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Abstract. In this paper, we use the notion of topological vector space valued cone metric space and generalize a

common fixed point theorem of a pair of multivalued mappings satisfying a generalized contractive type condition.

Our results extend some well known recent results in the literature.

Keywords: Topological vector space; Cone metric space; Non-normal cones; Fixed point; Common fixed point.

2010 AMS Subject Classification: 47H09, 47H10.

1. Introduction-preliminaries

Many authors [5, 6, 7, 8, 10, 22, 15, 27] studied fixed points results of mappings satisfying

contractive type condition in Banach space valued cone metric spaces. In recent papers [9]

the authors obtained common fixed points of a pair of mapping in a class of topological vector

space -valued (tvs-valued) cone metric spaces.The class of tvs-cone metric spaces is bigger than

the class of cone metric spaces studied in [8, 10, 22, 15, 27]. Recently Azam et al.[9] obtain
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common fixed points of mappings satisfying a generalized contractive type condition in tvs-

cone metric spaces.In this paper we continue these investigations to generalize the results in

[8, 15].

Let (E,τ) be always a topological vector space (tvs) and P a subset of E. Then, P is called a

cone whenever

(i) P is closed, non-empty and P 6= {0},

(ii) ax+by ∈ P for all x,y ∈ P and non-negative real numbers a,b,

(iii) P∩ (−P) = {0}.

For a given cone P⊆ E, we can define a partial ordering ≤ with respect to P by x≤ y if and

only if y− x ∈ P. x < y will stand for x ≤ y and x 6= y, while x� y will stand for y− x ∈ intP,

where intP denotes the interior of P.

Definition 1.1. Let X be a non-empty set. Suppose the mapping d : X×X → E satisfies

(d1) 0≤ d(x,y) for all x,y ∈ X and d(x,y) = 0 if and only if x = y,

(d2) d(x,y) = d(y,x) for all x,y ∈ X ,

(d3) d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈ X .

Then d is called a topological vector space-valued cone metric on X and (X ,d) is called a

topological vector space-valued cone metric space.

If E is a real Banach space, then (X ,d) is called (Banach space valued) cone metric space

[8, 10, 22, 15, 27].

Definition 1.2. Let (X ,d) be a tvs-cone metric space, x ∈ X and {xn}n≥1 a sequence in X . Then

(i) {xn}n≥1 converges to x whenever for every c ∈ E with 0� c there is a natural number N

such that d(xn,x)� c for all n≥ N. We denote this by limn→∞ xn = x or xn→ x.

(ii) {xn}n≥1 is a Cauchy sequence whenever for every c∈E with 0� c there is a natural number

N such that d(xn,xm)� c for all n,m≥ N.

(iii) (X ,d) is a complete cone metric space if every Cauchy sequence is convergent.

Lemma 1.3. [11] Let (X ,d) be a tvs-cone metric space, P be a cone. Let {xn} be a sequence in

X and {an} be a sequence in P converging to 0. If d(xn,xm) ≤ an for every n ∈ N with m > n,

then {xn} is a Cauchy sequence.
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The fixed point theorems and other results, in the case of cone metric spaces with non-normal

solid cones, cannot be proved by reducing to metric spaces. Further, the vector valued function

cone metric is not continuous in the general case.

2. Main results

In the sequel, let E be a locally convex Hausdorff tvs with its zero vector θ , P be a proper,

closed and convex pointed cone in E with int P 6= /0 and 4 denotes the induced partial ordering

with respect to P.

According to [9], let (X ,d) be a tvs-valued cone metric space with a solid cone P and CB(X)

be a collection of nonempty closed and bounded subsets of X . Let T : X →CB(X) be a multi-

valued mapping. For any x ∈ X , A ∈CB(X), define a set Wx(A) as follows:

Wx(A) = {d(x,a) : a ∈ A}.

Thus, for any x,y ∈ X , we have

Wx(Ty) = {d(x,u) : u ∈ Ty}.

Definition 2.1. [14] Let (X ,d) be a cone metric space with the solid cone P. A multi-valued

mapping S : X → 2E is said to be bounded from below if, for any x ∈ X, there exists z(x) ∈ E

such that Sx− z(x)⊂ P.

Definition 2.2. [14] Let (X ,d) be a cone metric space with the solid cone P. A cone P is said

to be complete if, for any bounded from above and nonempty subset A of E, supA exists in E.

Equivalently, a cone P is complete if, for any bounded from below and nonempty subset A of E,

infA exists in E.

Definition 2.3. [9] Let (X ,d) be a tvs-valued cone metric space with the solid cone P. A multi-

valued mapping T : X → CB(X) is said to have the lower bound property ( l.b. property)

on X if, for any x ∈ X, the multi-valued mapping Sx : X → 2E defined by Sx(y) = Wx(Ty) is

bounded from below, that is, for any x,y ∈ X, there exists an element `x (Ty) ∈ E such that

Wx(Ty)− `x (Ty)⊂ P. `x (Ty) is called the lower bound of T associated with (x,y) .
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Definition 2.4. [9] Let (X ,d) be a tvs-valued cone metric space with the solid cone P. A multi-

valued mapping T : X → CB(X) is said to have the greatest lower bound property (for short,

g.l.b. property) on X if the greatest lower bound of Wx(Ty) exists in E for all x,y∈ X . We denote

d(x,Ty) by the greatest lower bound of Wx(Ty), that is,

d(x,Ty) = inf{d(x,u) : u ∈ Ty}.

According to [26], we denote s(p) = {q ∈ E : p 4 q} for all q ∈ E and

s(a,B) = ∪
b∈B

s(d (a,b)) = ∪
b∈B
{x ∈ E : d (a,b)4 x}

for all a ∈ X and B ∈CB(X). For any A,B ∈CB(X), we denote

s(A,B) =
(
∩

a∈A
s(a,B)

)
∩
(
∩

b∈B
s(b,A)

)
.

Remark 2.5. [26] Let (X ,d) be a tvs-valued cone metric space. If E= R and P = [0,+∞), then

(X ,d) is a metric space. Moreover, for any A,B∈CB(X), H(A,B) = inf s(A,B) is the Hausdorff

distance induced by d.

Theorem 2.6. Let (X ,d) be a complete tvs-valued cone metric space with the solid (normal or

non-normal) cone P and let S,T : X −→ CB(X) be multivalued mappings with g.l.b property

such that

(2.1) A d(x,y)+B d(x,Sx)+Cd(y,Ty)+Dd(x,Ty)+Ed(y,Sx)) ∈ s(Sx,Ty) .

for all x,y∈ X, where A,B,C,D and E are non negative real numbers with A+B+C+D+E <

1. Then S and T have a common fixed point.

Proof. Let x0 be an arbitrary point in X and x1 ∈ Sx0. From (2.1), we have

Ad (x0,x1)+B(x0,Sx0)+Cd(x1,T x1)+Dd(x0,T x1)+Ed(x1,Sx0) ∈ s(Sx0,T x1) .

This implies that

Ad (x0,x1)+B(x0,Sx0)+Cd(x1,T x1)+Dd(x0,T x1)+Ed(x1,Sx0) ∈
(
∩

x∈Sx0
s(x,T x1)

)
and

Ad (x0,x1)+B(x0,Sx0)+Cd(x1,T x1)+Dd(x0,T x1)+Ed(x1,Sx0) ∈ s(x,T x1) ,∀x ∈ Sx0.
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Since x1 ∈ Sx0, we have

Ad (x0,x1)+B(x0,Sx0)+Cd(x1,T x1)+Dd(x0,T x1)+Ed(x1,Sx0) ∈ s(x1,T x1)

and

Ad (x0,x1)+B(x0,Sx0)+Cd(x1,T x1)+Dd(x0,T x1)+Ed(x1,Sx0) ∈ s(x1,T x1)

= ∪
x∈T x1

s(d (x1,x)) .

So there exists some x2 ∈ T x1 such that

Ad (x0,x1)+B(x0,Sx0)+Cd(x1,T x1)+Dd(x0,T x1)+Ed(x1,Sx0) ∈ s(d(x1,x2)).

That is

d(x1,x2)� Ad (x0,x1)+B(x0,Sx0)+Cd(x1,T x1)+Dd(x0,T x1)+Ed(x1,Sx0).

By using the greatest lower bound property (g.l.b property) of S and T, we get

d (x1,x2) � Ad (x0,x1)+B(x0,x1)+Cd(x1,x2)+Dd(x0,x2)+Ed(x1,x1),

which implies that

d (x1,x2) � (A+B+D)d (x0,x1)+(C+D)d(x1,x2).

This further implies that

d (x1,x2) �
A+B+D
1−C−D

d (x0,x1) .

Similarly, from (2.1), we get

Ad (x1,x2)+B(x2,Sx2)+Cd(x1,T x1)+Dd(x2,T x1)+Ed(x1,Sx2) ∈ s(T x1,Sx2) .

This implies that

Ad (x1,x2)+B(x2,Sx2)+Cd(x1,T x1)+Dd(x2,T x1)+Ed(x1,Sx2) ∈
(
∩

x∈T x1
s(x,Sx2)

)
and

Ad (x1,x2)+B(x2,Sx2)+Cd(x1,T x1)+Dd(x2,T x1)+Ed(x1,Sx2) ∈ s(x,Sx2) ,∀x ∈ T x1.

Since x2 ∈ T x1, we have

Ad (x1,x2)+B(x2,Sx2)+Cd(x1,T x1)+Dd(x2,T x1)+Ed(x1,Sx2) ∈ s(x2,Sx2)
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and

Ad (x1,x2)+B(x2,Sx2)+Cd(x1,T x1)+Dd(x2,T x1)+Ed(x1,Sx2) ∈ s(x2,Sx2)

= ∪
x∈Sx2

s(d (x2,x)) .

So there exists some x3 ∈ Sx2 such that

Ad (x1,x2)+B(x2,Sx2)+Cd(x1,T x1)+Dd(x2,T x1)+Ed(x1,Sx2) ∈ s(d(x2,x3)).

That is,

d(x2,x3)� Ad (x1,x2)+B(x2,Sx2)+Cd(x1,T x1)+Dd(x2,T x1)+Ed(x1,Sx2).

By using the greatest lower bound property (g.l.b property) of S and T, we get

d(x2,x3)� Ad (x1,x2)+B(x2,x3)+Cd(x1,x2)+Dd(x2,x2)+Ed(x1,x3),

which implies that

d(x2,x3)� (A+C+E)d (x1,x2)+(B+E)(x2,x3).

This further implies

d(x2,x3)�
A+C+E
1−B−E

d (x1,x2) .

Let δ = max{A+B+D
1−C−D , A+C+E

1−B−E }. Then δ < 1. Thus inductively, one can easily construct a se-

quence {xn} in X such that

x2n+1 ∈ Sx2n, x2n+2 ∈ T x2n+1

and

d(x2n,x2n+1)4 δd(x2n−1,x2n).

for each n ≥ 0. We assume that xn 6= xn+1 for each n ≥ 0. Otherwise, there exists n such that

x2n = x2n+1. Then x2n ∈ Sx2n and x2n is a fixed point of S and hence a fixed point of T. Similarly,

if x2n+1 = x2n+2 for some n, then x2n+1 is a common fixed point of T and S. Similarly, one can

show that

d(x2n+1,x2n+2)4 δd(x2n,x2n+1).
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Thus we have

d(xn,xn+1)4 δd(xn−1,xn)4 δ
2d(xn−2,xn−1)4 · · ·4 δ

nd(x0,x1)

for each n≥ 0. Now, for any m > n, consider

d(xm, xn) 4 d(xn, xn+1)+d(xn+1, xn+2)+ · · ·+d(xm−1, xm)

4
[
δ

n +δ
n+1 + · · ·+δ

m−1]d(x0,x1)

4

[
δ n

1−δ

]
d(x0,x1).

Let θ � c be given and choose a symmetric neighborhood V of θ such that c+V ⊆ intP. Also,

choose a natural number k1 such that
[

δ n

1−δ

]
d(x0,x1) ∈V for all n≥ k1. Then δ n

1−δ
d(x1,x0)� c

for all n≥ k1. Thus we have

d(xm, xn)4

[
δ n

1−δ

]
d(x0,x1)� c

for all m > n. Therefore, {xn} is a Cauchy sequence. Since X is complete, there exists ν ∈ X

such that xn→ ν . Choose a natural number k2 such that

(2.2)
1+E
1−C

d(ν ,x2n+1)�
c
3
,

A
1−C

d(x2n,v)�
c
3

and
B

1−C
d(x2n,x2n)�

c
3

for all n≥ k2. Then, for all n≥ k2, we have

Ad(x2n,v)+Bd(x2n,Sx2n)+Cd(v,T v)+Dd(x2n,T ν)+Ed(ν ,Sx2n) ∈ s(Sx2n,T ν) .

This implies that

Ad(x2n,v)+Bd(x2n,Sx2n)+Cd(v,T v)+Dd(x2n,T ν)+Ed(ν ,Sx2n) ∈
(
∩

x∈Sx2n

s(x,T v)
)

and we have

Ad(x2n,v)+Bd(x2n,Sx2n)+Cd(v,T v)+Dd(x2n,T ν)+Ed(ν ,Sx2n)∈ s(x,T v) f or all x∈ Sx2n.

Since x2n+1 ∈ Sx2n, we have

Ad(x2n,v)+Bd(x2n,Sx2n)+Cd(v,T v)+Dd(x2n,T ν)+Ed(ν ,Sx2n) ∈ s
(
x2n+1 ,T v

)
.
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It follows that

Ad(x2n,v)+Bd(x2n,Sx2n)+Cd(v,T v)+Dd(x2n,T ν)+Ed(ν ,Sx2n) ∈ s
(
x2n+1,T v

)
= ∪

u′∈Tu
s
(
d
(
x2n+1 ,u

′)) .
There exists some νn ∈ T v such that

Ad(x2n,v)+Bd(x2n,Sx2n)+Cd(v,T v)+Dd(x2n,T ν)+Ed(ν ,Sx2n)

∈ s
(
x2n+1,T v

)
∈ s
(
d(x2n+1 ,νn)

)
,

that is

d(x2n+1,νn)� Ad(x2n,v)+Bd(x2n,Sx2n)+Cd(v,T v)+Dd(x2n,T ν)+Ed(ν ,Sx2n).

By using the greatest lower bound property (g.l.b property) of S and T, we have

d(x2n+1,vn)� Ad(x2n,v)+Bd(x2n,x2n)+Cd(v,νn)+Dd(x2n,νn)+Ed(ν ,x2n+1).

Now by using the triangular inequality, we get

d (x2n+1,νn)� Ad(x2n,v)+Bd(x2n,x2n+1)+Cd(v,x2n+1)+Dd(x2n,νn)+Ed(ν ,x2n+1)

and it follows that

d (x2n+1,νn)�
A

1−C
d(x2n,v)+

B
1−C

d(x2n,x2n))+
C+E
1−C

d(ν ,x2n+1).

By using again triangular inequality, we get

d(ν ,νn) � d(ν ,x2n+1)+d(x2n+1,νn)

� d(ν ,x2n+1)+
A

1−C
d(x2n,v)+

B
1−C

d(x2n,x2n))+
C+E
1−C

d(ν ,x2n+1)

� 1+E
1−C

d(ν ,x2n+1)+
A

1−C
d(x2n,v)+

B
1−C

d(x2n,x2n)

� c
3
+

c
3
+

c
3
= c.

Thus, we get

d(v,vn)�
c
m
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for all m ≥ 1 and so c
m −d(v,vn) ∈ P for all m ≥ 1. Since c

m → θ as m→ ∞ and P is closed, it

follows that −d(v,vn) ∈ P. But d(v,vn) ∈ P. Therefore, d(v,vn) = θ and vn→ v ∈ T v, since T v

is closed. This implies that v is a common point of S and T . This completes the proof.

Corollary 2.7. [9] Let (X ,d) be a complete tvs-valued cone metric space with the solid (normal

or non-normal) cone P and let S,T : X −→CB(X) be multivalued mappings with g.l.b property

such that

B d(x,Sx)+Cd(y,Ty) ∈ s(Sx,Ty)

for all x,y ∈ X, where B,C are non negative real numbers withB+C < 1. Then S and T have a

common fixed point.

Corollary 2.8. [9] Let (X ,d) be a complete tvs-valued cone metric space with the solid (normal

or non-normal) cone P and let S,T : X −→CB(X) be multivalued mappings with g.l.b property

such that

Dd(x,Ty)+Ed(y,Sx)) ∈ s(Sx,Ty)

for all x,y ∈ X, where D,E are non negative real numbers with D+E < 1. Then S and T have

common fixed point.

Hence, we have the following theorem which improves/generalizes the results in [8, 11].

Theorem 2.9. Let (X ,d) be a complete topological vector space-valued cone metric space, P

be a cone. If mappings S,T : X → X satisfies:

d(Sx,Ty)≤ A d(x,y)+B d(x,Sx)+Cd(y,Ty)+D d(x,Ty)+E d(y,Sx)

for all x,y ∈ X, where A,B,C,D,E are non negative real numbers with A+B+C+D+E <

1, B =C or D = E. Then S and T have a unique common fixed point.

By substituting D = E = 0 in Theorem 2.9 , we obtain the following result.

Corollary 2.10. Let (X ,d) be a complete topological vector space-valued cone metric space, P

be a cone and m,n be positive integers. If mappings S,T : X → X satisfies:

d(Sx,Ty)≤ A d(x,y)+B d(x,Sx)+Cd(y,Ty)
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for all x,y ∈ X, where A,B,C are non negative real numbers with A+B+C < 1. Then S and T

have a unique common fixed point.

By substituting B =C = 0 in Theorem 2.9 , we obtain the following result.

Corollary 2.11. Let (X ,d) be a complete topological vector space-valued cone metric space, P

be a cone and m,n be positive integers. If mappings S,T : X → X satisfies:

d(Sx,Ty)≤ A d(x,y)+D d(x,Ty)+E d(y,Sx)

for all x,y ∈ X, where A,D,E are non negative real numbers with A+D+E < 1. Then S and T

have a unique common fixed point.

Corollary 2.12. [8] Let (X ,d) be a complete Banach space-valued cone metric space, P be a

cone. If a mapping S,T : X → X satisfies:

(2.5) d(Sx,Ty)≤ pd(x,y)+ q [d(x,Sx)+d(y,Ty)]+ r [d(x,Ty)+E d(y,Sx)]

for all x,y ∈ X, where p,q,r are non negative real numbers with p+2q+2r < 1. Then S and T

have a unique common fixed point.
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[16] D. Ilić and V. Pavlović, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341 (2008),

876–882.
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