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Abstract. In this paper, we approximate fixed points of generalized nonexpansive mappings in Banach spaces

under relatively faster iteration schemes and also prove some weak and strong convergence theorems. Our results

generalize and improve several previously known results of the existing literature.
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1. Introduction and preliminaries

Generally, a Banach space E is said to have the fixed point property for nonexpansive map-

pings provided every nonexpansive self-mapping of every nonempty, closed, convex, bounded

subset K of E has a fixed point. The fixed point property heavily depends upon geometric char-

acteristics of the classes of Banach spaces (under consideration) e.g., uniformly convex Banach

spaces, strictly convex Banach spaces and similar others. Nevertheless, if the norm of a Banach

space E has suitable geometric properties such as: uniform convexity and strict convexity, then
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every nonexpansive self-mapping defined on every weakly compact and convex subset of E has

a fixed point. In such instances, E is said to have the weak fixed point property. Here, it can be

pointed out that a nonexpansive self-mapping defined on a weakly compact and convex subset

K of E need not have a fixed point. A self-mapping T defined on a subset K of a Banach space

E is said to be nonexpansive if

‖T x−Ty‖ ≤ ‖x− y‖, for all x,y ∈ K.

Although nonexpansive mappings are the most important class of mappings studied in metric

fixed point theory, yet one can find considerable research literature dealing with fixed points of

more general classes of mappings; see, e.g., [1, 2]. With similar quest, Suzuki [3] introduced

another class of self-mappings which falls in between the classes of nonexpansive and quasi-

nonexpansive mappings and referred such maps as maps satisfying condition (C) and utilized

the same to prove some fixed point theorems.

A mapping T : K→ K is said to satisfy condition (C) if

1
2
‖x−T x‖ ≤ ‖x− y‖⇒ ‖T x−Ty‖ ≤ ‖x− y‖, ∀ x,y ∈ K.

It is easy to see that every nonexpansive mapping satisfies condition (C) on K, but one can

find some examples of noncontinuous mappings satisfying condition (C) in [3].

Recently, Garcı́a-Falsat et al. [4] defined two new generalizations of condition (C) and term

their new conditions as condition (E) and condition (Cλ ) and also studied their asymptotic

behavior as well as existence of fixed points.

Definition 1.1. [4] A mapping T : K→ K satisfies condition (Cλ ) on K if for all x,y ∈ K and

λ ∈ (0,1),

λ‖x−T x‖ ≤ ‖x− y‖⇒ ‖T x−Ty‖ ≤ ‖x− y‖.

For λ = 1
2 , we recapture the class of mappings satisfying condition (C). Notice that if 0 <

λ1 < λ2 < 1, then condition (Cλ1) implies condition (Cλ2) but converse fails (e.g. Example 5 in

[4]).

Now, we recall another generalization of nonexpansive map under the name of condition (E).
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Definition 1.2. [4] A mapping T : K → K is said to satisfy condition (Eµ) if for some µ ≥ 1

and for all x,y ∈ K,

‖x−Ty‖ ≤ µ ‖x−T x‖+‖x− y‖.

We say that T satisfies condition (E) on K whenever T satisfies condition (Eµ) for some µ ≥ 1.

In view of the foregoing definitions, one can make the following remarks:

1. If T : K→ K is a nonexpansive mapping, then T satisfies condition (E1). But the converse is

not true in general.

2. From Lemma 1 in [3], one can see that if T : K→ K satisfies condition (C), then T satisfies

condition (E3) but the converse is not true in general.

The following example supports the two preceding facts.

Example 1.1. [4] In the Banach space X =C[0,1] under supremum norm, consider a nonempty

subset K of X defined as follows:

K = { f ∈C[0,1] : 0 = f (0)≤ f (x)≤ f (1) = 1}.

To any g ∈ K, associate a function Fg : K→ K defined by Fgh(t) = (goh)(t) = g(h(t)).

It is easy to verify that Fg satisfies condition (E1) but does not satisfy condition (C).

For approximating fixed points of nonlinear mappings, Picard [5], Mann [6] and Ishikawa [7]

introduced iteration schemes, which are respectively described in the following lines:
x1 = x ∈ K,

xn+1 = T xn, n ∈ N,


x1 = x ∈ K,

xn+1 = (1−an)xn +anT xn, n ∈ N,
x1 ∈ K,

xn+1 = (1−an)xn +anTyn,

yn = (1−bn)xn +bnT xn, n ∈ N,

where {an} and {bn} are sequences in (0,1).
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It is well-known that Picard iteration scheme converges for contractions but may not con-

verge for nonexpansive mappings whereas Mann iteration scheme converges for nonexpansive

mappings as well. Agarwal et al. [8] posed the following question:

Is there any scheme for contraction mappings which converges at a rate similar to Picard

iteration scheme?

In an attempt to answer the same, they introduced the following iteration scheme known as

S-iteration scheme: 
x1 ∈ K,

xn+1 = (1−an)T xn +anTyn,

yn = (1−bn)xn +bnT xn, n ∈ N,

where {an} and {bn} are sequences in (0,1).

On the other hand, Yao and Chen [9] introduced an iteration scheme for approximating the

common fixed points of two mappings T,S : K→ K, which runs as follows:
x1 = x ∈ K,

xn+1 = anxn +bnT xn + cnSxn, n ∈ N,

where {an} and {bn} are sequences in [0,1] and an + bn + cn = 1. Notice that this scheme

reduces to Mann iteration scheme when T = I or S = I.

Agarwal et al. [8] also posed the following question.

Is there any scheme to compute the common fixed points for two contraction mappings which

converges at a rate similar to Picard scheme and faster than its counter parts?

In an attempt to answer the preceding question, Khan et al. [10] introduced the following

iteration scheme to compute the common fixed points of mappings S and T.
x1 ∈ K,

xn+1 = (1−an)T xn +anSyn,

yn = (1−bn)xn +bnT xn, n ∈ N,

(1.1)

where {an} and {bn} are sequences in (0,1).
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Further, Khan et al. [10] introduced yet another iteration scheme for nonexpansive non-self

mappings, wherein the idea of retraction map is utilized:

A subset K of E is called a retract of E if there exists a continuous map P : E → K such

that Px = x for all x ∈ K. Every closed convex subset of a uniformly convex Banach space is a

retract. A map P : E → E is said to be a retraction if P2 = P. It follows that if P is a retraction,

then Py = y for all y in the range of P.

Let T,S : K → E be two nonexpansive non-self mappings and P : E → K a nonexpansive

retraction. Define {xn} by


x1 ∈ K,

xn+1 = P((1−an)T xn +anSyn),

yn = P((1−bn)xn +bnT xn), n ∈ N,

(1.2)

where {an} and {bn} are sequences in (0,1).

Motivated by S-iteration process, Sahu [11] introduced the normal S-iteration process as fol-

lows:


x1 = x ∈ K,

xn+1 = T ((1−an)xn +anT xn), n ∈ N,

where {an} is a sequence in (0,1).

Agarwal et al. [8] showed that S-iteration process involving contractions converges at the rate

of convergence of Picard iteration and even faster than Mann iteration. Sahu [11] demonstrated

that S-iteration process converges at a rate faster than both Picard and Mann iterations (involving

contractions) with the help of a numerical example.

Very recently, Kadioglu and Yildirim [12] introduced the following iteration scheme for one

mapping, whose rate of convergence is faster than both the S-iteration process and the normal
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S-iteration process: 

x1 ∈ K,

xn+1 = Tyn,

yn = (1−an)zn +anT zn,

zn = (1−bn)xn +bnT xn, n ∈ N,

(1.3)

where {an} and {bn} are sequences in (0,1).

The process (1.3) is independent of all Picard, Mann, Ishikawa and S-iteration processes as

{an} and {bn} are in (0,1). Even if it is allowed to take an = 0 and an = bn = 0 in the pro-

cess (1.3), then this process reduces to normal S-iteration process and Picard iteration process

respectively. To appreciate the rate of convergence of scheme (1.3), one can see [12].

The main purpose of this paper is to prove some weak and strong convergence theorems for

approximating fixed points of generalized nonexpansive mappings.

With a view to make, our presentation self contained, we collect some basic definitions,

needed results and some iterative methods which will be used frequently in the text later.

Let S = {x ∈ E : ‖x‖= 1} and E∗ be the dual of E. Then the space E has :

(i) Gâteaux differentiable norm if

lim
t→0

‖x+ ty‖−‖x‖
t

,

exists for each x and y in S;

(ii) Fréchet differentiable norm ([13]) if for each x ∈ S, the above limit exists and is attained

uniformly for y ∈ S and in this case, it is also well-known that

〈h,J(x)〉+ 1
2
‖x‖2 ≤ 1

2
‖x+h‖2 ≤ 〈h,J(x)〉+ 1

2
‖x‖2 +b(‖h‖)

for all x,h ∈ E, where J is the Fréchet derivative of the functional 1
2‖.‖

2 at x ∈ X , 〈., .〉 is the

dual pairing between E and E∗, and b is an increasing function defined on [0,∞) such that

lim
t→0

b(t)
t = 0;

(iii) Opial’s condition ([14]) if for any sequence {xn} in E, xn ⇀ x implies that

lim
n→∞

sup‖xn− x‖< lim
n→∞

sup‖xn− y‖, ∀ y ∈ E, y 6= x.
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Examples of Banach spaces satisfying this condition are Hilbert spaces and all lp spaces (1 <

p < ∞). On the other hand, Lp[0,2] with 1 < p 6= 2 fail to satisfy Opial’s condition.

Definition 1.3. [15] Let K be a non-empty subset of a Banach space E. Two mappings T,S : K→

K are said to satisfy the condition (A′) if there exists a nondecreasing function g : [0,∞)→ [0,∞)

with g(0) = 0, g(r)> 0 for all r ∈ (0,∞) such that either ‖x−T x‖ ≥ g(D(x,F)) or ‖x−Sx‖ ≥

g(D(x,F)) for all x ∈ K, where D(x,F) = inf{‖x− z‖ : z ∈ F} and F = F(T )∩F(S).

Remark 1.1. For S = T in Definition 1.3, condition (A′) reduces to condition (A), (see [16]).

An important property of uniformly convex Banach space is the following lemma:

Lemma 1.1. [17] Let E be a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1 for

all n ∈ N. Suppose that {xn} and {yn} are two sequences of E such that lim
n→∞

sup‖xn‖ ≤ r,

lim
n→∞

sup‖yn‖ ≤ r, and

lim
n→∞
‖tnxn +(1− tn)yn‖= r

hold for some r ≥ 0. Then lim
n→∞
‖xn− yn‖= 0.

We use the following lemmas in order to prove our main results:

Lemma 1.2. [18] Let T be a mapping on a bounded and convex subset K of a uniformly convex

Banach space E. Assume that T satisfies condition (C). Then (I−T ) is demiclosed at 0. That

is, if {xn} in K converges weakly to w ∈ K and lim
n→∞
‖T xn− xn‖= 0, then Tw = w.

Lemma 1.3. [3] Let T be a mapping on a subset K of a Banach space E. Assume that T satisfies

condition (C). Then for each x,y ∈ K,

(i) ‖x−Ty‖ ≤ 3‖T x− x‖+‖x− y‖,

(ii) ‖y−Ty‖ ≤ 3‖T x− x‖+2‖x− y‖.

2. Main results

Now we prove some weak and strong convergence theorems of generalized nonexpansive

mappings. We prove our results in three sections. In first two sections we prove some weak

and strong convergence theorems for approximating common fixed points of two generalized

nonexpansive self mappings and non-self mappings through iteration schemes (1.1) and (1.2)
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respectively while in the last section we prove some convergence theorems with the help of

iteration scheme (1.3) for the class of generalized nonexpansive mapping in Banach spaces.

2.1. Convergence theorems for generalized nonexpansive mappings

We start this section with the following existence theorem through an iteration scheme (1.1).

In the sequel, F = F(T )∩F(S) denotes the set of common fixed points of the mappings T and

S.

Lemma 2.1.1. Let K be a nonempty closed convex subset of a uniformly convex Banach space

E. Let T and S be two self mappings of K satisfying condition (C). Let {xn} be defined by the

iteration scheme (1.1) where {an} and {bn} are in [ε,1−ε] for all n∈N and for some ε ∈ (0,1).

If F 6= /0, then limn→∞ ‖xn− z‖ exists and limn→∞ ‖xn−T xn‖= 0 = limn→∞ ‖xn−Sxn‖.

Proof. Let z ∈ F. By use of condition (C), we get

1
2
‖z−T z‖= 0≤ ‖xn− z‖ ⇒ ‖T xn−T z‖ ≤ ‖xn− z‖, (2.1)

1
2
‖z−Sz‖= 0≤ ‖yn− z‖ ⇒ ‖Syn−Sz‖ ≤ ‖yn− z‖. (2.2)

Using inequalities (2.1) and (2.2) along with (1.1), we have

‖xn+1− z‖ = ‖(1−an)(T xn− z)+an(Syn− z)‖

≤ (1−an)‖T xn− z‖+an‖Syn− z‖

≤ (1−an)‖xn− z‖+an‖yn− z‖

= (1−an)‖xn− z‖+an‖(1−bn)xn +bnT xn− z‖

≤ (1−an)‖xn− z‖+an(1−bn)‖xn− z‖+anbn‖T xn− z‖

≤ (1−an)‖xn− z‖+an(1−bn)‖xn− z‖+anbn‖xn− z‖

= ‖xn− z‖.

Therefore lim
n→∞
‖xn− z‖ exists for any z ∈ F. Let lim

n→∞
‖xn− z‖= a. Consider

‖yn− z‖ = ‖bnT xn +(1−bn)xn− z‖

≤ bn‖T xn− z‖+(1−bn)‖xn− z‖

≤ bn‖xn− z‖+(1−bn)‖xn− z‖

= ‖xn− z‖,
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which implies that

lim
n→∞

sup‖yn− z‖ ≤ a. (2.3)

Using (2.1) and (2.2), we have

lim
n→∞

sup‖T xn− z‖ ≤ a and lim
n→∞

sup‖Syn− z‖ ≤ a. (2.4)

Moreover, we have

a = lim
n→∞
‖xn+1− z‖= lim

n→∞
‖(1−an)(T xn− z)+an(Syn− z)‖. (2.5)

Therefore by using (2.4), (2.5) and Lemma 1.1, we have

lim
n→∞

sup‖T xn−Syn‖= 0. (2.6)

On the other hand, we have

‖xn+1− z‖ = ‖(1−an)T xn +anSyn− z‖

= ‖(T xn− z)+an(Syn−T xn)‖

≤ ‖T xn− z‖+an‖T xn−Syn‖.

Taking lim inf on both the sides, we get a≤ lim
n→∞

inf‖T xn− z‖, which implies from (2.4) that

lim
n→∞
‖T xn− z‖= a. (2.7)

Using (2.7), we have

‖T xn− z‖ ≤ ‖T xn−Syn‖+‖Syn− z‖

≤ ‖T xn−Syn‖+‖yn− z‖.
Taking lim inf on both the sides and using (2.7), we find that

a≤ lim
n→∞

inf‖yn− z‖. (2.8)

Hence by (2.3) and (2.8), we have

lim
n→∞
‖yn− z‖= a. (2.9)

Since

a = lim
n→∞
‖yn− z‖= lim

n→∞
‖(1−bn)(xn− z)+bn(T xn− z)‖,

we find from Lemma 1.1 that

lim
n→∞
‖T xn− xn‖= 0. (2.10)
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Since ‖yn− xn‖= bn‖T xn− xn‖, making use of (2.10), we get

lim
n→∞
‖yn− xn‖= 0. (2.11)

Using (2.6), (2.10), (2.11) and Lemma 1.3 (ii), we have

‖xn−Sxn‖ ≤ 3‖yn−Syn‖+2‖xn− yn‖

≤ 3‖yn−T xn‖+3‖T xn−Syn‖+2‖xn− yn‖

= 3‖(1−bn)xn +bnT xn−T xn‖+3‖T xn−Syn‖+2‖xn− yn‖

= 3(1−bn)‖xn−T xn‖+3‖T xn−Syn‖+2‖xn− yn‖,

yielding thereby lim
n→∞
‖Sxn− xn‖= 0. This concludes the proof.

Lemma 2.1.2. In addition to the hypotheses of Lemma 2.1.1, suppose that z1,z2 ∈ F. Then,

lim
n→∞
〈xn,J(z1− z2)〉 exists. In particular, 〈p−q,J(z1− z2)〉= 0 for all p,q ∈ ωw(xn), the set of

all weak limits of sequence {xn}.

Proof. The proof of this lemma is the same as that of Lemma 2.3 of Khan et al. [10], hence

proof is omitted.

By using Lemma 2.1.2, we prove the following weak convergence theorem:

Theorem 2.1.1. Let E be a uniformlye convex Banach space and let K,T,S and {xn} be the

same as in Lemma 2.1.1. Assume that

(a) E satisfies Opial’s condition,

(b) E has a Fréchet differentiable norm.

If F 6= /0, then {xn} converges weakly to a common fixed point of T and S.

Proof. Let z ∈ F. Then by Lemma 2.1.1, lim
n→∞
‖xn− z‖ exists. We prove that {xn} has a unique

weak subsequential limit in F. Let w1 and w2 be weak limits of the subsequences {xni} and

{xn j} of {xn}, respectively. From Lemma 2.1.1, we see that lim
n→∞

sup‖xn−T xn‖= 0 and (I−T )

is demiclosed with respect to zero from Lemma 1.2. Therefore Tw1 = w1. Similarly, Sw1 = w1.

In the same way, we can prove that w2 ∈ F. Next, we prove the uniqueness. To this end, first we

assume that (a) holds. Let us suppose that w1 6= w2. Since xni ⇀ w1 and w1 6= w2, by Opial’s
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condition, we have

lim
n→∞
‖xn−w1‖= lim

i→∞
‖xni−w1‖< lim

i→∞
‖xni−w2‖= lim

n→∞
‖xn−w2‖.

Again as xn j ⇀ w2 and w2 6= w1, by Opial’s condition, we have

lim
n→∞
‖xn−w2‖= lim

j→∞
‖xn j −w2‖< lim

j→∞
‖xn j −w1‖= lim

n→∞
‖xn−w1‖.

Thus, we get a contradiction. Hence w1 = w2.

Next, we assume that (b) holds. From Lemma 2.1.2, 〈p− q,J(z1− z2)〉 = 0 for all p,q ∈

ωw(xn). Therefore ‖w1−w2‖2 = 〈w1−w2,J(w1−w2)〉= 0 implies w1 = w2.

Now, we prove two strong convergence theorems in a real Banach space under iterative

scheme (1.1).

Theorem 2.1.2. Let E be a real Banach space and K,T,S,{xn} and F be the same as in Lemma

2.1.1. Then {xn} converges strongly to a point of F if and only if lim
n→∞

infD(xn,F) = 0, where

D(x,F) = in f {‖x− z‖ : z ∈ F}.

Proof. Necessity is obvious. Suppose that lim
n→∞

infD(xn,F) = 0. By Lemma 2.1.1, lim
n→∞
‖xn− z‖

exists for all z ∈ F. Therefore lim
n→∞

D(xn,F) exists. In view of the hypothesis, liminf
n→∞

D(xn,F) =

0. Therefore we have lim
n→∞

D(xn,F) = 0. Now, we show that {xn} is a Cauchy sequence in

K. Since lim
n→∞

infD(xn,F) = 0, for given ε > 0, there exists n0 ∈ N such that for all n ≥ n0,

D(xn,F) < ε

2 . In particular, inf {‖xn0 − z‖ : z ∈ F} < ε

2 . Hence, there exists z∗ ∈ F such that

‖xn0− z∗‖< ε

2 . Hence for m,n≥ n0, we have

‖xn+m− xn‖ ≤ ‖xn+m− z∗‖+‖xn− z∗‖ ≤ 2‖xn0− z∗‖< ε.

Thus, {xn} is a Cauchy sequence and therefore converges. Let {xn} converges to z. Since

lim
n→∞

D(xn,F) = 0, we get D(z,F) = 0. Consequently, z ∈ F which amounts to say that {xn}

converges weakly to a point of F . This completes the proof.

By using Theorem 2.1.2 under condition (A′), we prove another convergence theorem as

follows:
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Theorem 2.1.3. Let E be a real Banach space and K,S,T,{xn} and F be the same as in Lemma

2.1.1. Let T,S satisfy the condition (A′) and F 6= /0. Then {xn} converges strongly to a point of

F.

Proof. In view of Lemma 2.1.1, we have lim
n→∞
‖xn−T xn‖= 0 = lim

n→∞
‖xn−Sxn‖. Hence, owing

to condition (A′), we have

lim
n→∞

g(D(xn,F))≤ lim
n→∞
‖xn−T xn‖= 0,

or, lim
n→∞

g(D(xn,F))≤ lim
n→∞
‖xn−Sxn‖= 0.

Thus in both the cases, we have lim
n→∞

g(D(xn,F))= 0. Since g : [0,∞)→ [0,∞) is a nondecreasing

function satisfying g(0) = 0, g(r) > 0 for all r ∈ (0,∞), therefore we have lim
n→∞

D(xn,F) = 0.

Hence by Theorem 2.1.2, {xn} converges strongly to a point of F.

Corollary 2.1.1. Let K be a nonempty closed convex subset of a uniformly convex Banach space

E. Let T : K→ K be a mapping satisfying condition (C) and {xn} a S-iteration scheme where

{an} and {bn} are in [ε,1− ε] for all n ∈ N and for some ε ∈ (0,1). If F(T ), (the set of fixed

points of T ) is nonempty, then {xn} converges strongly to a fixed point of T.

Proof. Putting S = T in Theorem 2.1.3, we conclude the desired result.

Corollary 2.1.2. Let K be a nonempty closed convex subset of a uniformly convex Banach space

E. Let T : K→K be a mapping satisfying condition (C) and {xn} be the Mann iteration scheme

where {an} is in [ε,1− ε] for all n ∈ N and for some ε ∈ (0,1). If F(T ), (the set of fixed points

of T ) is nonempty, then {xn} converges strongly to a fixed point of T.

Proof. Putting T = I in Theorem 2.1.3, we conclude the desired result.

2.2. Convergence theorems for generalized nonexpansive non-self mappings

In this section, we outline the proofs of the theorems proved in the preceding section for

generalized nonexpansive non-self mappings. We begin with the following existence theorem

under the iteration scheme (1.2). As earlier, F = F(T )∩F(S) denotes the set of common fixed

points of the mappings T and S.
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Lemma 2.2.1. Let K be a nonempty closed convex subset of a uniformly convex Banach space

E. Let T,S : K → E be two non-self mappings satisfying condition (C) and P : E → K be a

retraction satisfying condition (C). Let {xn} be defined by the iteration scheme (1.2), where

{an} and {bn} are in [ε,1− ε] for all n ∈ N with some ε in (0,1). If F 6= /0, then lim
n→∞
‖xn− z‖

exists and lim
n→∞
‖xn−T xn‖= 0 = lim

n→∞
‖xn−Sxn‖.

Proof. Let z ∈ F. Then by using condition (C), we get

1
2
‖z−T z‖= 0≤ ‖xn− z‖ ⇒ ‖T xn−T z‖ ≤ ‖xn− z‖, (2.12)

1
2
‖z−Sz‖= 0≤ ‖yn− z‖ ⇒ ‖Syn−Sz‖ ≤ ‖yn− z‖. (2.13)

In the same way, we have

1
2
‖z−Pz‖= 0≤ ‖(1−an)T xn +anSyn− z‖,

⇒ ‖P((1−an)T xn +anSyn)−Pz‖ ≤ ‖(1−an)T xn +anSyn− z‖. (2.14)

Similarly, we have

1
2
‖z−Pz‖= 0≤ ‖(1−bn)xn +bnT xn− z‖,

⇒ ‖P((1−bn)xn +bnT xn)−Pz‖ ≤ ‖(1−bn)xn +bnT xn− z‖. (2.15)

Employing the iterative scheme (1.2) and using (2.12)-(2.15), we have

‖xn+1− z‖ = ‖P((1−an)T xn +anSyn)− z‖

≤ ‖(1−an)T xn +anSyn− z‖

≤ (1−an)‖T xn− z‖+an‖Syn− z‖

≤ (1−an)‖xn− z‖+an‖yn− z‖

= (1−an)‖xn− z‖+an‖P((1−bn)xn +bnT xn)− z‖

≤ (1−an)‖xn− z‖+an‖(1−bn)xn +bnT xn− z‖

≤ (1−an)‖xn− z‖+an(1−bn)‖xn− z‖+anbn‖xn− z‖

= ‖xn− z‖.
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Therefore lim
n→∞
‖xn− z‖ exists for any z ∈ F. Let lim

n→∞
‖xn− z‖= a. Consider

‖yn− z‖ = ‖P((1−bn)xn +bnT xn)− z‖

≤ ‖(1−bn)xn +bnT xn− z‖

≤ (1−bn)‖xn− z‖+bn‖T xn− z‖

≤ ‖xn− z‖,

which implies that lim
n→∞

sup‖yn− z‖ ≤ a. By using (2.12) and (2.13), we have

lim
n→∞

sup‖T xn− z‖ ≤ a and lim
n→∞

sup‖Syn− z‖ ≤ a.

It follows that

lim
n→∞
‖(1−an)(T xn− z)+an(Syn− z)‖= a. (2.16)

Therefore by using Lemma 1.1, we have lim
n→∞

sup‖T xn−Syn‖= 0. Again we consider

‖xn+1− z‖ = ‖P((1−an)T xn +anSyn)− z‖

≤ ‖(1−an)T xn +anSyn− z‖

≤ ‖T xn− z‖+an‖T xn−Syn‖.

Taking lim inf of both the sides, we get

a≤ lim
n→∞

inf‖T xn− z‖ so that lim
n→∞
‖T xn− z‖= a.

On the lines similar to (2.16), we obtain

lim
n→∞
‖(1−bn)(xn− z)+bn(T xn− z)‖= a.

Using Lemma 1.1, we have

lim
n→∞
‖T xn− xn‖= 0.

As xn ∈ K, the range of P, therefore Pxn = xn for all n ∈ N. Owing to Lemma 1.3 (i), we have

‖yn− xn‖ = ‖P((1−bn)xn +bnT xn)− xn‖

≤ 3‖Pxn− xn‖+‖(1−bn)xn +bnT xn− xn‖

= bn‖xn−T xn‖.
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Therefore lim
n→∞
‖yn− xn‖= 0. Using Lemma 1.3 (ii) and the foregoing inequalities, we have

‖xn−Sxn‖ ≤ 3‖yn−Syn‖+2‖xn− yn‖

≤ 3‖yn−T xn‖+3‖T xn−Syn‖+2‖xn− yn‖

= 3‖(1−bn)xn +bnT xn−T xn‖+3‖T xn−Syn‖+2‖xn− yn‖

= 3(1−bn)‖xn−T xn‖+3‖T xn−Syn‖+2‖xn− yn‖,

so that lim
n→∞
‖Sxn− xn‖= 0.

The following theorems for generalized nonexpansive non-self mappings can now be proved

with appropriate modifications in the proofs of Theorems 2.1.1, 2.1.2, and 2.1.3.

Theorem 2.2.1. Let E be a uniformly convex Banach space and K,T,S and {xn} be the same

as in Lemma 2.2.1. Assume that

(a) E satisfies Opial’s condition,

(b) E has a Fréchet differentiable norm.

If F 6= /0, then {xn} converges weakly to a point of F.

Theorem 2.2.2. Let E be a real Banach space and K,T,S and {xn} be the same as in Lemma

2.2.1. Then {xn} converges to a point of F if and only if lim
n→∞

infD(xn,F) = 0.

Theorem 2.2.3. Let E be a real Banach space and K,T,S and {xn} be the same as in Lemma

2.2.1. Let T,S satisfy condition (A′) and F 6= /0. Then {xn} converges strongly to a common

fixed point of S and T.

Remark 2.2.1. The above theorems can also be proved by using the iteration scheme (1.2) with

error terms.

2.3. Convergence theorems via a faster iteration scheme

In this section, we give some convergence theorems for a generalized nonexpansive mapping

using iteration process (1.3), whose rate of convergence is faster than the S-iteration process as

well a normal S-iteration process.

Lemma 2.3.1. Let K be a nonempty closed convex subset of a uniformly convex Banach space

E and T be a self mapping of K satisfying condition (C). Let {xn} be defined by the iteration
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process (1.3) where {an} and {bn} are in (0,1) for all n ∈ N. Then lim
n→∞
‖xn− z‖ exists for all

z ∈ F(T ) and lim
n→∞
‖xn−T xn‖= 0.

Proof. Let z ∈ F(T ). Then using condition (C) on T in iterative scheme (1.3), we have

‖zn− z‖ = ‖(1−bn)(xn− z)+bn(T xn− z)‖

≤ (1−bn)‖xn− z‖+bn‖T xn− z‖

≤ (1−bn)‖xn− z‖+bn‖xn− z‖

= ‖xn− z‖.

(2.17)

As earlier, using condition (C) on T in iterative scheme (1.3), we get

‖xn+1− z‖= ‖Tyn− z‖ ≤ ‖yn− z‖

= ‖(1−an)zn +anT zn− z‖

≤ (1−an)‖zn− z‖+an‖T zn− z‖

≤ ‖zn− z‖ ≤ ‖xn− z‖.

This shows that {‖xn− z‖} is decreasing, and hence lim
n→∞
‖xn− z‖ exists for all z ∈ F(T ). Let

lim
n→∞
‖xn− z‖= a. (2.18)

Owing to condition (C) on T, we have

lim
n→∞

sup‖T xn− z‖ ≤ a. (2.19)

As ‖xn+1− z‖ ≤ ‖zn− z‖ ⇒ lim
n→∞

inf‖xn+1− z‖ ≤ lim
n→∞

inf‖zn− z‖, and therefore,

a≤ lim
n→∞

inf‖zn− z‖. (2.20)

Moreover, (2.17) implies that

lim
n→∞

sup‖zn− z‖ ≤ a. (2.21)

In view of (2.20) and (2.21), we have lim
n→∞
‖zn− z‖= a, which implies that

a = lim
n→∞
‖zn− z‖= lim

n→∞
‖(1−bn)(xn− z)+bn(T xn− z)‖. (2.22)

Using (2.18), (2.19), (2.22) and Lemma 1.1, we have lim
n→∞
‖xn−T xn‖= 0.
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Lemma 2.3.2. Assume that all the conditions of Lemma 2.3.1 are satisfied. Then for z1,z2 ∈

F(T ), lim
n→∞
〈xn,J(z1− z2)〉 exists. In particular, 〈p−q,J(z1− z2)〉= 0 for all p,q ∈ ωw(xn), the

set of all weak limits of sequence {xn}.

Proof. The proof of this lemma is the same as that of Lemma 2.3 of Khan et al. [10].

Now, we have our convergence theorems. The proofs of Theorems 2.3.1-2.3.3 run on the

lines of the proofs of Theorems 2.1.1-2.1.3 by setting S = T, so we omit the proof.

Theorem 2.3.1. Let E be a uniformly convex Banach space and let K,T and {xn} be as in

Lemma 2.3.1. Assume that

(a) E satisfies Opial’s condition or

(b) E has a Fréchet differentiable norm.

If F(T ) 6= /0, then {xn} converges weakly to a fixed point of T.

Theorem 2.3.2. Let E be a uniformly convex Banach space and let K,T,{xn} and F(T ) be as in

Lemma 2.3.1. Then {xn} converges strongly to a point of F(T ) if and only if lim
n→∞

infD(xn,F(T ))=

0.

Notice that this condition is weaker than the requirement “T is demicompact or K is compact”

(see [16]). Applying Theorem 2.3.2, we obtain a strong convergence of the iterative scheme

(1.3) under condition (A) as follows:

Theorem 2.3.3. Let E be a uniformly convex Banach space and let K,T and {xn} be the same

as in Lemma 2.3.1. If T satisfies condition (A), then {xn} converges strongly to a fixed point of

T.

Now, we prove Lemma 2.3.1 using condition (E).

Proposition 2.3.1. Let K be a nonempty closed convex subset of a uniformly convex Banach

space E and T be a self mapping of K satisfying condition (E). Let {xn} be defined by the

iteration process (1.3) where {an} and {bn} are in (0, 1) for all n ∈N. Then lim
n→∞
‖xn− z‖ exists

for all z ∈ F(T ) and lim
n→∞
‖xn−T xn‖= 0.
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Proof. Let z ∈ F(T ). Since T satisfies condition (E), then for µ ≥ 1, we have
‖z−T zn‖ ≤ µ‖z−T z‖+‖zn− z‖ ⇒ ‖T zn− z‖ ≤ ‖zn− z‖,

‖z−Tyn‖ ≤ µ‖z−T z‖+‖yn− z‖ ⇒ ‖Tyn− z‖ ≤ ‖yn− z‖,

‖z−T xn‖ ≤ µ‖z−T z‖+‖xn− z‖ ⇒ ‖T xn− z‖ ≤ ‖xn− z‖.

(2.23)

Hence, using iterative scheme (1.3) and (2.23), we have

‖zn− z‖ ≤ (1−bn)‖xn− z‖+bn‖T xn− z‖ ≤ ‖xn− z‖, (2.24)

while using (1.3) and inequalities (2.23) and (2.24), we have

‖xn+1− z‖= ‖Tyn− z‖ ≤ ‖yn− z‖ ≤ ‖zn− z‖ ≤ ‖xn− z‖,

which shows that {‖xn− z‖} is decreasing so that lim
n→∞
‖xn− z‖ exists for all z ∈ F(T). Hence

proceeding on the lines of the proof of Lemma 2.3.1, we have lim
n→∞
‖xn−T xn‖= 0.

Remark 2.3.1. Theorems 2.3.1-2.3.3 remain valid if condition (C) is replaced by condition

(E).
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