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Abstract. In this paper, an integral type of Suzuki-type mappings is investigated for generalizing the Banach

contraction theorem on a metric space. As an application, the existence of a continuous solution for an integral

equation is obtained.
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1. Introduction and preliminaries

The most important result on fixed points for contractive-type mappings is the well-known

Banach contraction theorem, which was established in 1922; see [1] and the references therein.

Theorem 1.1. Let (X ,d) be a complete metric space, β ∈ (0,1) and let T : X→ X be a mapping

such that for each x,y ∈ X ,

d(T x,Ty)≤ βd(x,y).
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Then T has a unique fixed point a ∈ X such that for each x ∈ X, limn→∞ T nx = a.

Since 1922, many authors have introduced various types of contraction inequalities to gen-

eralized the well-known Banach contraction theorem. In 2002 Branciari proved the following

result; see [2].

Theorem 1.2. Let (X ,d) be a complete metric space, β ∈ (0,1) and T : X −→ X a mapping

such that for each x,y ∈ X,

∫ d(T x,Ty)

0

f (t)dt ≤ β

∫ d(x,y)

0

f (t)dt,

where f : [0,∞)→ (0,∞) is a Lebesgue integrable mapping which is summable (i.e., with finite

integral on each compact subset of [0,∞)) and for each ε > 0,
∫

ε

0
f (t)dt > 0. Then T has a

unique fixed point a ∈ X such that for each x ∈ X, limn→∞ T nx = a.

In 2008, Suzuki [3] introduced a new method on the problem and the method was further

extended by some authors; see, for example, [4-7]. The following result was proved in [8].

Theorem 1.3. Let (X ,d) be a complete metric space and let T : X −→X be a mapping. Suppose

that there exist α ∈ (0, 1
2 ], β ∈ (0,1) such that αd(x,T x)≤ d(x,y) implies d(T x,Ty)≤ βd(x,y)

for all x,y∈ X. Then T has a unique fixed point a∈ X such that for each x∈ X, limn→∞ T nx = a.

The aim of this paper is to provide a new condition for T which guarantees the existence of

its fixed point based on Suzuki and Branciari’s idea. In order to obtain our main results, we

need the following lemmas.

Lemma 1.4. Let a,b ∈ [0,∞) and f : [0,∞)→ (0,∞) a Lebesgue integrable mapping which is

summable and for each ε > 0,
∫

ε

0
f (t)dt > 0. Then

i) a = 0 whenever
∫ a

0
f (t)dt = 0,

ii) a < b whenever
∫ a

0
f (t)dt <

∫ b
0

f (t)dt.

Lemma 1.5. Let L > 0, α(x),β (x) ∈ C([a,b]) and f : [0,∞)→ (0,∞) a Lebesgue integrable

mapping which is summable and for each ε > 0,
∫

ε

0
f (t)dt > 0. Then

∫ ‖α‖∞

0
f (t)dt <L

∫ ‖β‖∞

0
f (t)dt

whenever
∫ |α(x)|

0
f (t)dt < L

∫ |β (x)|
0

f (t)dt.

2. Main results
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The following theorem is the main result of this paper.

Theorem 2.1 Let (X ,d) be a complete metric space and T : X −→ X a mapping. Suppose that

there exist α ∈ (0, 1
2 ], β ∈ (0,1) such that αd(x,T x)≤ d(x,y) implies∫ d(T x,Ty)

0

f (t)dt ≤ β

∫ d(x,y)

0

f (t)dt

for all x,y∈ X and f : [0,∞)→ (0,∞) is a Lebesgue integrable mapping which is summable and

for each ε > 0,
∫

ε

0
f (t)dt > 0. Then T has a unique fixed point a ∈ X such that for each x ∈ X,

limn→∞ T nx = a.

Proof. Fix arbitrary 1 > r > β , x0 ∈ X and x1 = T x0. We have αd(x0,T x0)< d(x0,x1). Hence,∫ d(T x0,T x1)

0

f (t)dt ≤ β

∫ d(x0,x1)

0

f (t)dt < r
∫ d(x0,x1)

0

f (t)dt.

Since r < 1, we have
∫ d(x1,T x1)

0
f (t)dt <

∫ d(x0,x1)
0

f (t)dt. Let x2 = T x1. By lemma 1.4, we have

d(x1,T x1)< d(x0,x1). Therefore, we find αd(x1,T x1)< d(x1,x2) and∫ d(T x1,T x2)

0

f (t)dt ≤ β

∫ d(x1,x2)

0

f (t)dt < r
∫ d(x1,x2)

0

f (t)dt < r2
∫ d(x0,x1)

0

f (t)dt.

Now let x3 = T x2. By lemma 1.4, d(x2,x3) < d(x1,x2) < d(x0,x1). Since αd(x2,T x2) <

d(x2,x3), we have∫ d(T x2,T x3)

0

f (t)dt ≤ β

∫ d(x2,x3)

0

f (t)dt < r
∫ d(x2,x3)

0

f (t)dt < r3
∫ d(x0,x1)

0

f (t)dt.

By continuing this process, we obtain a sequence {xn}n≥1 in X such that xn+1 =T xn, d(xn,xn+1)<

d(xn−1,xn) and ∫ d(xn,xn+1)

0

f (t)dt < rn
∫ d(x0,x1)

0

f (t)dt.

We claim that for any y ∈ X , one of the flowing relations hold:

αd(xn,T xn)≤ d(xn,y) or αd(xn+1,T xn+1)≤ d(xn+1,y). (2.1)

Otherwise, if αd(xn,T xn)> d(xn,y) and αd(xn+1,T xn+1)> d(xn+1,y), we have

d(xn,xn+1)≤ d(xn,y)+d(xn+1,y)< αd(xn,T xn)+αd(xn+1,T xn+1)

= αd(xn,xn+1)+αd(xn+1,xn+2)≤ 2αd(xn,xn+1)≤ d(xn,xn+1),
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which is a contradiction. Now let an = d(xn,xn+1) for all n ≥ 1. It is obvious that {an}n≥1 is

monotone non-increasing and so there exists a≥ 0 such that limn→∞ an = a. Since∫ a

0

f (t)dt = lim
n→∞

∫ an

0

f (t)dt ≤ lim
n→∞

rn
∫ d(x0,x1)

0

f (t)dt = 0,

we have a = 0. We claim {xn}n≥1 is a Cauchy sequence in (X ,d), i.e,

∀ε > 0 ∃Nε ∈ N | ∀m,n ∈ N,m > n > Nε d(xm,xn)< ε.

Suppose that there exists an ε > 0 such that for each N ∈ N there are mN ,nN ∈ N, with mN >

nN > N, such that d(xmN ,xnN )≥ ε . We choose the sequences {mN}N≥1 and {nN}N≥1 such that

for each N ∈ N, mN is minimal in the sense that d(xmN ,xnN ) ≥ ε but d(xh,xnN ) < ε for each

h ∈ {nN + 1, ...,mN − 1}. Now we analyze the properties of d(xmN ,xnN ), d(xmN+1,xnN+1) and

d(xmN+2,xnN+1). Since

ε ≤ d(xmN ,xnN )

≤ d(xmN ,xmN−1)+d(xmN−1,xnN )

< d(xmN ,xmN−1)+ ε,

we have d(xmN ,xnN )→ ε+ as N → ∞. We claim that there exists k ∈ N such that for each

natural number N > k we have d(xmN+1,xnN+1) < ε and d(xmN+2,xnN+1) < ε . Suppose there

exists a subsequence {Nk}k≥1 ⊆ N such that d(xmNk+1,xnNk+1)≥ ε or d(xmNk+2,xnNk+1)≥ ε . If

d(xmNk+1,xnNk+1)≥ ε ,

ε ≤ d(xmNk+1,xnNk+1)≤ d(xmNk+1,xmNk
)+d(xmNk

,xnNk
)+d(xnNk

,xnNk+1)

and then d(xmNk+1,xnNk+1)→ ε , as k→ ∞. If d(xmNk+2,xnNk+1)≥ ε ,

ε ≤ d(xmNk+2,xnNk+1)≤ d(xmNk+2,xmNk+1)+d(xmNk+1,xmNk
)

+d(xmNk
,xnNk

)+d(xnNk
,xnNk+1)

and then d(xmNk+2,xnNk+1)→ ε , when k→ ∞. In view of

d(xmNk+1,xnNk
)≤ d(xmNk+1,xmNk

)+d(xmNk
,xnNk

),

we have limk→∞ d(xmNk+1,xnNk
)≤ ε. From relation 2.1, we have∫ d(xmNk
+1,xnNk

+1)

0

f (t)dt ≤ β

∫ d(xmNk
,xnNk

)

0

f (t)dt
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or ∫ d(xmNk
+2,xnNk

+1)

0

f (t)dt ≤ β

∫ d(xmNk+1 ,xnNk
)

0

f (t)dt.

As k→∞, we have
∫

ε

0
f (t)dt ≤ β

∫
ε

0
f (t)dt, which is a contradiction. So there exists k ∈N such

that for each natural number N > k one has d(xmN+1,xnN+1)< ε and d(xmN+2,xnN+1)< ε . Now

we claim that there exist a δε ∈ (0,ε) and Nε ∈ N such that for each natural number N > Nε .

Note that

d(xmN+1,xnN+1)< ε−δε or d(xmNk+2,xnNk+1)< ε−δε .

Suppose that exist a subsequence {Nk}k≥1 ⊆ N such that d(xmNk+1,xnNk+1)→ ε and

d(xmNk+2,xnNk+1)→ ε

as k→ ∞. Now by relation 2.1, we have∫ d(xmNk
+1,xnNk

+1)

0

f (t)dt ≤ β

∫ d(xmNk
,xnNk

)

0

f (t)dt

or ∫ d(xmNk
+2,xnNk

+1)

0

f (t)dt ≤ β

∫ d(xmNk+1 ,xnNk
)

0

f (t)dt,

which is a contradiction. If d(xmN+1,xnN+1)< ε−δε , then

ε ≤ d(xmN ,xnN )≤ d(xmN ,xmN+1)+d(xmN+1,xnN+1)+d(xnN+1,xnN )

< d(xmN ,xmN+1)+(ε−δε)+d(xnN ,xnN+1).

If d(xmN+2,xnN+1)< ε−δε , then

ε ≤ d(xmN ,xnN )≤ d(xmN ,xmN+1)+d(xmN+1,xmN+2)

+d(xmN+2,xnN+1)+d(xnN+1,xnN )

< d(xmN ,xmN+1)+d(xmN+1,xmN+2)+(ε−δε)+d(xnN ,xnN+1).

It follows that ε ≤ ε−δε as N→∞, which is a contradiction. This proves our claim that {xn}n≥1

is a Cauchy sequence in (X ,d). Let limn→∞ xn = x. By relation 2.1, for each n≥ 1 either

i)
∫ d(T xn,T x)

0
f (t)dt ≤ β

∫ d(xn,x)
0

f (t)dt or ii)
∫ d(T xn+1,T x)

0
f (t)dt ≤ β

∫ d(xn+1,x)
0

f (t)dt hold. Then
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0

f (t)dt → 0 or
∫ d(T xn+1,T x)

0
f (t)dt → 0 as n→ ∞. Thus limn→∞ d(T xn,T x) = 0 or

limn→∞ d(T xn+1,T x) = 0. In case (i), since

d(x,T x)≤ d(x,T xn)+d(T xn,T x) = d(x,xn+1)+d(T xn,T x),

we obtain d(x,T x) = 0 and so T x = x. We obtain T x = x. Now we show that this fixed point is

unique. Suppose that there are two distinct points a,b ∈ X such that Ta = a and T b = b. Since

d(a,b)> 0 = αd(a,Ta), we have the contradiction

0 <
∫ d(a,b)

0
f (t)dt =

∫ d(Ta,T b)

0
f (t)dt ≤ β

∫ d(a,b)

0
f (t)dt.

To prove that limn→∞ T nx = a, let x be arbitrary and a ∈ F(T ). Note that d(a,T n−1x) ≥ 0 =

αd(a,Ta) for every n ∈ N, we have∫ d(a,T nx)

0
f (t)dt ≤ β

∫ d(a,T n−1x)

0
f (t)dt ≤ β

2
∫ d(a,T n−2x)

0
f (t)dt ≤ ...≤ β

n
∫ d(a,x)

0
f (t)dt.

3. Example and applications

In this section, we give some remarks and examples which clarify the connection between our

result and the classical ones in the literature. As an application, the existence of a continuous

solution for an integral equation is obtained.

Remark 3.1 Theorem 2.1 is a generalization of theorem 1.3. Letting f (t) = 1 for each t ≥ 0 in

theorem 2.1, we have
∫ d(T x,Ty)

0 f (t)dt = d(T x,Ty) ≤ βd(x,y) = β
∫ d(x,y)

0 f (t)dt. The converse

is not true as we will see in example 3.1.

Remark 3.2 Theorem 2.1 is a generalization of theorem 1.2. The converse is not true as we will

see the example 3.1.

Example 3.1 Let X : {(0,0),(5,6),(5,4),(0,4)}∪{(n,0) : n ∈ N}∪{(n+12,n+13) : n ∈ N}

and its metric defined by d((x1,x2),(y1,y2)) = |x1− y1|+ |x2,y2|. Define a mapping T on X by

T ((x1,x2)) =


(x1,0), x1 6 x2

(0,x2), x2 < x1

(1)
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Then T satisfies the assumptions of Theorem 2.1 with f (t) = tt(1+ ln t) for t > 0, f (0) = 0,

α = 5/12 β = 1/2 while T is not satisfies the assumptions of Theorem 1.2. First note that,∫ d(T x,Ty)
0 f (t)dt ≤ 1

2
∫ d(x,y)

0 f (t)dt if (x,y) 6= ((5,6),(5,4)) and (x,y) 6= ((5,4),(5,6)). In this

context one has
∫ x

0 f (t)dt = xx. Let d(T x,Ty) = n and d(x,y) = m. It is clear that n < m if

(x,y) 6= ((5,6),(5,4)) and (x,y) 6= ((5,4),(5,6)). Then we have∫ d(T x,Ty)

0
f (t)dt =

∫ n

0
f (t)dt = nn <

1
2

mm =
1
2

∫ m

0
f (t)dt =

1
2

∫ d(x,y)

0
f (t)dt,

because
nn

mm =
nn

mn+k = (
n
m
)n 1

mk <
1
2
.

On the other hands, since αd((5,6),T (5,4)) > 5/2 > 2 and αd((5,4),T (5,6)) > 25/12 > 2,

T satisfies the assumption in Theorem 2.1.

Remark 3.3 Let x = (n+12,n+13) and y = (n,0). Then in exampel 3.1, we have d(T x,Ty)
d(x,y) =

n+12
n+25 and so supx,y∈X\{(5,6),(5,4)}

d(T x,Ty)
d(x,y) = 1. Thus T is not a contraction mapping.

Let us consider the following integral equation:

x(t) = g(t)+
∫ t

0
K(s,x(s))ds, t ∈ [0,1] (2)

we are going to give existence and uniqueness results for the solution of the integral equation

using theorem 2.1. Let us consider X := (C([0,1],‖.‖∞) .

Theorem 3.1 Consider the integral equation (2). Suppose

i) K : [0,1]×Rn→ Rn and g : [0,1]→ Rn are continuous;

ii) there exist α ∈ (0, 1
2 ], 0 < L < 1 such that α|x(t)− g(t)−

∫ t
0 K(s,x(s))ds| ≤ |x(t)− y(t)|

implies ∫ |K(t,x(t))−K(t,y(t))|

0

f (λ )dλ ≤ L
∫ |x(t)−y(t)|

0

f (λ )dλ

for all x,y ∈ X and f : [0,∞)→ (0,∞) is a Lebesgue integrable mapping which is summable

and for each ε > 0,
∫

ε

0
f (λ )dλ > 0. Then the integral equation (2), have a unique solution.

Proof. Let T : X → X , x 7→ T (x), where

T (x)(t) =
∫ t

0
K(s,x(s))ds+g(t), t ∈ [0,1].
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In this way, the integral equation (2) can be rewritten as x = T (x). Next, we show that T satisfies

the conditions of Theorem 2.1. Let x,y ∈ X and α|x(t)−g(t)−
∫ t

0 K(s,x(s))ds| ≤ |x(t)− y(t)|.

Then

α‖x−T x‖∞ ≤ ‖x− y‖∞

implies ∫ ‖T x−Ty‖∞

0
f (λ )dλ =

∫ maxt∈[0,1] |T x(t)−Ty(t)|

0
f (λ )dλ

≤
∫ maxt∈[0,1]

∫ t
0 |K(s,x(s))−K(s,y(s))|ds

0

f (λ )dλ

≤
∫ maxs∈[0,1] |K(s,x(s))−K(s,y(s))|

0

f (λ )dλ

≤ L
∫ ‖x−y‖∞

0

f (λ )dλ .

Now Theorem 2.1 shows that there exists x0 ∈ X such that T x0 = x0 and so

x0(t) = T x0(t) =
∫ t

0
K(s,x(s))ds+g(t).

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund.

Math. 3 (1922), 133C181.

[2] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type,

Hindawi Publishing Corpration, Inter. J. Math. Math. Sci. 29 (2002), 531-536.

[3] T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal. 71 (2009), 5313-5317.

[4] S. Dhompongsa, H. Yingtaweesittikul, Fixed point for multivalued mappings and the metric completeness,

Fixed Point Theory Appl. 2009 (2009), Article ID 972395.

[5] M. Kikkawa, T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete

metric spaces, Nonlinear Anal. 69 (2008), 2942C2949.

[6] G. Mot, A. Petrusel, Fixed point theory for a new type of contractive multivalued operators, Nonlinear Anal.

70 (2009) 3371C3377.

[7] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer.

Math. Soc. 136 (2008), 1861-1869.



SOME FIXED POINT RESULTS OF INTEGRAL TYPE AND APPLICATIONS 109

[8] I.Beg, S. M. A. Aleomraninejad, Fixed points of multifunctions on metric spaces, pre-print.


