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Abstract. In this paper, we investigate the fourth-order second-point nonhomogeneous singular boundary value

problem x′′′′+ a(t) f (x) = 0, 0 < t < 1, x(0) = α,x(1) = β ,x′(0) = λ ,x′(1) = −µ, where, a(t) may be singular

at t = 0, t = 1, a ∈C((0,1), [0,∞)) satisfying 0 <
∫ 1

0 K(τ(s),s)a(s)ds < ∞. f (x) ∈C([0,∞), [0,∞)). We study the

existence and nonexistence of positive solutions and the dependence of the solutions on the parameters α, β , λ , µ

for the above boundary value problems. The proof of our main results is based upon the Guo-Krasnoselskii fixed

point theorem and Schauders fixed point theorem.

Keywords: singular fourth-order differential equation; positive solutions; nonhomogeneous boundary-value prob-

lem; fixed point theorem in cones.
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1. Introduction

The deformations of an elastic beam in equilibrium state with fixed both endpoints can be

described by the fourth-order boundary value problem
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 x′′′′(t)+a(t) f (x) = 0, 0 < t < 1,

x(0) = α,x(1) = β ,x′(0) = λ ,x′(1) =−µ.
(1.1)

Since the problem (1.1) cannot transform into a system of second-order equation, the treat-

ment method of second-order system does not apply to the problem (1.1). Thus, existing lit-

erature on the problem (1.1) is limited. Recently, when α = β = λ = µ = 0, the existence of

positive solutions of the problem (1.1) has been studied by several authors, see [1-6].

Also the existence of positive solutions for the nonhomogeneous boundary value problem-

s have been studied by some authors, see [7-14]. Among them, it is worth mentioning that

Chen [10] and Ma [12] studied the existence of positive solutions of three-point nonhomo-

geneous boundary value problems of second-order ordinary differential equations. Kong and

Kong [11,12] considered multi-point nonhomogeneous boundary value problems of second or-

der ordinary differential equations. By employing the Guo-Krasnoselskii fixed point theorem

and Schauder’s fixed point theorem, Sun [9] studied the existence and nonexistence of positive

solutions to the third order three-point nonhomogeneous BVP. Zhang [10] studied the existence

of positive solutions of three-point nonhomogeneous boundary value problems of second-order

ordinary differential equations. Hao, Liu and Wu [14] has used the Guo-Krasnoselskii fixed

point theorem, the upper-lower solutions method and topological degree theory to study the

existence, nonexistence and multiplicity of positive solutions for the second order m-point non-

homogeneous singular boundary value problem. However, to the author’s knowledge, fewer

results on the fourth-order second-point nonhomogeneous singular boundary value problem

(1.1) can be found in the literature.

Inspired and motivated by the works mentioned above, in this paper, we will consider the

existence or nonexistence of positive solutions to BVP (1.1).

2. Preliminaries

For convenience, we list the following conditions:

(H1) α > 0,β > 0,λ > 0,µ > 0.

(H2) f (x) ∈C([0,∞), [0,∞)).
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(H3) a ∈C((0,1), [0,∞)), and 0 <
∫ 1

0 K(τ(s),s)a(s)ds < ∞.

(H4) f0 = 0, f∞ = ∞.

(H5) f0 = ∞, f∞ = 0.

Where f0 = limx→0+
f (x)

x , f∞ = limx→∞
f (x)

x .

Lemma 2.1. [2, 3] The Green’s function K(t,s) for the homogeneous BVP x′′′′(t) = 0, 0 < t < 1,

x(0) = x(1) = x′(0) = x′(1) = 0

is given by

K(t,s) =
1
6

 t2(1− s)2[(s− t)+2(1− t)s], 0≤ t ≤ s≤ 1,

s2(1− t)2[(t− s)+2(1− s)t], 0≤ s≤ t ≤ 1.
(2.1)

Lemma 2.2. [2, 3] Let (H1) hold, then the unique solution of the following BVP x′′′′(t) = 0, 0 < t < 1,

x(0) = α,x(1) = β ,x′(0) = λ ,x′(1) =−µ

is given by

x(t) = αφ1(t)+βφ2(t)+λφ3(t)+µφ4(t), (2.2)

where

φ1(t) = (1− t)2(2t +1),φ2(t) = t(1− t)2,φ3(t) = t2(3−2t),φ4(t) = t2(1− t). (2.3)

Proof. The proof is obvious, so we omit it.

Lemma 2.3. [2, 3] K(t,s) defined by (2.1) satisfies

c(t)K(τ(s),s)≤ K(t,s)≤ K(τ(s),s), ∀t, s ∈ [0,1], (2.4)

where

τ(s) =

 1
3−2s , 0≤ s≤ 1

2 ,

2s
1+2s ,

1
2 ≤ s≤ t ≤ 1,

K(τ(s),s) =


2s2(1−s)3

3(3−2s)2 , 0≤ s≤ 1
2 ,

2s3(1−s)2

3(1+2s)2 ,
1
2 ≤ s≤ t ≤ 1,

(2.5)
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c(t) =
2
3

min{t2,(1− t)2}. (2.6)

Remark 2.4. (i) For any δ ∈ (0, 1
2), there exists a constant γδ > 0, for any t ∈ [δ ,1−δ ], such

that

K(t,s)≥ 2
3

δ
2K(τ(s),s), ∀s ∈ [0,1], (2.7)

where K(t,s) defined by (2.1).

(ii) Let (H1) hold, then the unique solution x defined by (2.2) satisfies

x(t)> 0, ∀t ∈ [0,1]. (2.8)

Lemma 2.5. [2, 3] Let (H1) hold, for y ∈C(0,1) and
∫ 1

0 K(τ(s),s)y(s)ds < ∞, then the unique

solution of the following BVP

 x′′′′(t)+ y(t) = 0, 0 < t < 1,

x(0) = α,x(1) = β ,x′(0) = λ ,x′(1) =−µ.
(2.9)

is given by

x(t) =
∫ 1

0
K(t,s)y(s)ds+αφ1(t)+βφ2(t)+λφ3(t)+µφ4(t). (2.10)

Proof. By Lemma 2.1, Lemma 2.2 and the condition
∫ 1

0 K(τ(s),s)y(s)ds < ∞, we easily get

Lemma 2.5.

Lemma 2.6. Let (H1) hold. For y ∈ C(0,1) and
∫ 1

0 K(τ(s),s)y(s)ds < ∞, If x ∈ C+[0,1],

then the unique solution x(t) of the BVP (2.9) is nonnegative and satisfies

min
t∈[δ ,1−δ ]

x(t)≥ γδ‖x‖. (2.11)

Proof. Let x ∈ C+[0,1], it is obvious that x is nonnegative. For any t ∈ [0,1], by (2.4) and

Lemma 2.5, it follows that
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x(t) =
∫ 1

0
K(t,s)y(s)ds+αφ1(t)+βφ2(t)+λφ3(t)+µφ4(t)

≤
∫ 1

0
K(τ(s),s)y(s)ds+α +

4
27

β +λ +
4
27

µ,

(2.12)

and thus,

‖x(t)‖ ≤
∫ 1

0
K(τ(s),s)y(s)ds+α +

4
27

β +λ +
4
27

µ. (2.13)

On the other hand, (2.4) and Lemma 2.5 imply that, for any t ∈ [δ ,1−δ ],

x(t) =
∫ 1

0
K(t,s)y(s)ds+αφ1(t)+βφ2(t)+λφ3(t)+µφ4(t)

≥ 2
3

δ
2
∫ 1

0
K(τ(s),s)y(s)ds+αδ

2(3−2δ )+βδ
2(1−δ )+λδ

2(3−2δ )+µδ
2(1−δ ),

≥ γδ [
∫ 1

0
K(τ(s),s)y(s)ds+α +

4
27

β +λ +
4

27
µ] = γδ‖x‖,

(2.14)

where

γδ = min{2
3

δ
2,δ 2(3−2δ ),

27
4

δ
2(1−δ )}.

Define an operator A by

x(t) =
∫ 1

0
K(t,s)a(s) f (x(s))ds+αφ1(t)+βφ2(t)+λφ3(t)+µφ4(t) := (Ax)(t), (2.15)

where K(t,s)is given in (2.1). Let

P =

{
x | x ∈C[0,1], x(t)≥ 0, min

t∈[δ ,1−δ ]
x(t)≥ γδ‖x‖

}
,

where, γδ is given by Lemma 2.6.

Lemma 2.7. If conditions (H1), (H2) and (H3) are satisfied, then BVP (1.1) has a positive

solution x = x(t) if and only if x is a fixed point of A.

Proof. By Lemma 2.5 and the conditions (H1), (H2) and (H3), we easily get Lemma 2.7.

Lemma 2.8. If conditions (H1), (H2) and (H3) are satisfied, then A : P→ P is completely

continuous.
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Proof. For any y ∈ P, let x(t) = Ty(t), t ∈ [0,1]. Obviously, x(t) is a solution of the following

BVP  x′′′′(t)+a(t) f (x) = 0, 0 < t < 1,

x(0) = α,x(1) = β ,x′(0) = λ ,x′(1) =−µ.

From Lemma 2.6, we have x(t)≥ 0, t ∈ [0,1], mint∈[δ ,1−δ ] x(t)≥ γδ‖x‖, and A(P)⊂ P.

Next, we show that A is completely continuous. Define an an(t) : (0,1)→ [0,+∞) by

an(t) =


inf{a(t),a(1

n)}, 0 < t ≤ 1
n ,

a(t), 1
n ≤ t ≤ n−1

n ,

inf{a(t),a(n−1
n )}, n−1

n ≤ t < 1.

It is easy to see that an ∈ C(0,1) and 0 < a(t) ≤ an(t), t ∈ (0,1). Furthermore, we define an

operator An : P→ P as follows:

(Anx)(t) =
∫ 1

0
K(t,s)an(s) f (x(s))ds+αφ1(t)+βφ2(t)+λφ3(t)+µφ4(t),n≥ 2.

Obviously, An : P→ P is a completely continuous operator on P for each n ≥ 2. For r > 0,

set Br = {x ∈ P : ‖x‖ ≤ r}, then An converges uniformly to A on Br.

In fact, for r > 0 and x ∈ Br, by (H1), (H2) , (H3) and the Lebesgue dominated conver-

gence theorem, we get

|Anx(t)−Ax(t)|= |
∫ 1

0
K(t,s)[an(s)−a(s)] f (x(s))ds|

≤
∫ 1

n

0
K(t,s)|an(s)−a(s)| f (x(s))ds

+
∫ 1

n−1
n

K(t,s)|an(s)−a(s)| f (x(s))ds

≤M

[∫ 1
n

0
K(t,s)|an(s)−a(s)|ds+

∫ 1

n−1
n

K(t,s)|an(s)−a(s)ds

]

→ 0 (n→ ∞),

where M = maxx∈[0,r] f (x). So we conclude that An converges uniformly to A on Br as n→ ∞,

and therefore A is completely continuous.
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Theorem 2.1. [20] Let E be a Banach space and P⊂ E be a cone . Assume Ω1 and Ω2 are open

subsets of E with θ ∈ Ω1, Ω1 ⊂ Ω2 . Let A : P∩ (Ω2 \Ω1)→ P be a completely continuous

operator. In addition suppose either

(i)‖Au‖ ≤ ‖u‖,u ∈ P∩∂Ω1, and ‖Au‖ ≥ ‖u‖,u ∈ P∩∂Ω2,or

(ii)‖Au‖ ≥ ‖u‖,u ∈ P∩∂Ω1, and ‖Au‖ ≤ ‖u‖,u ∈ P∩∂Ω2

(2.16)

holds. Then A has a fixed point P∩ (Ω2 \Ω1).

3. Main results

Throughout this section, we shall use the following notation:

M1 =
1

5
∫ 1

0 K(τ(s),s)a(s)ds
,M2 =

3

4δ 2γδ

∫ 1−δ

δ
K(τ(s),s)a(s)ds

, R+ = [0,∞).

It is obvious that M2 > M1 > 0.

Lemma 3.1. [20] If conditions (H1), (H2), (H3) and (H4) are satisfied, then BVP (1.1) has

at least one positive solution for all (α,β ,λ ,µ) ∈ R4
+ \ {0,0,0,0} with α +β +λ + µ small

enough.

Proof. Since f0 = 0, there exists R1 > 0 such that f (x)
x ≤M1, x ∈ (0,R1]. Therefore,

f (x)≤M1x, x ∈ (0,R1]. (3.1)

Set Ω1 = {x ∈C[0,1] : ‖x‖< R1}, and let α,β ,λ ,µ satisfy

0 < α ≤ 1
5

R1,0 < β ≤ 27
20

R1,0 < λ ≤ 1
5

R1,0 < µ ≤ 27
20

R1. (3.2)

Then, for any x ∈ P and ‖x‖ = R1, it follows from Lemma 2.3, Lemma 2.5, (3.1) and (3.2)

that

Ax(t)≤
∫ 1

0
K(τ(s),s)a(s) f (x(s))ds+αφ1(t)+βφ2(t)+λφ3(t)+µφ4(t)

≤M1

∫ 1

0
K(τ(s),s)a(s)ds · ‖x‖+α +

4
27

β +λ +
4

27
µ

≤ 1
5

R1 +
1
5

R1 +
1
5

R1 +
1
5

R1 +
1
5

R1 = ‖x‖,
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and thus

‖Ax‖ ≤ ‖x‖, ∀x ∈ P∩∂Ω1. (3.3)

Since f∞ = ∞, for M2 > 0, there exists R2 > R1 such that f (x)
x ≥ 2M2, for x ∈ [γδ R2,∞). Thus we

have

f (x)≥ 2M2x, x ∈ [γδ R2,∞). (3.4)

Set Ω2 = {x ∈C[0,1]|‖x‖< R2}, For any x∈P∩∂Ω2, by Lemma 2.4, one has mint∈[δ ,1−δ ] x(t)≥

γδ‖x‖ ≥ R2. Thus, from (2.5) and (3.4), we can conclude that

Ax
(

1
2

)
=
∫ 1

0
K
(

1
2
,s
)

a(s) f (x(s))ds+
1
2

α +
1
8

β +
1
4

λ +
1

16
µ

≥
∫ 1

0
min

t∈[δ ,1−δ ]
K(t,s)a(s) f (x(s))ds

≥ 2
3

δ
2 ·2M2

∫ 1−δ

δ

K(τ(s),s)a(s)x(s)ds

≥ 4
3

δ
2M2γδ

∫ 1−δ

δ

K(τ(s),s)a(s)ds · ‖x‖= ‖x‖,

which implies that

‖Ax‖ ≥ ‖x‖, ∀x ∈ P∩∂Ω2. (3.5)

Therefore, by (3.3), (3.5) and the first part of Theorem 2.1, we know that the operator A has at

least one fixed point x∗ ∈ P∩ (Ω2\Ω1), which is a positive solution of BVP (1.1).

Lemma 3.2. If conditions (H1), (H2), (H3) and (H4) are satisfied, then BVP (1.1) has no

positive solution for all (α,β ,λ ,µ) ∈ R4
+ \{0,0,0,0} with α +β +λ +µ large enough.

Proof. Suppose there exist sequences {αn}, αn > 0, {βn}, βn > 0, {λn}, λn > 0, {µn}, µn > 0

with limn→∞(αn +βn +λn +µn) = +∞, such that for any positive integer n, the BVP x′′′′(t)+a(t) f (x) = 0, 0 < t < 1,

x(0) = αn,x(1) = βn,x′(0) = λn,x′(1) =−µn.
(3.6)

has a positive solution xn(t). By (2.10), we have

Ax
(

1
2

)
=
∫ 1

0
K
(

1
2
,s
)

a(s) f (xn(s))ds+
1
2

αn +
1
8

βn +
1
4

λn +
1

16
µn

≥ 1
16

(αn +βn +λn +µn)→ ∞, (n→ ∞).
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‖xn‖→ ∞, (n→ ∞). (3.7)

Since f∞ = ∞, for M2 > 0, there exists R̂ > 0 such that f (x)
x ≥ 4M2 for x ∈ [γδ R̂,∞), which

implies that

f (x)≥ 4M2x, x ∈ [γδ R,∞). (3.8)

Let n be large enough that ‖xn‖ ≥ R̂. Then

‖xn‖ ≥ xn(
1
2
)

=
∫ 1

0
K
(

1
2
,s
)

a(s) f (xn(s))ds+
1
2

αn +
1
8

βn +
1
4

λn +
1

16
µn

≥
∫ 1

0
min

t∈[δ ,1−δ ]
K(t,s)a(s) f (xn(s))ds

≥ 2
3

δ
2 ·4M2

∫ 1−δ

δ

K(τ(s),s)a(s)xn(s)ds

≥ 8
3

δ
2M2γδ

∫ 1−δ

δ

K(τ(s),s)a(s)ds · ‖xn‖= 2‖xn‖,

which is a contradiction. The proof is complete.

Theorem 3.3. (i) conditions (H1), (H2), (H3) and (H4) are satisfied, if f is nondecreasing,

then there exist positive constants (α∗,β ∗,λ ∗,µ∗) ∈R4
+ \{0,0,0,0} such that BVP (1.1) has at

least one positive solution for any α ∈ (0,α∗),β ∈ (0,β ∗),λ ∈ (0,λ ∗),µ ∈ (0,µ∗) and has no

positive solution as satisfying at least one of α ∈ (α∗,∞), β ∈ (β ∗,∞), λ ∈ (λ ∗,∞), µ ∈ (µ∗,∞).

(ii) conditions (H1), (H2), (H3) and (H5) are satisfied, then the BVP (1.1) has at least one

positive solution for any α ∈ (0,∞),β ∈ (0,∞),λ ∈ (0,∞),µ ∈ (0,∞).

Proof. (i) Let Σ= {(α,β ,λ ,µ)|BVP (1.1) has at least one positive solution}, and (α∗,β ∗,λ ∗,µ∗)=

supΣ = {(supα,supβ ,supλ ,sup µ)| BVP (1.1) at least one positive solution}; it follows from

Lemma 2.1 and Lemma 2.2 that 0 < α∗ < ∞, 0 < β ∗ < ∞, 0 < λ ∗ < ∞,0 < µ∗ < ∞, From the

definition of (α∗,β ∗,λ ∗,µ∗), we know that for any α ∈ (0,α∗),β ∈ (0,β ∗),λ ∈ (0,λ ∗),µ ∈

(0,µ∗) there are α∗ > α0 > α,β∗ > β0 > β ,λ∗ > λ0 > λ ,µ∗ > µ0 > µ such that BVP x′′′′(t)+a(t) f (x) = 0, 0 < t < 1,

x(0) = α0,x(1) = β0,x′(0) = λ0,x′(1) =−µ0

(3.9)
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has a positive solution x0(t). Now we prove that for any α ∈ (0,α0),β ∈ (0,β0),λ ∈ (0,λ0),µ ∈

(0,µ0), BVP (1.1) has a positive solution.

In fact, let

P(x0) = {x ∈ P|x(t)≤ x0(t), t ∈ [0,1]}.

For any α ∈ (0,α0),β ∈ (0,β0),λ ∈ (0,λ0),µ ∈ (0,µ0), x ∈ P(x0), it follows from (2.10) and

the monotonicity of f that we have that

Ax(t)≤
∫ 1

0
K(τ(s),s)a(s) f (x(s))ds+αφ1(t)+βφ2(t)+λφ3(t)+µφ4(t)

≤
∫ 1

0
K(τ(s),s)a(s) f (x(s))ds+α0φ1(t)+β0φ2(t)+λ0φ3(t)+µ0φ4(t)

= x0(t).

Thus A(P(x0)) ⊆ P(x0). By Schauders fixed point theorem, we know that there exists a fixed

point x ∈ P(x0) which is a positive solution of BVP (1.1). Theorem 3.3 (i) of the proof is

complete.

(ii) Since f0 = ∞, there exists R1 > 0 such that

f (x)≥ 2M2x, x ∈ [0,R1). (3.10)

So, for any x ∈ P, and ‖x‖= R1, and any λ > 0, we have

Ax
(

1
2

)
=
∫ 1

0
K
(

1
2
,s
)

a(s) f (x(s))ds+
1
2

α +
1
8

β +
1
4

λ +
1

16
µ

≥
∫ 1

0
min

t∈[δ ,1−δ ]
K(t,s)a(s) f (x(s))ds

≥ 2
3

δ
2 ·2M2

∫ 1−δ

δ

K(τ(s),s)a(s)x(s)ds

≥ 4
3

δ
2M2γδ

∫ 1−δ

δ

K(τ(s),s)a(s)ds · ‖x‖= ‖x‖.

and consequently ‖Ax‖ ≥ ‖x‖. So, if we set Ω1 = {x ∈C[0,1]|‖x‖< R1}, then

‖Ax‖ ≥ ‖x‖, ∀x ∈ P∩∂Ω1. (3.11)

Next we construct the set Ω2. We consider two cases: f is is bounded or is unbounded.
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Case (1). Suppose that f is bounded, say f (x)≤M for all x ∈ [0,∞). In this case, we choose

R2 = max
{

2R1,
M
M1

,5α,
20
27

β ,5λ ,
20
27

µ

}
,

and then for x ∈ P with ‖x‖= R2, we have

Ax(t)≤
∫ 1

0
K(τ(s),s)a(s) f (x(s))ds+αφ1(t)+βφ2(t)+λφ3(t)+µφ4(t)

≤M
∫ 1

0
K(τ(s),s)a(s)ds+α +

4
27

β +λ +
4

27
µ

≤ M
5M1

+
1
5

R2 +
1
5

R2 +
1
5

R2 +
1
5

R2

≤ 1
5

R2 +
1
5

R2 +
1
5

R2 +
1
5

R2 +
1
5

R2 = ‖x‖.

So,

‖Ax‖ ≤ ‖x‖. (3.12)

Case (2). When f is unbounded. Now, since f∞ = 0, there exists R0 > 0 such that

f (x)≤M1x, x ∈ [R0,∞). (3.13)

Let R2 : R2 ≥max
{

2R1, R0, 5α, 20
27β , 5λ , 20

27 µ
}

, and be such that

f (x)≤ f (R2), f or 0 < x≤ R2. (3.14)

(We are able to do this since f is unbounded.) For x ∈ P with ‖x‖ = R2, from (2.5), (3.14)

and (3.13), we have

Ax(t) =
∫ 1

0
K(t,s)a(s) f (x(s))ds+αφ1(t)+βφ2(t)+λφ3(t)+µφ4(t)

≤
∫ 1

0
K(τ(s),s)a(s)ds · f (R2)+α +

4
27

β +λ +
4

27
µ

≤M1R2

∫ 1

0
K(τ(s),s)a(s)ds+

1
5

R2 +
1
5

R2 +
1
5

R2 +
1
5

R2

≤ 1
5

R2 +
1
5

R2 +
1
5

R2 +
1
5

R2 +
1
5

R2 = R2 = ‖x‖.

(3.15)

Thus, ‖Ax‖ ≥ ‖x‖. Therefore, in either case we may put

Ω2 = {x ∈C[0,1]|‖x‖< R2} .
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It follows that

‖Ax‖ ≤ ‖x‖, ∀x ∈ P∩∂Ω2. (3.16)

So, it follows from (3.11) and (3.16) and the second part of the Theorem 2.1 that A has a fixed

point x∗ ∈ P∩
(
Ω4\Ω3

)
. Then x is a positive solution of BVP (1.1). The proof is complete.
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