2(x,y)≤ d1(x,y)≤ d(x,y) for all x,y ∈ X.

(b) X is complete w.r.t. d1.

(b) T is continuous w.r.t. d2.

Furthermore, if the condition (2.8) holds, then T has a random fixed point ξ (ω) in Bd2[x0,r]

and the sequence {T n(ω)x0} converges to ξ (ω). Furthermore, ξ is unique if b > q.
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3. Local RFPTs in partially ordered metric spaces

We equip the metric space X with an order relation ≤ which is a reflexive, antisymmetric

and transitive relation in X . The metric space X together with the order relation ≤ is called

a partially ordered metric space denoted by (X ,≤,d). A random mapping T : Ω×X → X is

called nondecreasing if for any x,y ∈ X with x≤ y we have that T (ω)x≤ T (ω)y for all ω ∈Ω.

Similarly, the random mapping T : Ω× X → X is called nonincreasing if for any x,y ∈ X ,

x ≤ y implies T (ω)x ≥ T (ω)y for all ω ∈ Ω. A monotone random mapping which is either

nondecreasing or nonincreasing on X .

The investigation of the existence of fixed points in partially ordered sets was first considered

in Ram and Reuriungs [12]. This study is continued in Nieto and Rodriguer-Lopez [11], Dhage

et al. [7] and many others by assuming the existence of only lower solution instead of usual ap-

proach where both the lower and upper solutions are assumed to exist. The fixed point theorems

of this type are applicable to obtain existence and uniqueness results for nonlinear ordinary dif-

ferential equations (cf. Nieto and Lopez [11]). Below we prove some local nonunique random

fixed point theorems for monotone random mappings in separable and complete metric spaces.

Theorem 3.1. Let (Ω,A ) be a measurable space and let (X ,d) be a partially ordered Polish

space. Let Bd[x0,r] be a closed ball centered at x0 of radius r w.r.t. the metric d for some

x0 ∈ X and for some real number r > 0. Let T : Ω×X → X be a monotone nondecreasing

random mapping satisfying for each ω ∈Ω,

0≤min
{

d(T (ω)x,T (ω)y),d(x,T (ω)x),d(y,T (ω)y),

d(x,T (ω)x)[1+d(y,T (ω)y)]
1+d(x,y)

,
d(y,T (ω)y)[1+d(x,T (ω)x)]

1+d(x,y)

}
+b(ω) min

{
d(x,T (ω)y),d(y,T (ω)x)

}
≤ q(ω) max

{
d(x,y), [min{d(x,T (ω)x),d(y,T (ω)y)}]

}
(3.1)

for all comparable elements x,y∈X, where b : Ω→R and q : Ω→R+ are measurable functions

satisfying 0≤ q(ω)< 1. Further if T (ω) is continuous and there exists a measurable function

x0 : Ω→X such that x0≤ T (ω)x0 satisfying (2.2) for all ω ∈Ω, then the random mapping T (ω)

has a random fixed point ξ (ω) in Bd0[x0,r] and the random sequence of successive iterations
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{T n(ω)(xn)} converges monotonically to ξ . Furthermore, the random fixed point ξ is unique if

every pair of elements of X has a lower and an upper bound in X and b > q on Ω.

Proof. Define a sequence
{

xn
}

of successive approximations of T (ω) by

xn+1 = T (ω)xn,n = 0,1,2, . . . .

Clearly {xn} is a sequence of measurable functions from Ω into X such that

x0 ≤ x1 ≤ ...≤ xn ≤ ·· · .

Now, it can be shown as in the proof of Theorem 2.1 that {xn} is a Cauchy sequence of

measurable functions in Bd[x0,r]. The rest of the proof is similar to Theorem 2.1 and we omit

the details.

Corollary 3.1. Let (X ,≤,d) be a partially ordered complete metric space. Let Bd[x0,r] be

a closed ball centered at x0 of radius r w.r.t. the metric d for some x0 ∈ X and for some real

number r > 0. Let T : X → X be a monotone nondecreasing mapping satisfying

0≤min
{

d(T x,Ty),d(x,T x),d(y,Ty),

d(x,T x)[1+d(y,Ty)]
1+d(x,y)

,
d(y,Ty)[1+d(x,T x)]

1+d(x,y)

}
+b min

{
d(x,Ty),d(y,T x)

}
≤ q max

{
d(x,y), [min{d(x,T x),d(y,Ty)}]

}
(3.2)

for all comparable elements x,y ∈ X, where b ∈ R and q ∈ R+ are two numbers satisfying

0 ≤ q < 1. Further if T is continuous and there exists a measurable function x0 ∈ X such that

x0 ≤ T x0 satisfying the condition (2.8), then the mapping T has a fixed point x∗ ∈Bd[x0,r] and

the sequence {T nxn} of successive iterations converges monotonically to x∗. Furthermore, the

fixed point x∗ is unique if every pair of elements of X has a lower and an upper bound in X and

b > q.

4. Nonunique PPF dependant random fixed point theory
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A fixed point theory of nonlinear operators which is PPF dependent, theory is depending on

past, present and future data was developed in Bernfield et al. [2]. The domain space of the

nonlinear operator was taken as C(I,E), I = [a,b] ⊂ R and the range space as E, a Banach

space. An important example of such a nonlinear operator is a delay differential equation. The

PPF fixed point theorems are applied to ordinary nonlinear functional differential equations for

proving the existence of solutions.

In the present section we obtain a successful fusion of above two ideas and prove some

nonunique PPF dependent random fixed point theorems for random mappings in separable met-

ric spaces. In the PPF dependent classical fixed point theory, the Razumikkin or minimal class

of functions plays a significant role both in proving existence as well as uniqueness of PPF de-

pendent fixed points of the mappings under consideration. Let E be a metric space and let I be

a given closed and bounced interval in R, the set of real numbers. Let E0 =C(I,E) denote the

class of continuous mappings from I to E. We equip the class C(J,E) with metric d0 defined by

d0(x,y) = sup
t∈J

d(x(t),y(t)).

The following result is obvious.

Lemma 4.1. If (E,d) is complete then the metric space (E0,d0) is also complete.

When E is a Banach space and let E0 =C(J,E) be a space of continuous E -valued function

defined on J Then minimal class of functions related to a fixed c ∈ J is defined as

Mc =
{

φ ∈ E0 | ‖φ‖E0 = ‖φ(c)‖E}.

Now we are in a position to state our fixed point results concerning the existence of fixed

points with PPF dependence. In a metric space X , we define the minimal class Mc as

Mc =
{

φ ,ψ ∈ E0 | d0(φ ,ψ) = d(φ(c),ψ(c))}.

Now we are in a position to state our main result of this section.

Theorem 4.1. Let (Ω,A ) be a measurable space and E, a separable complete metric space

and let Bd0[φ0,r] be a closed ball centered at φ0 of radius r w.r.t. the metric d0 for some φ0 ∈ E0

and for some real number r > 0. Let T : Ω×E0→E be a continuous random mapping satisfying
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for each ω ∈Ω,

0≤min
{

d(T (ω)φ ,T (ω)ψ),d(φ(c,ω),T (ω)φ),d(ψ(c,ω),T (ω)ψ),

d(φ(c,ω),T (ω)φ)[1+d(ψ(c,ω),T (ω)ψ)]

1+d0(φ ,ψ)
,

d(ψ(c,ω),T (ω)ψ)[1+d(φ(c,ω),T (ω)φ)]

1+d0(φ ,ψ)

}
+b(ω)min

{
d(φ(c,ω),T (ω)ψ),d(ψ(c,ω),T (ω)φ)

}
≤ q(ω) max

{
d0(φ ,ψ), [min{d(φ(c,ω),T (ω)φ),d(ψ(c,ω),T (ω)ψ)}]

}

(4.1)

for all φ ,ψ ∈ E0, where b : Ω→ R and q : Ω→ R+ are measurable functions satisfying 0 ≤

q(ω)< 1 for all ω ∈Ω and c ∈ I. Furthermore, if

d(φ0(c,ω),T (ω)φ0)≤ [1−q(ω)]r (4.2)

for all ω ∈ Ω, then T (ω) has a random fixed point ξ (ω) with PPF dependence in Bd0[φ0,r]

and the sequence
{

φn
}

of successive iterations in Mc converges to ξ . The PPF dependent fixed

point ξ (ω) is unique if Mc is closed and b > q on Ω.

Proof. Let φ0 : Ω→ E0 be an arbitrary measurable function and define a sequence
{

xn
}

in

E0 as follows. Suppose that T (ω)φ0 = x1 for some x1 ∈ E Then choose φ1 ∈ E0 such that

φ1(c,ω) = x1 for some fixed c ∈ I and

d0(φ0,φ1) = d(φ0(c,ω),φ1(c,ω))

for all ω ∈ Ω. Again let T (ω)φ1 = x2 for some x2 ∈ E. Then choose φ2(c,ω) = x2 for each

fixed c ∈ I and

d0(φ1,φ2) = d(φ1(c,ω),φ2(c,ω))

for all ω ∈Ω. Proceeding in this way, we obtain

T (ω)φn−1 = xn = φn(c,ω)

with

d0(φn−1,φn) = d(φn−1(c,ω),φn(c,ω), n ∈ N, (4.3)
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for all ω ∈ Ω. Clearly,
{

φn
}

is a sequence of measurable functions from Ω into E0. Conse-

quently
{

φn(c)
}

is a sequence of measurable functions from Ω into E. We show that φn(c,ω)

is a Cauchy sequence in E. Taking φ = φ0 and ψ = φ1 in the inequality (2.2) we obtain

0≤min
{

d(T (ω)φ0,T (ω)φ1),d(φ0(c,ω),T (ω)φ0),d(φ1(c,ω),T (ω)φ1),

d(φ0(c,ω),T (ω)φ0)[1+d(φ1(c,ω),T (ω)φ1)]

1+d0(φ0,φ1)
,

d(φ1(c,ω),T (ω)φ1)[1+d(φ0(c,ω),T (ω)φ0)]

1+d0(φ0,φ1)

}
+b(ω)min

{
d(φ0(c,ω),T (ω)φ1),d(φ1(c,ω),T (ω)φ0)

}
≤ q(ω) max

{
d0(φ0,ψ1), [min{d(φ0(c,ω),T (ω)φ0),d(φ1(c,ω),T (ω)φ1)}]

}
,

(4.4)

which further gives

0≤min
{

d(φ1(c,ω),φ2(c,ω)),d(φ0(c,ω),φ1(c,ω)),d(φ1(c,ω),φ2(c,ω)),

d(φ0(c,ω),φ1(c,ω))[1+d(φ1(c,ω),φ2(c,ω))]

1+d0(φ0,φ1)
,

d(φ1(c,ω),φ2(c,ω))[1+d(φ0(c,ω),φ1(c,ω))]

1+d0(φ0,φ1)

}
+b(ω)min

{
d(φ0(c,ω),φ2(c,ω)),d(φ1(c,ω),φ1(c,ω))

}
≤ q(ω) max

{
d0(φ0,φ1), [min{d(φ0(c,ω),φ1(c,ω)),d(φ1(c,ω),φ2(c,ω))}]

}
.

(4.5)

From the expression (4.5) it follows that

0≤min
{

d0(φ1,φ2),d0(φ0,φ1),d0(φ1,φ2),

d0(φ0,φ1)[1+d0(φ1,φ2)]

1+d0(φ0,φ1)
,
d0(φ1,φ2)[1+d0(φ0,φ1)]

1+d0(φ0,φ1)

}
+b(ω)min

{
d0(φ0,φ2),d0(φ1,φ1)

}
≤ q(ω) max

{
d0(φ0,φ1), [min{d0(φ0,φ1),d0(φ1,φ2)}]

}
.

(4.6)

Now proceeding as in the proof of Theorem 2.1, it can be proved that

d0(φ1,φ2)≤ qd0(φ0,φ1).
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Proceeding in this way, by induction,

d0(φn,φn+1)≤ qd0(φn−1,φn) (4.7)

for each n, n = 1,2, . . . . By a repeated application of the inequality (4.6), we obtain

d0(φn,φn+1)≤ qd0(φn−1,φn)

...

≤ qnd0(φ0,φ1).

(4.8)

Now for any positive integer p, by triangle inequality,

d0(φn,φn+p)≤ d0(φn,φn+1)+ · · ·+d0(φn+p−1,φn+p)

≤ qn(1+q+ · · ·+qp−1)d0(φ0,φ1)

≤ qn

(1−q)
d0(φ0,φ1)

→ 0 as n→ ∞.

(4.9)

Since

d(φn(c,ω),φn+p(c,ω)) = d0(φn,φn+1)

for all ω ∈Ω, we have that
{

T (ω)φn
}

is also Cauchy sequence in E.

Next we show that {φn} ⊂ Bd[x0,r]. Now,

d(φ0,φ1) = d(φ0(c),T (ω)φ0)≤
[
1−q

]
r ≤ r.

Again,

d(φ0,φ2)≤ d(φ0,φ1)+d(φ1,φ2)

≤ (1−q)r+qd(φ0,φ1)

≤ (1−q)r+q(1−q)r

≤
[
1−q2]r

≤ r. [q < 1
]
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In general for any n ∈ N, one has

d(φ0,φn)≤ d(φ0,φ1)+d(φ1,φ2)+ · · ·+d(φn−1,φn)

≤
[
1+q+q2 + · · ·+qn]d(φ0,φ1)

≤
[
1+q+q2 + · · ·+qn](1−q

)
r

≤
[
1−qn]
1−q

(
1−q

)
r

≤ r. [q < 1
]

Hence {φn} is a Cauchy sequence in the closed ball Bd0 [φ0,r]. As E0 is a complete metric

space, there exists a measurable function φ∗ : Ω→Bd0[φ0,r] such that φn→ φ∗ and

T (ω)φn = φn+1(c,ω)→ φ
∗(c,ω)

as n→ ∞. To prove that φ∗ is a PPF dependent random fixed point of T (ω), we first observe

that since T (ω) is continuous on E0, T (ω) is a continuous at φ∗. Hence for ε > 0, there exists

a δ > 0 such that

d0(φn+1,φ
∗)< δ =⇒ d(T φn+1,T φ

∗)<
ε

2
.

Also since T (ω)φn→ φ∗(c,ω), for γ = min
{

ε

2 ,δ
}

there exists n0 ∈ N such that

d(T (ω)φn,φ
∗(c,ω))< γ

for n≥ no. Thus,

d(T (ω)φ∗,φ∗(c,ω))≤ d(T (ω)φ∗,T (ω)φn)+d(T (ω)φn,φ
∗(c,ω))

<
ε

2
+ γ < ε.

(4.10)

Since ε is arbitrary, we have

T (ω)φ∗(ω) = φ
∗(c,ω)

for all ω ∈ Ω. To prove the uniqueness, assume that Mc is closed in E0 and b > q on Ω. Then

φ∗ ∈Mc. Let ψ∗ be another PPF dependent fixed point of T (ω) in Mc . Now by virtue of Mc,

we obtain

d0(φ
∗(ω),ψ∗(ω)) = d(T (ω)φ∗(ω),T (ω)ψ∗(ω)) = d(φ∗(c,ω),ψ∗(c,ω))
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for all ω ∈Ω. If we substitute x = φ∗ and y = ψ∗ in (4.1), then we get a contradiction. Hence,

φ∗(ω) = ψ∗(ω) for all ω ∈Ω. This completes the proof.

Corollary 4.1. Let E be a complete metric space and let Bd0 [φ0,r] be a closed ball in E0

centered at φ0 of radius r w.r.t. the metric d0 for some φ0 ∈ E0. Let T : E0→ E be a continuous

mapping satisfying

0≤min
{

d(T φ ,T ψ),d(φ(c),T (φ),d(ψ(c),T ψ),

d(φ(c),T φ)[1+d(ψ(c),T (ψ)]

1+d0(φ ,ψ)
,

d(ψ(c),T ψ)[1+d(φ(c),T φ)]

1+d0(φ ,ψ)

}
+bmin

{
d(φ(c),T ψ),d(ψ(c),T φ)

}
≤ q max

{
d0(φ ,ψ), [min{d(φ(c),T φ),d(ψ(c),T ψ)}]

}

(4.11)

for all φ ,ψ ∈ E0, where b ∈R and q ∈R+ are two numbers satisfying 0≤ q < 1. Furthermore,

if

d(φ0(c),T φ0)≤ [1−q]r, (4.12)

then T has a fixed point ξ with PPF dependence in Bd0[φ0,r] and the sequence
{

φn
}

of succes-

sive iterations in Mc converges to ξ . Again it is clear that the PPF dependent fixed point ξ (ω)

is unique if Mc is closed and b > q.
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