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Abstract. In this paper, a composite hybrid iteration method is investigated for approximating fixed points of

asymptotically nonexpansive mappings. Weak and strong convergence theorems are established in arbitrary Ba-

nach spaces. The results presented in this paper mainly improved the corresponding results in Miao and Li [Weak

and strong convergence an iterative method for nonexpansive mappings in Hilbert spaces, Appl. Anal. Discrete

Math. 2 (2008), 197-204].
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1. Introduction

Let E be an arbitrary Banach space and let T : E −→ E be a mapping. Recall that T is said

to be L-Lipschitzian if there exists L > 0 such that

‖T x−Ty‖ ≤ L‖x− y‖, ∀x,y ∈ E. (1.1)
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T is said to be nonexpansive if L = 1 in (1.1). T is s and asymptotically nonexpansive if there

exists a sequence {kn} ⊆ [1,∞) with lim
n→∞

kn = 1 such that

‖T nx−T ny‖ ≤ kn‖x− y‖, ∀x,y ∈ E. (1.2)

T is uniformly L-Lipschitizian if there exists L > 0 such that

‖T nx−T ny‖ ≤ L‖x− y‖, ∀n≥ 1 and ∀x,y ∈ E. (1.3)

The class of asymptotically nonexpansive mappings was introduced by Geobel and Kirk [1].

They proved that if K is a nonempty closed convex and bounded subset of a uniformly convex

Banach space, then every assymptotically nonexpansive self-mapping of K has a fixed point. It

is obvious that every nonexpansive mapping is asymptotically nonexpansive with the constant

sequence {kn}= {1} and every asymptotically nonexpansive map is uniformly L-Lipschitizian.

Let H be a Hilbert space, A mapping T : H −→ H is said to be η-strongly monotone if there

exists η > 0 such that

〈T x−Ty,x− y〉 ≤ η‖x− y‖2, ∀x,y ∈ H. (1.4)

Note that the class of asymptotically nonexpansvie mappings is a natural generalization of the

important class of nonexpansive mappings. Iterative techniques for approximating fixed points

of asymptotically nonexpansive mappings have been extensively studied based on the Mann [2]

iteration by several authors; see, for example, [3, 4, 5, 6]). Recently, Xu and Kim [7], Yamada

[8] and Wang [9] introduced the hybrid iteration method which has been used in solving certain

variational inequalities.

Let H be a Hilbert space, T : H −→ H a nonexpansive mapping with F(T ) = {x ∈ H : T x =

x} 6= /0 and F : H −→H an η−strongly monotone and Lipschitz mapping. Let {an}∞
n=1 ⊂ (0,1)

and {λn}∞
n=1 be real sequences in [0,1), and µ > 0. The sequence {xn}∞

n=1 is generated from an

arbitrary x1 ∈ H by

xn+1 = anxn +(1−an)T λn+1xn, n≥ 1, (1.5)

where T λn+1x = T x−λn+1µF(T x),µ > 0. Using the result, Wang [9] obtained weak and strong

convergence of (1.5) to the fixed point of T . Observe that if either λn = 0,∀n≥ 1 or F ≡ 0, then
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(1.5) reduces to the well known Mann iteration method

xn+1 = anxn +(1−an)T xn, n≥ 1, (1.6)

which has been used by several authors for the approximation of fixed points of operators or

operator equations.

Motivated by the work of Wang [9] and earlier results of Xu and Kim [7] and Yamada [8],

Miao and Li generalized (1.5) by developing the following composite hybrid iteration process:

Let H be a Hilbert space, T : H −→H a nonexpansive mapping with F(T ) 6= /0 and f (resp.g) :

H −→H an η f (resp.ηg)−strongly monotone and k f (resp.kg)−Lipschitzian mappings. For any

x1 ∈ H,{xn} is defined by
xn+1 = anxn +(1−an)T

λn+1
f yn,

yn = bnxn +(1−bn)T
βn

g xn, n≥ 1,
(1.7)

where

T λn+1
f x = T x−λn+1µ f f (T x), µ f ≥ 0, ∀x ∈ H,

T βn
g x = T x−βnµgg(T x), µg ≥ 0, ∀x ∈ H,

and {an} ∈ (0,1),{bn} ∈ (0,1) and λn ∈ [0,1),βn ∈ [0,1) satisfy the following conditions:

(i) α ≤ an ≤ 1−α,β ≤ bn ≤ 1−β , for some α,β ∈ (0, 1
2);

(ii) Σ
+∞

n=1λn <+∞, Σ
+∞

n=1βn <+∞;

(iii) 0 < µ f <
2η f

k2
f
,0 < µg <

2ηg
k2

g
.

Observe if bn = 1,∀n ≥ 1, (1.7) reduces to (1.5) and if bn = 1,∀n ≥ 1,λn = 0 or f ≡ 0, (1.7)

reduces to the well known Mann iteration method. Using (1.7), Miao and Li [10] proved the

following:

The iterative process {xn} as in (1.7) satisfies:

(1) lim
n→+∞

‖xn− p‖ exists for each p ∈ F(T ),

(2) lim
n→+∞

‖xn−T xn‖= 0.

The sequence {xn} converges weakly to a fixed point of T . Let T be completely continuous or

demicompact, The iterative process {xn} converges strongly to a fixed point of T .
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It is our purpose in this paper to extend the above results from a Hilbert spaces to arbitrary

Banach spaces and from nonexpansive mappings to the more general asymptotically nonexpan-

sive mappings. Our results are much more general and also more applicable than the results of

Miao and Li [10] because the strong monotonicity condition imposed on f and g is not required

in our results.

2. Preliminaries

Let E be a Banach space. A mapping T with domain D(T ) and range R(T ) in E is said to be

demiclosed at a point p∈D(T ) if whenever {xn}∞
n=1 is a sequence in E which converges weakly

to a point x ∈ E and {T xn}∞
n=1 converges strongly to p, then T x = p. Furthermore, T is said to

be demicompact if whenever {xn}∞
n=1 is a bounded sequence in D(T ) such that {xn−T xn}∞

n=1

converges strongly, then {xn}∞
n=1 has a subsequence which converges strongly. T is said to

satisfy condition (A) if F(T ) 6= /0 and there exist nondecreasing functions f : [0,∞)→ [0,∞)

and g : [0,∞)→ [0,∞) with f (0) = 0,g(0) = 0, f (t) > 0 and g(t) > 0 ∀t ∈ (0,∞) such that

‖x−T x‖ ≥ f (d(x,F(T ))) and ‖x−T x‖ ≥ g(d(x,F(T ))) for all x ∈D(T ) where d(x,F(T )) :=

in f{‖x− p‖ : p ∈ F(T )}.

Lemma 2.1 [6] Let E be a uniformly convex Banach space and K a nonempty closed convex

(not neccessarily bounded) subset of E. T : K −→ K a asymptotically nonexpansive mapping

with {kn} ⊆ [1,∞), lim
n→∞

kn = 1 and F(T ) nonempty fixed point set. Then (I−T ) is demiclosed

at 0, i.e. for any sequence {xn} in K s.t. {xn} converges weakly to p and {xn−T xn} converges

strongly to 0, Then (I−T )(p) = 0.

Lemma 2.2 ([6], see also [11]). Let {an}∞
n=1,{bn}∞

n=1 and {δn}∞
n=1 be sequences of non-

negative real numbers satisfying the inequality an+1 ≤ (1 + δn)an + bn,n ≥ 1. If ∑
∞
n=1 δn <

∞ and ∑
∞
n=1 bn < ∞, then limn→∞ an exists. If in addition {an}∞

n=1 has a subsequence which

converges strongly to zero, then limn→∞ an = 0.

Lemma 2.3 ([12], see also [13]). Let E be an arbitrary normed space and let {tn}∞
n=1 be a real

sequence satisfying the conditions:

(i) 0≤ tn ≤ t ≤ 1, and for some t ∈ (0,1),
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(ii) Σ
+∞

n=1tn =+∞,

Let {un}∞
n=1 and {vn}∞

n=1 be two sequences in E such that

(iii) un+1 = (1− tn)un + tnvn, ∀n≥ 1

(iv) lim
n→∞
‖un‖= d for some d ∈ [0,∞),

(v) limsup‖vn‖ ≤ d,

(vi) {Σn
j=1t jv j}+∞

n=1 is bounded. Then d = 0.

Definition 2.1. A bounded convex subset K of a normed space E is said to have normal structure

if every non-trivial convex subset C of K contains at least one non-diametrical point, that is,

there exists x0 ∈ E such that sup{‖x0−x‖ : x∈C}< sup{‖x−y‖ : x,y∈C}= d(C) where d(C)

is the diametre of C.

Every uniformly convex Banach space E has a normal structure and every compact convex

subset K of a Banach space E has normal structure.

Lemma 2.4 [14] Let E be a real Banach space with normal structure N(E)>max(1,ε0), ε0 > 0,

K a nonempty bounded closed convex subset of E and T : K→ K a uniformly L−Lipschitzian

mapping with L < α , α > 1. Then T has a fixed point.

3. Main Results

Lemma 3.1. Let E be a normed space and let T : E → E be a uniformly L−Lipschitzian map-

ping with nonempty fixed point set F(T ). Let f (resp.g) : E −→ E be L f (resp.Lg)−Lipschitzian

mappings. For any x1 ∈ E, generate {xn} by


xn+1 = anxn +(1−an)T

λn+1
f yn,

yn = bnxn +(1−bn)T
βn

g xn, n≥ 1,

where

T λn+1
f x = T nx−λn+1µ f f (T nx), µ f ≥ 0, ∀x ∈ E,

T βn
g x = T nx−βnµgg(T nx), µg ≥ 0, ∀x ∈ E,
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and {an},{bn} are sequences in (0,1) and {λn},{βn} are sequences in [0,1) such that Σ
+∞

n=1λn <

+∞ and Σ
+∞

n=1βn <+∞. Then

‖xn−T xn‖ ≤ ‖xn−T nxn‖+{L2 +(1+L)L2(1+ `µ f λn)(1+µg`βn−1)

+`(1+L)Lµ f λn}‖xn−1−T n−1xn−1‖

+{(1+L)L2(1+ `µ f λn)µg[`‖xn−1− p‖+‖g(p)‖]}βn−1

+{(1+L)Lµ f [`‖xn−1− p‖+‖ f (p)‖]}λn.

Proof. For p ∈ F(T ), set Φn = ‖xn−T nxn‖ and `= max{L f ,Lg}. Then

‖xn−T xn‖ ≤ ‖xn−T nxn‖+L‖T n−1xn− xn‖

≤Φn +L2‖xn− xn−1‖+L‖xn−T n−1xn−1‖

≤Φn +L2
Φn−1 +L3‖yn−1− xn−1‖+ `L3

λnµ f ‖yn−1− xn−1‖

+L2
λnµ f ‖ f (T n−1xn−1)‖+(1−bn−1)L2‖T βn−1

g xn−1− xn−1‖

+ `L2
λnµ f ‖yn−1− xn−1‖+Lλnµ f ‖ f (T n−1xn−1)‖

≤Φn +L2
Φn−1 +L2(1+L)(1+ `λnµ f )‖T

βn−1
g xn−1− xn−1‖

+(1+L)Lλnµ f ‖ f (T n−1xn−1)‖.

(3.1)

On the other hand, we have

‖T βn−1
g xn−1− xn−1‖= ‖T n−1xn−1−βn−1µgg(T n−1xn−1)− xn−1‖

≤Φn−1 +βn−1µg‖g(T n−1xn−1)‖

≤Φn−1 +βn−1µg`‖T n−1xn−1− xn−1‖+βn−1µg‖g(xn−1)‖

≤ (1+βn−1µg`)Φn−1 +βn−1µg`‖xn−1− p‖+βn−1µg‖g(p)‖

(3.2)

and

‖ f (T n−1xn−1)‖ ≤ `Φn−1 +‖ f (xn−1)‖

≤ `Φn−1 + `‖xn−1− p‖+‖ f (p)‖.
(3.3)
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Substituting (3.2) and (3.3) into (3.1), we have

‖xn−T xn‖ ≤Φn +L2
Φn−1 +L2(1+L)(1+ `λnµ f ){(1+βn−1µg`)Φn−1

+βn−1µg`‖xn−1− p‖+βn−1µg‖g(p)‖}

+(1+L)Lλnµ f {`Φn−1 + `‖xn−1− p‖+‖ f (p)‖}

= ‖xn−T nxn‖+{L2 +(1+L)L2(1+ `µ f λn)(1+µg`βn−1)

+ `(1+L)Lµ f λn}‖xn−1−T n−1xn−1‖

+{(1+L)L2(1+ `µ f λn)µg[`‖xn−1− p‖+‖g(p)‖]}βn−1

+{(1+L)Lµ f [`‖xn−1− p‖+‖ f (p)‖]}λn.

(3.4)

Theorem 3.1. Let E be an arbitrary Banach space, T : E −→ E a asymptotically nonexpan-

sive mapping with F(T ) 6= /0 and sequence {kn} ⊆ [1,∞) such that Σ
+∞

n=1(kn− 1) < +∞, and

f (resp.g) : E −→ E are L f (resp.Lg)−Lipschitzian mappings. For any x1 ∈ E,{xn} is generate

by 
xn+1 = anxn +(1−an)T

λn+1
f yn

yn = bnxn +(1−bn)T
βn

g xn,

(3.5)

where

T λn+1
f x = T nx−λn+1µ f f (T nx), µ f ≥ 0, ∀x ∈ E,

T βn
g x = T nx−βnµgg(T nx), µg ≥ 0, ∀x ∈ E,

and {an} ∈ (0,1),{bn} ∈ (0,1) and λn ∈ [0,1),βn ∈ [0,1) satisfy the following conditions:

(i) 0 < α < an < 1, for some α ∈ (0,1);

(ii) Σ
+∞

n=1(1−an) = +∞;

(iii) Σ
+∞

n=1(1−bn)<+∞;

(iv) Σ
+∞

n=1λn <+∞;

(v) Σ
+∞

n=1βn <+∞.

Then we have

(a) limn→+∞ ‖xn− p‖ exists for each p ∈ F(T );

(b) limn→+∞ ‖xn−T xn‖= 0;

(c) {xn} converges strongly to a fixed point of T if and only if liminfn→+∞ d(xn,F(T )) = 0.
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Proof. Let p ∈ F(T ) be an arbitrary and set ` := max{L f ,Lg}. Then

‖xn+1− p‖= ‖an(xn− p)+(1−an)(T nyn− p)− (1−an)λn+1µ f f (T nyn)‖

≤ an‖xn− p‖+(1−an)‖T nyn− p‖+(1−an)λn+1µ f ‖ f (T nyn)‖

≤ an‖xn− p‖+(1−an)kn‖yn− p‖+(1−an)λn+1µ f {‖ f (T nyn)− f (p)‖+‖ f (p)‖}

≤ an‖xn− p‖+{(1−an)kn +(1−an)λn+1µ f kn`}‖yn− p‖

+(1−an)λn+1µ f ‖ f (p)‖
(3.6)

and

‖yn− p‖= ‖bn(xn− p)+(1−bn)(T nxn− p)− (1−bn)βnµgg(T nxn)‖

≤ bn‖xn− p‖+(1−bn)‖T nxn− p‖+(1−bn)βnµg‖g(T nxn)‖

≤ bn‖xn− p‖+(1−bn)kn‖xn− p‖+(1−bn)βnµg{‖g(T nxn)−g(p)‖+‖g(p)‖}

≤ {bn +(1−bn)kn +(1−bn)βnµgkn`}‖xn− p‖+(1−bn)βnµg‖g(p)‖.
(3.7)

Substituting (3.7) into (3.6), we find that

‖xn+1− p‖

= an‖xn− p‖+{(1−an)kn +(1−an)λn+1µ f kn`}{bn +(1−bn)kn

+(1−bn)βnµgkn`}‖xn− p‖

+{(1−an)kn +(1−an)λn+1µ f kn`}(1−bn)βnµg‖g(p)‖]+ (1−an)λn+1µ f ‖ f (p)‖

= [1− (1−an)+(1−an)bnkn +(1−an)(1−bn)k2
n +(1−an)bnλn+1µ f kn`

+(1−an)(1−bn)k2
nλn+1µ f `+(1−an)(1−bn)k2

nβnµg`

+(1−an)(1−bn)λn+1βnµ f µgk2
n`

2]‖xn− p‖

+{(1−an)kn +(1−an)λn+1µ f kn`}(1−bn)βnµg‖g(p)‖]+ (1−an)λn+1µ f ‖ f (p)‖

= [1+δn]‖xn− p‖+σn,

(3.8)
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where

δn = (1−an)(kn−1){(1−bn)kn +1}+(1−an)bnλn+1µ f kn`

+(1−an)(1−bn)k2
nλn+1µ f `+(1−an)(1−bn)k2

nβnµg`

+(1−an)(1−bn)λn+1βnµ f µgk2
n`

2

and

σn = {(1−an)kn +(1−an)λn+1µ f kn`}(1−bn)βnµg‖g(p)‖]+ (1−an)λn+1µ f ‖ f (p)‖

= (1−an)(1−bn)βnµgkn‖g(p)‖+(1−an)(1−bn)λn+1µ f βnµgkn`‖g(p)‖

+(1−an)λn+1µ f ‖ f (p)‖.

Since ∑
∞
n=1 δn < ∞ and ∑

∞
n=1 σn < ∞, it follows from Lemma 2.2 that limn→∞ ‖xn− p‖ exists.

This completes the proof of (a). Consequently, {‖xn− p‖} is bounded. Since {xn} is bounded,

then there exists M > 0 such that ‖xn− p‖ ≤M. Observe that

‖xn+1−T nxn+1‖ ≤ an‖xn−T nxn+1‖+(1−an)‖T nyn−T nxn+1‖+(1−an)λn+1µ f ‖ f (T nyn)‖

≤ an‖xn−T nxn+1‖+(1−an)kn‖yn− xn+1‖+(1−an)λn+1µ f kn`‖yn− p‖

+(1−an)λn+1µ f ‖ f (p)‖

≤ [an +(1−an)kn]‖xn− xn+1‖+an‖xn+1−T nxn+1‖

+(1−an)‖(1−bn)(T nxn− xn)− (1−bn)βnµgg(T nxn)‖

+(1−an)λn+1µ f kn`‖yn− p‖+(1−an)λn+1µ f ‖ f (p)‖

≤ [an +(1−an)kn]‖xn− xn+1‖+an‖xn+1−T nxn+1‖

+(1−an)(1−bn)‖T nxn− xn‖+(1−an)(1−bn)βnµgkn`‖xn− p‖

+(1−an)(1−bn)βnµg‖g(p)‖+(1−an)λn+1µ f kn`‖yn− p‖

+(1−an)λn+1µ f ‖ f (p)‖.
(3.9)
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Substitute (3.7) into (3.9) to obtain

‖xn+1−T nxn+1‖ ≤ [an +(1−an)kn]‖xn− xn+1‖+an‖xn+1−T nxn+1‖

+(1−an)(1−bn)‖T nxn− xn‖+(1−an)(1−bn)βnµgkn`‖xn− p‖

+(1−an)(1−bn)βnµg‖g(p)‖+(1−an)λn+1µ f kn`{bn +(1−bn)kn

+(1−bn)βnµgkn`}‖xn− p‖

+(1−an)(1−bn)λn+1µ f βnµgkn`‖g(p)‖+(1−an)λn+1µ f ‖ f (p)‖.

It follows that

‖xn+1−T nxn+1‖ ≤
[an +(1−an)kn]

(1−an)
‖xn− xn+1‖+(1−bn)‖T nxn− xn‖

+(1−bn)βnµgkn`‖xn− p‖+(1−bn)βnµg‖g(p)‖

+λn+1µ f kn`{bn +(1−bn)kn +(1−bn)βnµgkn`}‖xn− p‖

+(1−bn)λn+1µ f βnµgkn`‖g(p)‖+λn+1µ f ‖ f (p)‖.

(3.10)

Note that

‖xn+1− xn‖ ≤ (1−an)‖T nyn− xn‖+(1−an)λn+1µ f ‖ f (T nyn)‖

≤ (1−an)(1−bn)kn‖xn−T nxn‖+(1−an)‖xn−T nxn‖

+(1−an)(1−bn)βnµgkn`‖xn− p‖+(1−an)(1−bn)βnµg‖g(p)‖

+(1−an)λn+1µ f kn`‖yn− p‖+(1−an)λn+1µ f ‖ f (p)‖.

(3.11)

Substitute (3.7) into (3.11) to obtain

‖xn+1− xn‖ ≤ (1−an)(1−bn)kn‖xn−T nxn‖+(1−an)‖xn−T nxn‖

+(1−an)(1−bn)βnµgkn`‖xn− p‖+(1−an)(1−bn)βnµg‖g(p)‖
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+(1−an)λn+1µ f kn`[{bn +(1−bn)kn +(1−bn)βnµgkn`}‖xn− p‖

+(1−bn)βnµg‖g(p)‖]+ (1−an)λn+1µ f ‖ f (p)‖

= (1−an)[(1−bn)kn +1]‖xn−T nxn‖+(1−an)(1−bn)βnµgkn`‖xn− p‖

+(1−an)(1−bn)βnµg‖g(p)‖

+(1−an)λn+1µ f kn`{bn +(1−bn)kn +(1−bn)βnµgkn`}‖xn− p‖

+(1−an)(1−bn)λn+1µ f βnµgkn`‖g(p)‖+(1−an)λn+1µ f ‖ f (p)‖.

(3.12)

Substituting (3.12) into (3.10), we find that

‖xn+1−T nxn+1‖

≤ [1+(1−bn)ankn +(1−an)(1−bn)k2
n +(1−an)(kn−1)+(1−bn)]‖xn−T nxn‖

+[an +(1−an)kn +1]{(1−bn)βnµgkn`+λn+1µ f kn`{bn +(1−bn)kn

+(1−bn)βnµgkn`}}‖xn− p‖+βnµg{1+λn+1µ f kn`}[(1−bn)[an +(1−an)kn]+1]‖g(p)‖

+λn+1µ f [an +(1−an)kn +1]‖ f (p)‖.

It follows that

‖xn+1−T nxn+1‖ ≤ [1+ωn]‖xn−T nxn‖+ϕn,

where ωn = (1−bn)ankn +(1−an)(1−bn)k2
n +(1−an)(kn−1)+(1−bn) and

ϕn = [an +(1−an)kn +1]{(1−bn)βnµgkn`+λn+1µ f kn`{bn +(1−bn)kn

+(1−bn)βnµgkn`}}M+βnµg{1+λn+1µ f kn`}[(1−bn)[an +(1−an)kn]+1]‖g(p)‖

+λn+1µ f [an +(1−an)kn +1]‖ f (p)‖.

From conditions (iii)- (vi), it follows that ∑
∞
n=1 ωn < ∞ and ∑

∞
n=1 ϕn < ∞. Also it follows from

Lemma 2.2 that limn→∞ ‖xn−T nxn‖ exists. Let limn→∞ ‖xn−T nxn‖= d and set un = xn−T nxn.

It follows that

un+1 = (1− tn)un + tnvn, (3.13)
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where tn = 1−an, vn =
1

(1−an)
(T nxn−T nxn+1)+(T nyn−T nxn)−λn+1µ f f (T nyn).

‖vn‖ ≤
1

(1−an)
‖T nxn−T nxn+1‖+‖T nyn−T nxn‖+λn+1µ f ‖ f (T nyn)‖

≤ kn

(1−an)
‖xn− xn+1‖+ kn‖yn− xn‖+λn+1µ f ‖ f (T nyn)− f (p)+ f (p)‖

≤ kn

(1−an)
‖xn− xn+1‖+ kn‖xn− p‖+(1+λn+1µ f `)kn‖yn− p‖+λn+1µ f ‖ f (p)‖.

(3.14)

Substitute (3.7) and (3.12) into (3.14) to obtain

‖vn‖ ≤ [1+(1−bn)k2
n +(kn−1)]‖xn−T nxn‖

+{[λn+1µ f k2
n`+(1+λn+1µ f )kn]{bn +(1−bn)kn +(1−bn)βnµgkn`}

+(1−bn)βnµgk2
n`+ kn}‖xn− p‖+(1−bn)βnµgkn[2+λn+1µ f `

+λn+1µ f kn`]‖g(p)‖+λn+1µ f (kn +1)‖ f (p)‖.

It follows that

‖vn‖ ≤ [1+ψn]‖xn−T nxn‖+ϑn, (3.15)

where ψn = (1−bn)k2
n +(kn−1) and

ϑn = {[λn+1µ f k2
n`+(1+λn+1µ f )kn]{bn +(1−bn)kn +(1−bn)βnµgkn`}

+(1−bn)βnµgk2
n`+ kn}M+(1−bn)βnµgkn[2+λn+1µ f `

+λn+1µ f kn`]‖g(p)‖+λn+1µ f (kn +1)‖ f (p)‖.

From conditions (iii)- (vi), limn→∞ ψn = 0 and limϑn exists. Since limn→∞ ‖xn−T nxn‖ exists,

‖vn‖ ≤ ‖xn−T nxn‖+ψnD+Q, D > 0, Q > 0.

Therefore, limsupn→∞ ‖vn‖ ≤ d. Observe that

‖
n

∑
j=1

t jv j‖ ≤≤ 2kn‖x1− p‖+ kn‖y1− p‖+µ f K(kn

n

∑
j=1

λ j+1 +µg

n

∑
j=1

β j)≤W,

∀n≥ 1 and for some W > 0. Hence {∑n
j=1 t jv j}∞

n=1 is bounded. It follows from Lemma 2.3 that

limn→∞ ‖xn−T nxn‖ = 0. Since {‖xn− p‖} is bounded, it also follows from Lemma 3.1 that
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limn→∞ ‖vn‖= limn→∞ ‖xn−T xn‖= 0. This completes the proof of (b). From (3.8), we obtain

that ‖xn+1− p‖≤‖xn− p‖+ξn where ξn = δnM+σn. Hence d(xn+1,F(T ))≤ d(xn,F(T ))+ξn.

Since ∑
∞
n=1 ξn < ∞, it follows from Lemma 2.2 that lim

n→∞
d(xn,F(T )) exists. If xn converges

strongly to a fixed point p of T then limn→∞ ‖xn− p‖ = 0. Since 0 ≤ d(xn,F(T )) ≤ ‖xn− p‖,

we have liminfn→∞ d(xn,F(T )) = 0. Conversely, suppose liminfn→∞ d(xn,F(T )) = 0, then we

have limn→∞ d(xn,F(T )) = 0. Thus for arbitrary ε > 0, there exists a positive integer N1 such

that d(xn,F(T )) < ε

4 ,∀n ≥ N1 . Furthermore, ∑
∞
n=1 ξn < ∞ implies that there exists a positive

integer N2 such that ∑
∞
j=n ξ j <

ε

4 ,∀n ≥ N2 . Choose N = max{N1,N2}, then d(xN ,F(T )) < ε

4

and ∑
∞
j=N ξ j <

ε

4 . It follows from Lemma 2.2 that ∀n,m≥ N and for all p ∈ F(T ), we have

‖xn− xm‖ ≤ ‖xn− p‖+‖xm− p‖

≤ ‖xN− p‖+
∞

∑
j=N+1

ξ j +‖xN− p‖+
∞

∑
j=N+1

ξ j

≤ 2‖xN− p‖+2
∞

∑
j=N+1

ξ j.

Taking infimum over all p ∈ F(T ), we obtain

‖xn− xm‖ ≤ 2d(xN ,F(T ))+2
∞

∑
j=N+1

ξ j,∀n,m≥ N.

Thus {xn}∞
n=1 is Cauchy. Suppose lim

n→∞
xn = u, then since lim

n→∞
‖xn−T xn‖= 0, we have u∈F(T ).

This completes the proof of Theorem 3.1.

Corollary 3.1. Let E be a real Banach space with normal structure N(E) > max(1,ε0),

ε0 > 0, K a nonempty bounded closed convex subset of E, and T : E −→ E be an asymptot-

ically nonexpansive mapping with sequence {kn} ⊆ [1,∞) such that
+∞

∑
n=1

(kn− 1) < +∞, and

f (resp.g) : E −→ E are L f (resp.Lg)−Lipschitzian mappings, under the hypothesis of Theo-

rem 3.1, the iteration scheme (3.5) converges strongly to a fixed point F(T ) of T if and only if

liminf
n→+∞

d(xn,F(T )) = 0.

Proof. Since T is asymptotically nonexpansive uniformly L−Lipschitzian, the proof follows

from Lemma 3.4 and Theorem 3.1.

Corollary 3.2. Let E be an arbitrary Banach spaces, T : E −→ E a nonexpansive mapping

with F(T ) 6= /0 and f (resp.g) : E −→ E are L f (resp.Lg)−Lipschitzian mappings. For any
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x1 ∈E,{xn} is generate by (1.7) satisfying the following conditions; (i) 0<α < an < 1, for some

α ∈ (0,1); (ii) Σ
+∞

n=1(1−an) =+∞ (iii) Σ
+∞

n=1(1−bn)<+∞ (iv) Σ
+∞

n=1λn <+∞ (v) Σ
+∞

n=1βn <+∞.

Then {xn} converges strongly to a fixed point F(T ) of T if and only if liminfn→+∞ d(xn,F(T )) =

0.

Theorem 3.2. Let E be a uniformly convex Banach space and K a nonempty closed convex (not

neccessarily bounded) subset of E. Let T : K → K an asymptotically nonexpansive mapping

with {kn} ⊆ [1,∞), lim
n→∞

kn = 1, under the hypothesis of Theorem 3.1, the iteration scheme (3.5)

converges weakly to a fixed point of T .

Proof. From Lemma 2.1, (I−T ) is demiclosed at zero, and since the lim
n→+∞

‖xn− p‖ = 0, it

follows from standard argument that {xn}∞
n=1 converges weakly to a fixed point of T .

Remark 3.1. It follows from Lemma 2.2 and Theorem 3.1 that under the hypothesis of Theorem

3.1, {xn}∞
n=1 converges strongly to a fixed point p of T if and only if {xn}∞

n=1 has a subsequence

{xn j}∞
j=1 which converges strongly to p . Thus, under the hypothesis of Theorem 3.1, if T is

in addition completely continuous or demicompact, then {xn}∞
n=1 converges strongly to a fixed

point of T .

Furthermore, if T satisfies condition (A), then liminf
n→+∞

d(xn,F(T )) = 0. So under the condi-

tions of Theorem 3.1, {xn}∞
n=1 converges strongly to a fixed point of T .

Remark 3.2. Theorems 3.1 and 3.2 and Remark 3.1 extend the results of [10] from Hilbert

spaces to arbitrary Banach spaces and respectively from nonexpansive operator to more general

asymptotically nonexpansive maps as considered here. Furthermore, the strong monotonicity

condition imposed on f and g in [10] is not required in our results.

Remark 3.3. If bn = 1 in (3.5), the results of Osilike, Isiogugu, and Nwokoro [15] become

special cases of our results.
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