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Abstract. In this paper, we study and prove some fixed point theorems for fixed points of total asymptotically

quasi-nonexpansive nonself mappings in uniformly convex metric spaces.
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1. Introduction

Takahashi [1] introduced the notion of convex metric spaces and studied the fixed point theory

for nonexpansive mappings. A convex structure in a metric space (X ,d) is a mapping W :

X×X× [0,1]→ X satisfying, for all x,y,u ∈ X and all λ ∈ [0,1]

d (u,W (x,y,λ ))≤ (1−λ )d (u,x)+λd (u,y) . (1.1)

A metric space with convex structure is called a convex metric space. Examples for convex

metric are convex Banach space, CAT (0) spaces and CAT (1) spaces with small diameters (see

E-mail address: apadcharoen@yahoo.com

Received October 9, 2014

45



46 ANANTACHAI PADCHAROEN

[7]). A subset C of convex Metric space X is said to be convex if W (x,y,λ ) ∈C for all x,y ∈C

and λ ∈ [0,1]

A uinformly convex metric space have various authors(see [3, 5, 6, 7, 8] ) study fixed point

theory for nonexpansive mappings by using the Ishikawa iteration method (see e,g.,[7]).

Extend a convex structure as follows:

Definition 1.1. Let (X ,d) be a convex metric space with a convex structure and I ∈ [0,1],

W : X3× I3 → X ,T : X → X be an asymptotically quasi-nonexpansive mapping of X {αn},

{βn} , {γn} ,{α ′n} , {β ′n} , {γ ′n} be six sequences in [0,1] with αn +βn + γn = 1, α ′n +β ′n +

γ ′n = 1, n = 0, 1, 2, ...,and ∑
∞
n=1 γn < ∞, ∑

∞
n=1 γ ′n < ∞, for any given x0 ∈ X define a sequence

xn as follows,

xn+1 =W (T yn,xn,un,αn,βn,γn) ,

yn =W
(
T xn,xn,un,α

′
n,β
′
n,γ
′
n
)
,

(1.2)

where {un},{vn} are two sequences in X satisfying the following conditions. For any nonnega-

tive integers n, m, 0≤ n < M if δ (An,m)> 0, then

max
n≤i, j≤m

{
d (x,y) : x ∈ {ui,vi} , y ∈

{
x j,y j,u j,v j

}}
< δ (An,m) (1.3)

where An,m = {xi, yi, T xi, T yi, ui,vi : n≤ i≤ m} ,

δ (An,m) = sup
x,y∈An,m

d (x,y) , (1.4)

then {xn} is called the Ishikawa type iterative sequence with errors of asymptotically quasi-

nonexpansive mapping T.

Obviously, the Ishikawa iterative sequence is a special case of with γn = 0, γ ′n = 0 and {un}=

{vn}= 0.

Lemma 1.1. Let E be a nonempty closed convex subset of a complete convex metric space

X , T : E→E, an asymptotically quasi-nonexpansive mapping of E with ∑
∞
n=1 kn < ∞ and F(T ),

nonempty. Suppose that {xn} is defined by

x0 ∈ E xn+1 =W (T nyn,xn,αn) ,

yn =W (T nxn,xn,αn) , n = 0, 1, 2, ...,
(1.5)
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where {αn} , {βn} satisfy that 0 ≤ αn,βn ≤ 1 then, (a) d (xn+1, p) ≤ d(1+ kn)
2d (xn, p),for all

p∈ F(T ) and for all n≥ 1, (b) there exists a constant M > 0, such that d (xn+m, p)≤Md (xn, p)

for all p ∈ F (T ) and for all n,m≥ 1.

Theorem 1.1. Let E be a nonempty closed convex subset a complete convex metric space

X,T : E → E, an asymptotically quasi-nonexpansive mapping of E (T need not be contin-

uous), and F(T ), nonempty. Suppose that {xn}∞

n=1 is an Ishikawa type lterative sequence

with errors defined by (1.4). Then, {xn}∞

n=1 converges to a fixed point of T if and only if

limn→∞ infd (xn,F (T )) = 0, where d(y,X) denotes the distance of y to set X, i.e., d(y,X) =

infx∈X d (y,x) .

2. Preliminaries

Let (X ,d) be a metric space and x,y ∈ X with d(x,y) = l. A geodesic path from x to y is a

isometry c : [0, l]→ X such that c(0) = x and c(l) = y. The image of a geodesic part is called a

geodesic segment. A metric space X is a (uniquely) geodesic space, if every two point of X are

joined by only one geodesic segment. We will use [x,y] to denote a geodesic segment joining x

and y. A subset C of a geodesic space is said to be convex if [x,y] ∈C for any x,y ∈C.

Definition 2.1 A geodesic metric space (X ,d) is called uniformly convex if for any r > 0 and

any ε ∈ (0,2] there exists δ ∈ (0,1] such that for all a,x,y ∈ X with d(x,a)< r,d(y,a)

< r and d(x,y)≤ εr. It is the case that

d (m,a)≤ (1−δ ) , (2.1)

where m stands for any midpoint of any geodesic segment [x,y]. A mapping δ : (0,∞)×(0,2]→

(0,1] providing such δ = δ (r,ε) for a given r > 0 and ε ∈ (0,2] is called a modulus of uniform

convexity.

From Definition 2.1, it is clear that uniformly convex metric spaces are uniquely geodesic.

The mapping δ is monotone (resp. lower semi-continuous from the right) if for every fixed ε it

decreases (resp. is lower semi-continuous from the right) with respect to r (see [5]).
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In this paper, we assume that all uniformly convex metric spaces have monotone or lower

semi-continuous from the right modulus of uniform convexity.

Definition 2.2 A mapping T : X → X is called:

(a) Nonexpansive if d (T x,Ty)≤ d (x,y) for all x,y ∈ X.

(b) Quasi-nonexpansive if d (T x, p)≤ d (x, p) for all x ∈ X and for all p ∈ F(T ).

(c) Asymptotically nonexpansive if there exists kn ∈ [0,1) for all n≥ 1 with limn→∞kn = 0 such

that d (T nx,T ny)≤ (1+ kn)d (x,y) for all x,y ∈ X.

(d) Asymptotically quasi-nonexpansive if there exists kn ∈ [0,1) for all n≥ 1 with limn→∞kn = 0

such that d (T nx, p)≤ (1+ kn)d (x, p) for all x ∈ X, for all p ∈ F(T ).

(e) Total Asymptotically quasi-nonexpansive if F (T ) 6= /0 and there exists nonnegative real se-

quence {kn} and {un} with limn→∞kn = limn→∞un = 0, and strictly increasing and continuous

functions ξ : [0,∞)→ [0,∞) with ξ (0) = 0 such that d (T nx, p) ≤ d (x, p)+ knd (x, p)+ un all

x,y ∈ X ,n≥ 1 and for all p ∈ F(T ).

Remark 2.1 From Definition 2.2, the following implications are obvious:

(a) Nonexpansiveness implies Quasi-nonexpansiveness.

(b) Nonexpansiveness implies Asymptotically nonexpansiveness.

(c) Quasi-nonexpansiveness implies Asymptotically quasi-nonexpansiveness.

(d) Asymptotically nonexpansiveness implies Asymptotically quasi-nonexpansiveness.

(e) Asymptotically quasi-nonexpansiveness implies Total asymptotically quasi-nonexpansiveness.

The converses of these implications may not be true.

Let (X ,d) be a metric space, and let C be a nonempty subset of X . Recall that C is said to be

a retract of X if there exists a continuous map P : X →C such that Px = x, for all x ∈C. Amap

P : X →C is said to be a retraction if P2 = P. If P is a retraction, then Py = y for all y in the

range of P.

Definition 2.3. Let C be a bounded closed convex subset of a complete uniformly convex met-

ric space X and P be the nonexpansive retraction of X onto C. Let T : C → X be said to

be uniformly total quasi-asymptotically nonexpansive nonself mapping if F (T ) 6= /0 and there

exist nonnegative real sequence {kn} ,{un} with limn→∞kn = 0, limn→∞un = 0 and a strictly
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increasing continuous function ξ : [0,∞)→ [0,∞) ξ (0) = 0 with such that all x ∈C, p ∈ F (T )

d
(

p,T (PT )n−1x
)
≤ d (p,x)+ knξ (d (p,x)) +un ∀n≥ 1 (2.2)

where P is a nonexpansive retraction of X onto C.

Each quasi-asymptotically nonexpansive nonself mapping must be a total quasi-asymptotically

nonexpansive nonself mapping, but the converse is not true.

Lemma 2.1[6] Let {an},{bn} and {cn} be three nonnegative sequences satisfying

an+1 ≤ (1+bn)an + cn, n≥ 1. (2.3)

If ∑
∞
n=1 cn < ∞ and ∑

∞
n=1 bn < ∞,then

(a) limn→∞an exists,

(b) If {an} has a subsequence which converges strongly to zero, then limn→∞an = 0.

3. Main results

In this section, we start by proving the following important result.

Theorem 3.1. Let C be a bounded closed convex subset of a complete uniformly convex metric

space X and P be the nonexpansive retraction of X onto C. Let T : C→ X be uniformly total

quasi-asymptotically nonexpansive nonself mapping. Let Ti : C → X , i = 1,2, be uniformly

total quasi-asymptotically nonexpansive nonself mappings with sequences
{

k(i)n

}
and

{
u(i)n

}
satisfying limn→∞k(i)n = 0 and limn→∞u(i)n = 0 and strictly increasing function ξ (i) : [0,∞)→

[0,∞) with ξ (i) (0) = 0, i = 1,2. For arbitrarily chosen x1 ∈C, the sequence {xn} is defined as

follows:

xn+1 = P
(

W
(

xn,T1(PT1)
n−1yn,αn

))
,

yn = P
(

W
(

xn,T2(PT2)
n−1xn,βn

))
,

(3.1)

with
{

k(1)n

}
,
{

k(2)n

}
,
{

u(1)n

}
,
{

u(2)n

}
,ξ (1),ξ (2),{αn} and {βn} satisfy the following condition-

s:

(a)
∞

∑
n=1

k(i)n < ∞,
∞

∑
n=1

u(i)n < ∞, i = 1,2,
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(b) there exist constants a,b ∈ (0,1) with 0 < b(1−a)≤ 1
2

such that {αn} ⊂ [a,b] and {βn} ⊂

[a,b]

(c) there exists a constant M∗ > 0 such that ξ (i) (r) ≤ M∗r,r ≥ 0, i = 1,2 and F := F (T1)∩

F (T2) = {x ∈C : T1x = T2x = x} 6= /0. Then, the sequence {xn} is bounded and limn→∞d (xn,q)

and limn→∞d (xn,F) exists,q ∈ F.

Proof. Let q ∈ F . Set kn = max
{

k(1)n ,k(2)n

}
and un = max

{
u(1)n ,u(2)n

}
, n = 1,2, ...,∞ and

condition (a), we have

d (xn+1,q) = d
(

P
(

W
(

xn,T1(PT1)
n−1yn,αn

))
,q
)

≤ d
(

W
(

xn,T1(PT1)
n−1yn,αn

)
,q
)

≤ (1−αn)d (xn,q)+αnd
(

T1(PT1)
n−1yn,q

)
≤ (1−αn)d (xn,q)+αn

[
d (yn,q)+ knξ

(1) (d (yn,q))+un

]
.

(3.2)

Since ξ (1) is an strictly increasing function, we see that there exists a constant M∗ > 0 such that

ξ (1) (r)≤M∗r,r ≥ 0. It follows that

d (xn+1,q)≤ (1−αn)d (xn,q)+αn

[
d (yn,q)+ knξ

(1) (d (yn,q))+un

]
≤ (1−αn)d (xn,q)+αn[d (yn,q)+ knM∗d (yn,q)+un ]

≤ (1−αn)d (xn,q)+αn[(1+ knM∗)d (yn,q)+un ]

(3.3)

and

d (yn,q) = d
(

P
(

W
(

xn,T2(PT2)
n−1xn,βn

))
,q
)

≤ d
(

W
(

xn,T2(PT2)
n−1xn,βn

)
,q
)

≤ (1−βn)d (xn,q)+βnd
(

T2(PT2)
n−1xn,q

)
≤ (1−βn)d (xn,q)+βn[d (xn,q)+ knξ

(2) (d (xn,q))+un].

(3.4)
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Since ξ (2) is an strictly increasing function, we find that there exists a constant M∗ > 0 such

that ξ (2) (r)≤M∗r,r ≥ 0. Hence, we have

d (yn,q)≤ (1−βn)d (xn,q)+βn[d (xn,q)+ knξ
(2) (d (xn,q))+un]

≤ (1−βn)d (xn,q)+βn[d (xn,q)+ knM∗d (xn,q)+un]

≤ d (xn,q)−βnd (xn,q)+βn d (xn,q)+βn knM∗d (xn,q)+ βnun

≤ d (xn,q)+βn knM∗d (xn,q)+ βnun

≤ (1+βn knM∗)d (xn,q)+βnun.

(3.5)

Substituting (3.3) and (3.5) gives that

d (xn+1,q)≤ (1−αn)d (xn,q)+αn[(1+ knM∗)((1+βn knM∗)d (xn,q)+βnun)+un ]

= [1−αn +αn (1+ knM∗)(1+βn knM∗)]d (xn,q)+αn (1+ knM∗)βnun +αnun

= [1−αn +αn +αnknM∗+αnβn knM∗+(αnknM∗)(βnknM∗)]d (xn,q)

+αn (1+ knM∗)βnun +αnun

= [1+(1+βn +βnknM∗)αnknM∗]d (xn,q)+ [(1+ knM∗)βn +1]αnun

= [1+(1+βn +βnknM∗)αnknM∗]d (xn,q)+(1+βn +βnknM∗)αnun

(3.6)

and

d (xn+1,F)≤ [1+(1+βn +βnknM∗)αnknM∗]d (xn,q)+(1+βn +βnknM∗)αnun. (3.7)

Since
∞

∑
n=1

kn < ∞,
∞

∑
n=1

un < ∞, we find from Lemma 2.1 that the sequence {xn} is bounded,

limn→∞d (xn,q) and limn→∞d (xn,F) exists, q ∈ F. This completes the proof.

Theorem 3.2. Let C be a bounded closed convex subset of a complete uniformly convex metric

space X and P be the nonexpansive retraction of X onto C. Let T : C→ X be uniformly total

quasi-asymptotically nonexpansive nonself mapping. Let Ti : C→ X , i = 1,2, uniformly total

quasi-asymptotically nonexpansive nonself mappings with sequences
{

k(i)n

}
and

{
u(i)n

}
satisfy-

ing limn→∞k(i)n = 0 and limn→∞u(i)n = 0 and strictly increasing function ξ (i) : [0,∞)→ [0,∞) with
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ξ (i) (0) = 0, i = 1,2. For arbitrarily chosen x1 ∈C, the sequence {xn} is defined as follows:

xn+1 = P
(

W
(

xn,T1(PT1)
n−1yn,αn

))
,

yn = P
(

W
(

xn,T2(PT2)
n−1xn,βn

))
,

(3.8)

with
{

k(1)n

}
,
{

k(2)n

}
,
{

u(1)n

}
,
{

u(2)n

}
,ξ (1),ξ (2),{αn} and {βn} satisfy the following condition-

s:

(a)
∞

∑
n=1

k(i)n < ∞,
∞

∑
n=1

u(i)n < ∞, i = 1,2,

(b) there exist constants a,b ∈ (0,1) with 0 < b(1−a)≤ 1
2

such that {αn} ⊂ [a,b] and {βn} ⊂

[a,b]

(c) there exists a constant M∗ > 0 such that ξ (i) (r) ≤ M∗r,r ≥ 0, i = 1,2 and F := F (T1)∩

F (T2) = {x ∈C : T1x = T2x = x} 6= /0. Then, the sequence {xn} converges strongly to a common

fixed point of Ti, i= 1,2, if and only if liminfn→∞d (xn,F)= 0, where d (xn,F)= infq∈Fd (xn,q) , n≥

1.

Proof. It follows from Theorem 3.1 that limn→∞d (xn,q) exists. Without loss of generality, we

may assume that limn→∞d (xn,q) = v > 0. Form (3.7), we have

d (xn+1,q)≤ [1+(1+βn +βnknM∗)αnknM∗]d (xn,q)+(1+βn +βnknM∗)αnun

= d (xn,q)+ ln,
(3.9)

where ln = (1+βn +βnknM∗)αnknM∗d (xn,q) + (1+βn +βnknM∗)αnun. Since {d(xn,q)} is

bounded and
∞

∑
n=1

kn < ∞,
∞

∑
n=1

un < ∞, we have
∞

∑
n=1

ln < ∞. Hance, (3.9) implies that

inf
q∈F

d (xn+1,q)≤ inf
q∈F

d (xn,q)+ ln, (3.10)

that is

d (xn+1, F)≤ d (xn, F)+ ln. (3.11)

It follows from lemma 2.1 and (3.10) that we have limn→∞d (xn, F) = 0. Next, we show that

{xn} is a Cauchy sequence. From (3.9), we see that that for any n ≥ n0, any n ≥ n1 and any
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q1 ∈ F

d (xn+m,q1)≤ d (xn+m−1,q1)+ ln+m−1

≤ d (xn+m−2,q1)+ ln+m−1 + ln+m−2

≤ d (xn+m−3,q1)+ ln+m−1 + ln+m−2 + ln+m−3

...

≤ d (xn,q1)+
n+m−1

∑
j=n

l j.

(3.12)

By (3.12), we have

d (xn+m,xn)≤ d (xn+m,q1)+ d (xn,q1)

≤ 2d (xn,q1)+
n+m−1

∑
j=n

l j.
(3.13)

By the arbitrariness of q1 ∈ F and from (3.13), we have that

d (xn+m,xn) ≤ 2d (xn,F)+
n+m−1

∑
j=n

l j, ∀n≥ n0. (3.14)

For all ε > 0, there exists a positive number n1 ≥ n0, such that for n ≥ n1, (xn,F) <
ε

4
and

n+m−1
∑
j=n

l j <
ε

2
, It follows from (3.13) that

d (xn+m,xn) ≤ 2d (xn,F)+
n+m−1

∑
j=n

l j <
2ε

4
+

ε

2
= ε

and lim
n→∞

d (xn+m,xn) = 0,m≥ 1.

(3.15)

Hence, {xn} is a Cauchy sequence in C. Since C is a closed subset of X and it is complete, we

have that there exists a q ∈C such that xn→ q as n→ ∞. Next, we show that q ∈ F . Assume

that q /∈ F . Note that F is closed set, d(q,F)> 0. Thus for all q ∈ F, we have

d (q,q1)≤ d (q,xn)+d (xn,q1) . (3.16)

This implies that

d (q,F)≤ d (q,xn)+d (xn,F) . (3.17)

From (3.16) and (3.17), we have that d(p,F) ≤ 0. This is a contradiction. Hence q ∈ F . This

completes the proof.
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Corollary 3.3. Let C be a bounded closed convex subset of a complete uniformly convex metric

space X and P be the nonexpansive retraction of X onto C. Let T : C → X be a uniformly

total quasi-asymptotically nonexpansive nonself mapping. Let Ti : C→ X , i = 1,2, uniformly

total quasi-asymptotically nonexpansive nonself mappings with sequences
{

k(i)n

}
and

{
u(i)n

}
satisfying limn→∞k(i)n = 0 and limn→∞u(i)n = 0 and strictly increasing function ξ (i) : [0,∞)→

[0,∞) with ξ (i) (0) = 0, i = 1,2. For arbitrarily chosen x1 ∈C, the sequence {xn} is defined as

follows:

xn+1 = P
(

W
(

xn,T1(PT1)
n−1yn,

1
2

))
yn = P

(
W
(

xn,T2(PT2)
n−1xn,

1
2

))
,

(3.18)

with
{

k(1)n

}
,
{

k(2)n

}
,
{

u(1)n

}
,
{

u(2)n

}
,ξ (1),ξ (2) satisfy the following conditions:

(a)
∞

∑
n=1

k(i)n < ∞,
∞

∑
n=1

u(i)n < ∞, i = 1,2, (b) there exists a constant M∗ > 0 such that ξ (i) (r) ≤

M∗r,r ≥ 0, i = 1,2 and F := F (T1)∩F (T2) = {x ∈C : T1x = T2x = x} 6= /0. Then, {xn} con-

verges to converges strongly to a common fixed point of Ti, i = 1,2.
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