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MOST ONE FIXED POINT: A CONSTRUCTIVE ANALYSIS
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Abstract. In this paper we present a constructive proof of Brouwer’s fixed point theorem with sequen-
tially at most one fixed point, and apply it to the mini-max theorem of zero-sum games.
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1. Introduction

It is well known that Brouwer’s fixed point theorem can not be constructively proved.

See [3] or [8].

[6] provided a constructive proof of Brouwer’s fixed point theorem. But it
is not constructive from the view point of constructive mathematics a la
Bishop. It is sufficient to say that one dimensional case of Brouwer’s fixed

point theorem, that is, the intermediate value theorem is non-constructive.
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Sperner’s lemma which is used to prove Brouwer’s theorem, however, can be constructively
proved. Some authors have presented an approximate version of Brouwer’s theorem using
Sperner’s lemma. See [8] and [9]. Thus, Brouwer’s fixed point theorem is constructively,
in the sense of constructive mathematics a la Bishop, proved in its approximate version.
Also Dalen in [8] states a conjecture that a uniformly continuous function f from a
simplex into itself, with property that each open set contains a point x such that x # f(x),
which means |z — f(x)| > 0, and also at every point x on the boundaries of the simplex
x # f(x), has an exact fixed point. We present a partial answer to Dalen’s conjecture.

Recently [2] showed that the following theorem is equivalent to Brouwer’s fan theorem.

Each uniformly continuous function ¢ from a compact metric space X into
itself with at most one fixed point and approximate fixed points has a fixed

point.

By reference to the notion of sequentially at most one mazimum in [1] we require a
stronger condition that a function ¢ has sequentially at most one fized point, and will

show the following result.

Each uniformly continuous function ¢ from a compact metric space X into
itself with sequentially at most one fized point and approximate fixed points

has a fixed point,

without the fan theorem. Orevkov in [7] constructed a computably coded continuous
function f from the unit square into itself, which is defined at each computable point
of the square, such that f has no computable fixed point. His map consists of a retract
of the computable elements of the square to its boundary followed by a rotation of the
boundary of the square. As pointed out by Hirst in [5], since there is no retract of the
square to its boundary, his map does not have a total extension.

In the next section we present our theorem and its proof. In Section 3, as an application

of the theorem we consider the mini-max theorem of two-person zero-sum games.

2. Theorem and proof
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Let p be a point in a compact metric space X, and consider a uniformly continuous
function ¢ from X into itself. According to [8] and [9] ¢ has an approximate fixed point.

It means

For each ¢ > 0 there exists p € X such that |p — ¢(p)| < €.

Since € > 0 is arbitrary,

inf |p — = 0.
inf |p —¢(p)[ =0

The notion that ¢ has at most one fixed point is defined as follows;
Definition 2.1. For all p,q € X, if p # q, then p(p) # p or v(q) # q.

Next by reference to the notion of sequentially at most one mazimum in [1], we define
the notion that ¢ has sequentially at most one fized point as follows;
Definition 2.2. All sequences (Pn)n>1, (An)n>1 i X such that |o(pn) — Pa| — 0 and
lo(an) — an| — 0 are eventually close in the sense that |p, — q,| — 0.

Now we show the following lemma, which is based on Lemma 2 of [1].
Lemma 2.1. Let ¢ be a uniformly continuous function from a compact metric space X

into itself. Assume infoex |p — @(p)| = 0. If the following property holds,

For each 6 > 0 there exists € > 0 such that if p,q € X, |¢(p) —p| < € and
lp(a) —al <e, then [p—a| <9,

then, there ezists a point v € X such that ¢(r) = r, that is, ¢ has a fized point.

Proof.

Choose a sequence (py)n>1 in X such that |¢(p,) — pn| — 0. Compute N such that
lo(Pn) — Pn| < € for all n > N. Then, for m,n > N we have |p,, — p,| < d. Since § > 0
is arbitrary, (pn)n>1 is a Cauchy sequence in X, and converges to a limit r € X. The
continuity of ¢ yields |p(r) — r| = 0, that is, p(r) =r.

This completes the proof.

Next we show the following theorem, which is based on Proposition 3 of [1].
Theorem 2.1. FEach uniformly continuous function ¢ from a compact metric space X
into itself with sequentially at most one fized point and approximate fized points has a

fixed point.



12 YASUHITO TANAKA*
Proof.
Choose a sequence (r,),>1 in X such that |p(r,) —r,| — 0. In view of Lemma 2.1 it

is enough to prove that the following condition holds.

For each 0 > 0 there exists € > 0 such that if p,q € X, |¢(p) — p| < € and
lp(q) — q| <&, then [p —q| < 4.

Assume that the set

K={(p,qeXxX: |p—q|>d}

is nonempty and compact (See Theorem 2.2.13 of [4]). Since the mapping (p,q) —
max(|¢(p) —pl, |o(q) —ql) is uniformly continuous, we can construct an increasing binary

sequence (A,),>1 such that

A =0= inf max(]e(p) —p|,|e(a) —q|) <277,
(p,a)eK

A =1= inf max(|¢(p) —pl||e(q) —ql) >27"".
(p,a)eK

It suffices to find n such that A, = 1. In that case, if |p(p)—p| < 27", |o(q)—q| < 27",
we have (p,q) ¢ K and |p — q| < §. Assume \; = 0. If A\, = 0, choose (p,,q,) € K
such that max(|¢(pn) — Puls [o(an) — an|) <277, and if A\, = 1, set p,, = q, = r,. Then,
lo(Pn) — Pn| — 0 and |p(q,) — gn] — 0, so |pr — qn| —> 0. Computing N such that
lpny — an| < §, we must have \y = 1.

This completes the proof.
3. Application: Minimax theorem of zero-sum games

Consider a two person zero-sum game. There are two players A and B. Player
A has m alternative pure strategies, and the set of his pure strategies is denoted by
Sa = {ai1,as,...,a,}. Player B has n alternative pure strategies, and the set of his
pure strategies is denoted by Sp = {b1,b2,...,b,}. m and n are finite natural numbers.
The payoff of player A when a combination of players’ strategies is (a;,b;) is denoted
by M(a;,b;). Since we consider a zero-sum game, the payoff of player B is equal to

—M (a;,b;). Let p; be a probability that A chooses his strategy a;, and ¢; be a probability
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that B chooses his strategy b;. A mixed strategy of A is represented by a probability
distribution over Sy4, and is denoted by p = (p1,p2, ..., pm) with > p; = 1. Similarly,
a mixed strategy of B is denoted by q = (¢1, 2, - - -, ¢,) With Z?Zl ¢; = 1. A combination
of mixed strategies (p,q) is called a profile. The expected payoff of player A at a profile
(p,q) is written as follows,

m n

M(p,q) = > piM(a;, b;)g;.

i=1 j=1
We assume that M(a;,b;) is finite. Then, since M(p, q) is linear with respect to proba-
bility distributions over the sets of pure strategies of players, it is a uniformly continuous
function. The expected payoff of A when he chooses a pure strategy a; and B chooses a
mixed strategy q is M (a;, q) = Z?Zl M(a;,b;)q;, and his expected payoff when he chooses
a mixed strategy p and B chooses a pure strategy b; is M (p,b;) = >~ piM(a;, b;). The
set of all mixed strategies of A is denoted by P, and that of B is denoted by (). P is an
m — 1-dimensional simplex, and @ is an n — 1-dimensional simplex.

We call va(p) = infq M(p,q) the guaranteed payoff of A at p. And we define v} as
follows,

vy = supinf M(p,q)
P q

This is a constructive version of the maximin payoff. Similarly, we call vz(q) = sup, M(p, q)

the guaranteed payoff of player B at q, and define v}; as follows,
vy = inf sup M (p, q).
4 p

This is a constructive version of the minimax payoff. For a fixed p we have infy M (p, q) <

M (p, q) for all q, and so

supinf M (p,q) < sup M(p,q) for all q
p 4 P

holds. Then, we obtain sup,, infq M(p, q) < infqsup, M(p,q). This is rewritten as

(1) vy < vg.
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Define a function I' = (p(p, q), a(p,q)) as follows;

_ _ pi+max(M(a;,q) — M(p,q),0)
pi(p,a) = 1+ >0 max(M(ay,q) — M(p,q),0)’
Lpq) = —9 + max(M(p,q) — M(p, b;),0)

1+Zk 1maX(M(p,q) ( :bk>70).

We assume the following condition;
Assumption 3.1. All sequences ((Pn, dn))n>1, (Pl d),))n>1 in PXQ such that max(M (a;, qn)—
M(Pn, n),0) — 0, max(M(pa, Gn) =M (Py, b;),0) — 0, max(M(a;, q5,) =M (py,, qp,),0) —
0 and max(M(p),q,) — M(p',,b;),0) — 0 for all i and j are eventually close in the
sense that |(Pr, dn) — (Ph, dp)| — 0.
Since M (py, qn) = Y iy piM (a;, q,), it is impossible that max (M (a;, q,) —M (Pn, qn), 0) >
0 for all ¢ such that p; > 0. Similarly, it is impossible that M (py, q,)—max (M (py, b;),0) >
0 for all j such that ¢; > 0. [I'((pn, dn)) — (Pn, dn)| —> 0 means |p; — p;| — 0 for all i
and |g; —q;| — 0 for all j. Therefore, we must have max(M (a;, q,,) — M (p),,q,),0) — 0
and max(M(p),,q,) — M(p',,b;),0) — 0 for all 7 and j, and so under Assumption 3.1
we find
All sequences ((Pn, dn))n>1, (P, d,))n>1 in P x Q) such that [I'((pn, qn)) —
(Pn,dn)| — 0 and |I'((p),,d.,)) — (p,,d.,)] — 0 are eventually close in
the sense that |(pn,q,) — (P, d,)| — 0.

Thus, I" has sequentially at most one fixed point.

Summing up p; from 1 to m, for each ¢

! 14> max(M(ax,q) — M(p,q),0)

Similarly, summing up ¢; from 1 to n, for each j

- - Z?:l qj + Z?:l maX(M(p, q) - M(pa bj)7 O)
> g(p.a) =

1+ > 5 max(M(p,q) — M(p,b),0) .

Let p(p7q) = (ﬁlvﬁ?v s 7pm)7 Q(paq) = (qlaq27 s 7(?71) Then: I'= (p(p7q>aQ(p7q)) is a

uniformly continuous function from P x @) into itself. There are m + n — 2 independent
vectors in P x @), and so P x () is an m + n — 2-dimensional space. Since it is a product

of two simplices, it is a compact subset of a metric space. Therefore, I' has a fixed
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point. Let (p,q) be the fixed point, and A = ) ;_, max(M(ay,q) — M(p,q),0), N =
ZZ; maX(M(f)a Q) - M(f)a bk)7 0) Thena

¢; +max(M(p,q) — M(p,b;),0) _
1+ N g

Thus, we have

and
Since M(p,q) = > .-, piM(a;,qQ), it is impossible that max(M(a;,q) — M (P, q),0) =
M(a;,q) — M(p,q) > 0 for all i such that p; > 0. Therefore, A = 0, and we have
sup, M(p,q) = M(p,q). Similarly, we obtain A" = 0 and infq M (p,q) = M(p,q). Then,
vp = infsup M(p,q) < M(p,q) < supinf M(p,q) = v}
With (1)
vy =vp = M(P,q).

Therefore, the value of the game is determined at the fixed point of I'.

Player 2
X Y

Player 1 | X | 1,-1 | -1, 1
Y | -1

TABLE 1. Example of game

Consider an example. See a game in Table 1. It is an example of the so-called Matching-
Pennies Game. Pure strategies of Player 1 and 2 are X and Y. The left side number in
each cell represents the payoff of Player 1 and the right side number represents the payoff
of Player 2. Let px and 1—px denote the probabilities that Player 1 chooses, respectively,
X and Y, and ¢gx and 1 — gx denote the probabilities for Player 2. Denote the expected
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payoff of Player 1 by M (px, gx). Since we consider a zero-sum game, the expected payoff
of Player 2 is —M (px, qx). Then,

M(px,qx) = pxqx — (I — px)ax — px(1 —qx) + (1 = px)(1 — gx)

= (2px —1)(2qx — 1)

Denote the payoff of Player 1 when he chooses X by M (X, ¢x), and that when he chooses
Y by M(Y,qx). Similarly for Player B. Then,

M(X,qx) =2qx—1, M(Y,qx) = 1-2qx, —M(px,X) =1-2px, —M(px,Y) = 2px —1,

M(X,qx) — M(px,qx) =2(1 —px)(2¢x — 1), M(Y,qx) — M(px,qx) = —2px(2¢x — 1),

—M(px, X)+M(px,qx) = 2(qx —1)(2px —1), =M (px,Y )+ M(px,qx) = 2qx(2px — 1).

And we have

1
When gx > > M(X,qx) > M(Y,qx) and M(X,qx) > M(px, qx) for px <1,
1
When gy < 5 M(Y,qx) > M(X,qx) and M(Y,qx) > M(px, gx) for px >0,
1
When bx > 57 _M(pX7Y) > _M(pX7X) and — M(any) > _M(pX7QX) for ax > 07

1
When px < 2 —M(px,X)>—-M(px,Y) and — M(px,X) > —M(px,qx) for gx < 1.
Consider sequences (px(n))n>1 and (gx(n)),>1, and let 0 < & < 1,0 < § < e. There

are the following cases.

(1) (a) If px(n) > 2 46 and gx(n) > 5 +46, or
(b) px(n) > 5+ 0 and gx(n) < 5 — 6, or
(¢) px(n) <1 —6and gx(n) < 3 —0, or
(d) px(n) < 5 —6 and gx(n) > 5 +46, or
(¢) px(n) > 146 and § —e < gx(n) <3 +¢, or
(f) px(n) < 3—dand 5 —e < gx(n) < 3 +e¢,or
(8) 3 —¢<px(n)<3+e, and gx(n) >3 +0 or



FIXED POINT WITH SEQUENTIALLY AT MOST ONE FIXED POINT 17
(h) 3+ —e <px(n) <3 +e, and gx(n) < 5 — 94,
then there exists no pair of (px(n), gx(n)) such that M (X, gx(n))—M (px(n),qx(n)) —
0, M(Y,qx(n)) = M(px(n),qx(n)) — 0, —[M(Px(n)»X)—M(Px(n),qX(n))] —

0 and —[M(px(n), Y) — M(px(n), gx(n))] —

(2) f s —e <px(n) < j+ecand 3 —c < gx(n) < f4+ewith0 <e < 3, M(X,qx(n))—
M(px(n), qx(n)) — 0, M(Y, qx(n)) = M(px(n), qx(n)) — 0, =[M(px(n), X) —
M(px(n),qx(n))] — 0 and —=[M(px(n),Y) — M(px(n),qx(n))] — 0, then

(px(n),qx(n)) — (3. 3)-

Therefore, the payoff functions satisfy Assumption 3.1.
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