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1. Introduction

Let E be a real Banach space with dual E∗. A mapping A : D(A) ⊂ E → E∗ is said to

be monotone if for each x, y ∈ D(A), the following inequality holds:

〈x− y, Ax− Ay〉 ≥ 0.(1)
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A is said to be γ−inverse strongly monotone if there exists a positive real number γ such

that

〈x− y, Ax− Ay〉 ≥ γ||Ax− Ay||2, for all x, y ∈ D(A).(2)

If A is γ−inverse strongly monotone, then it is Lipschitz continuous with constant 1
γ
, i.e.,

||Ax− Ay|| ≤ 1
γ
||x− y||, for all x, y ∈ D(A).

Suppose that A is a monotone mapping from C ⊆ E into E∗. The variational inequality

problem is formulated as finding:

a point u ∈ C such that 〈v − u,Au〉 ≥ 0, for all v ∈ C.(3)

The set of solutions of the variational inequality problem is denoted by V I(C,A).

Variational inequalities were initially studied by Stampacchia [7, 9] and ever since have

been widely studied. Such a problem is connected with the convex minimization problem,

the complementarity problem, the problem of finding a point u ∈ C satisfying 0 ∈ Au. If

E = H, a Hilbert space, one method of solving a point u ∈ V I(C,A) is the projection

algorithm which starts with any point x1 = x ∈ C and updates iteratively as xn+1

according to the formula

xn+1 = PC(xn − αnAxn), for any n ≥ 1,(4)

where PC is the metric projection from H onto C and {αn} is a sequence of positive real

numbers. In the case that A is γ−inverse strongly monotone, Iiduka, Takahashi and Toy-

oda [4] proved that the sequence {xn} generated by (4) converges weakly to some element

of V I(C,A).

Our concern now is the following: Is it possible to construct a sequence {xn} which con-

verges strongly to some point of V I(C,A)?
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In this connection, when E = H, a Hilbert space and A is γ−inverse strongly monotone,

Iiduka, Takahashi and Toyoda [4] studied the following iterative scheme, the so called

hybrid projection iteration method:

x0 ∈ C, chosen arbitrary,

yn = PC(xn − αnAxn),

Cn = {z ∈ C : ||yn − z|| ≤ ||xn − z||},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn(x0), n ≥ 1,

(5)

where {αn} is a sequence in [0, 2γ] and PC is the metric projection of H onto C. They

proved that the sequence {xn} generated by (5) converges strongly to PV I(C,A)(x0).

It is well known that if C is a nonempty closed convex subset of a Hilbert space H

the metric projection PC : H → C is nonexpansive. This fact actually characterizes

Hilbert spaces and consequently, it is not available in more general Banach spaces. In

this connection, Alber [1] recently introduced a generalized projection operator ΠC in a

Banach space E which is an analogue of the metric projection in Hilbert spaces. Next,

we assume that E is a smooth Banach space. Consider the functional defined by

φ(x, y) = ||x||2 − 2〈x, Jy〉+ ||y||2,∀x, y ∈ E,

where J is the normalized duality mapping from E into 2E
∗

defined by

Jx := {f ∗ ∈ E∗ : 〈x, f ∗〉 = ||x||2 = ||f ∗||2}.

It is well known that E is smooth if and only if J is single-valued and if E is uniformly

smooth then J is uniformly continuous on bounded subsets of E. Moreover, if E is a

reflexive and strictly convex Banach space with a strictly convex dual, then J−1 is single

valued, one-to-one, surjective, and it is the duality mapping from E∗ into E and thus

JJ−1 = IE∗ and J−1J = IE (see, [16]).

Following Alber [1], the generalized projection ΠC : E → C, is a mapping that assigns to

an arbitrary point x ∈ E the minimum point of the functional φ(y, x), that is, ΠCx = x̄,
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where x̄ is the solution to the following minimization problem:

φ(x̄, x) = inf
y∈C

φ(y, x).

If E is a Hilbert space, then φ(y, x) = ||y − x||2 and ΠC = PC is the metric projection of

H onto C.

In the case that E is 2-uniformly convex and uniformly smooth Banach space, Iiduka and

Takahashi [3] studied the following iterative scheme for a variational inequality problem

for γ−inverse strongly monotone mapping A:

x0 ∈ K, chosen arbitrary,

yn = ΠCJ
−1(Jxn − αnAxn),

Cn = {z ∈ E : φ(z, yn) ≤ φ(z, xn)},

Qn = {z ∈ E : 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qn(x0), n ≥ 1,

(6)

where ΠCn∩Qn is the generalized projection from E onto Cn ∩ Qn, J is the normalized

duality mapping from E into E∗ and {αn} is a positive real sequence satisfying certain

conditions. Then, they proved that the sequence {xn} converges strongly to an element of

V I(C,A) provided that V I(C,A) 6= ∅ and A satisfies ||Ax|| ≤ ||Ax− Ap||, for all x ∈ C

and p ∈ V I(C,A).

Let T be a mapping from C into itself. We denote by F (T ) the fixed points set of T . A

point p in C is said to be an asymptotic fixed point of T (see [14]) if C contains a sequence

{xn} which converges weakly to p such that lim
n→∞

||xn − Txn|| = 0. The set of asymptotic

fixed points of T will be denoted by F̂ (T ). A mapping T from C into itself is said to be

nonexpansive if ||Tx−Ty|| ≤ ||x− y|| for each x, y ∈ C and is called relatively nonexpan-

sive if (R1) F (T ) 6= ∅; (R2) φ(p, Tx) ≤ φ(p, x) for x ∈ C and (R3) F (T ) = F̂ (T ). T is

called relatively quasi-nonexpansive if F (T ) 6= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C, and

p ∈ F (T ).
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A mapping T from C into itself is said to be asymptotically nonexpansive if there exists

{kn} ⊂ [1,∞) such that kn → 1 and ||T nx− T ny|| ≤ kn||x− y|| for each x, y ∈ C and is

called relatively asymptotically nonexpansive if there exists {kn} ⊂ [1,∞) such that (N1)

F (T ) 6= ∅; (N2) φ(p, T nx) ≤ knφ(p, x) for x ∈ C and p ∈ F (T ), and (N3) F (T ) = F̂ (T ),

where kn → 1, as n → ∞. A self mapping on C is called asymptotically regular on C, if

for any bounded subset C of C, there holds the following equality:

lim sup
n→∞

{||T n+1x− T nx} : x ∈ C} = 0.

T is called closed if xn → x and Txn → y, then Tx = y.

Clearly, the class of relatively asymptotically nonexpansive mappings contains the class

of relatively nonexpansive mappings.

In 2003, Nakajo and Takahashi [12] proposed the following modification of the Mann

iteration method for a nonexpansive mapping T in a Hilbert space H:



x0 ∈ C, chosen arbitrary,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ||yn − z|| ≤ ||xn − z||},

Qn = {z ∈ C; 〈xn − z, x0 − xn〉 ≥ 0},

xn+1 = PCn∩Qn(x0), n ≥ 1,

(7)

where C is a closed convex subset of H, PC denotes the metric projection from H onto

a closed convex subset C of H. They proved that if the sequence {αn} is bounded above

from one then the sequence {xn} generated by (7) converges strongly to PF (T )(x0).

In spaces more general than Hilbert spaces, Matsushita and Takahashi [11] proposed the

following hybrid iteration method with generalized projection for relatively nonexpansive
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mapping T in a Banach space E:

x0 ∈ C, chosen arbitrary,

yn = J−1(αnJxn + (1− αn)JTxn),

Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},

Qn = {z ∈ C; 〈xn − z, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qn(x0), n ≥ 1,

(8)

They proved that if the sequence {αn} is bounded above from one then the sequence {xn}

generated by (8) converges strongly to ΠF (T )x0.

Recently, many authors have considered the problem of finding a common element of the

fixed points set of relatively nonexpansive mapping and the solution set of variational

inequality problem for γ−inverse monotone mapping (see, e.g., [8, 13, 15, 17, 20, 21]).

In [20], Zegeye et al. studied the following iterative scheme for a common point of solutions

of a variational inequality problem for γ−inverse strongly monotone mapping A and fixed

points of a closed relatively quasi-nonexpansive mapping T in a 2-uniformly convex and

uniformly smooth Banach space E:

C1 = C, chosen arbitrary,

zn = ΠC(xn − λnAxn),

yn = J−1(βJxn + (1− β)JTzn),

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},

xn+1 = ΠCn+1(x0), n ≥ 1,

(9)

where {λn} is a sequence satisfying certain conditions. They proved that the sequence

{xn} converges strongly to an element of F := F (S) ∩ V I(C,A) 6= ∅ provided that A

satisfies ||Ax|| ≤ ||Ax− Ap||, for all x ∈ C, and p ∈ F .

Recently, Zegeye and Shahzad [24] studied the following iterative scheme for a common

point of solutions of a variational inequality problem for γ−inverse strongly monotone

mapping A and fixed points of an asymptotically nonexpansive mapping on a closed
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convex and bounded set C which is a subset of a real Hilbert space H:



C1 = C, chosen arbitrary,

zn = PC(xn − λnAxn),

yn = αnxn + (1− αn)Snzn,

Cn+1 = {z ∈ Cn : ||z − un||2 ≤ ||z − xn||2 + θn},

xn+1 = PCn+1(x0), n ≥ 1,

(10)

where PCn is the metric projection from H into Cn and θn = (1− αn)(k2n − 1)(diam(C))2

and {αn}, {λn} are sequences satisfying certain condition. Then, they proved that the

sequence {xn} converges strongly to an element of F := F (S) ∩ V I(C,A) 6= ∅ provided

that A satisfies ||Ax|| ≤ ||Ax− Ap|| for all x ∈ C and p ∈ F .

We note that the computation of xn+1 in Algorithms (5),(6) and (7)-(10) is not simple

because of the involvement of computation of Cn+1 from Cn, for each n ≥ 1.

More recently, Zegeye and Shahzad [25] studied the following iterative scheme for a com-

mon point of solutions of finite family of γ-inverse strongly monotone mappings and fixed

points of two φ-uniformly L-Lipschitzian and quasi-φ-asymptotically nonexpansive map-

pings in a 2-uniformly convex and uniformly smooth Banach space E:


x0 ∈ C, chosen arbitrary,

un = ΠCJ
−1(Jxn − λnAnxn),

xn+1 = ΠCJ
−1(αnJxn + βnJS

n
1 un + θnJS

n
2 un),

(11)

where An =: An(mod N) and αn, βn, θn ⊂ [c1, 1], for some c1 > 0, satisfying some mild

conditions. They proved that the sequence {xn} converges strongly to an element of

F :=
[ N⋂
i=1

V I(C,Ai)
]
∩
[ 2⋂
l=1

F (Sl)
]

provided that interior of F is nonempty. We recall

that T : C → C is called φ-uniformly L-Lipschitzian if there exists L > 0 such that

φ(T nx, T ny) ≤ Lφ(x, y),∀x, y ∈ C and it called quasi-φ-asymptotically nonexpansive if

there exists kn ⊆ [1,∞) such that φ(p, T nx) ≤ knφ(p, x),∀x ∈ C, p ∈ F (T ). But it is
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worth mentioning, the assumption, that the interior of F is nonempty is severe restriction.

It is our purpose in this paper to introduce an iterative scheme {xn} which converges

strongly to a common point of solutions of variational inequality problem for γ-inverse

monotone mapping and fixed points of asymptotically regular uniformly continuous rel-

atively asymptotically nonexpansive mapping in Banach spaces. Our scheme does not

involve computation of Cn+1 from Cn for each n ≥ 1 and the requirement that interior of

F is nonempty is dispensed with. Our theorems improve and unify most of the results

that have been proved for this important class of nonlinear operators.

2. Preliminaries

Let E be a normed linear space with dim E ≥ 2. The modulus of smoothness of E is the

function ρE : [0,∞)→ [0,∞) defined by

ρE(τ) := sup

{
‖x+ y‖ + ‖x− y‖

2
− 1 : ‖x‖ = 1; ‖y‖ = τ

}
.

The space E is said to be smooth if ρE(τ) > 0, ∀ τ > 0 and E is called uniformly smooth

if and only if lim
t→0+

ρE(t)
t

= 0.

The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined by

δE(ε) := inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1; ε = ‖x− y‖
}
.

E is called uniformly convex if and only if δE(ε) > 0, for every ε ∈ (0, 2]. Let p > 1. Then

E is said to be p−uniformly convex if there exists a constant c > 0 such that δ(ε) ≥ cεp,

for all ε ∈ [0, 2]. Observe that every p-uniformly convex space is uniformly convex.

It is well known (see for example [19]) that

Lp ( lp) or W
p
m is

 p− uniformly convex, if p ≥ 2,

2− uniformly convex, if 1 < p ≤ 2.

In the sequel, we shall need the following lemmas:
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Lemma 2.1. [19] Let E be a 2−uniformly convex Banach space. Then, for all x, y ∈ E,

we have

||x− y|| ≤ 2

c2
||Jx− Jy||,(12)

where J is the normalized duality mapping of E and 0 < c ≤ 1.

Lemma 2.2. [22] Let C be a nonempty closed and convex subset of a real reflexive, strictly

convex, and smooth Banach space E. If A : C → E∗ is continuous monotone mapping,

then V I(C,A) is closed and convex.

Proposition 2.3. Let C be a closed convex subset of a uniformly convex and uniform-

ly smooth Banach space E, and let S be closed relatively asymptotically nonexpansive

mapping from C into itself. Then F (S) is closed and convex.

Proof. The method of proof of Proposition 2.11 of [23] provides the required conclusion.

Lemma 2.4. [1] Let K be a nonempty closed and convex subset of a real reflexive, strictly

convex, and smooth Banach space E and let x ∈ E. Then ∀y ∈ K,

φ(y,ΠKx) + φ(ΠKx, x) ≤ φ(y, x).

Lemma 2.5. [5] Let E be a real smooth and uniformly convex Banach space and let {xn}

and {yn} be two sequences of E. If either {xn} or {yn} is bounded and φ(xn, yn)→ 0 as

n→∞, then xn − yn → 0, as n→∞.

We make use of the function V : E × E∗ → R defined by

V (x, x∗) = ||x||2 − 2〈x, x∗〉+ ||x||2, for all x ∈ E and x∗ ∈ E,

studied by Alber [1]. That is, V (x, x∗) = φ(x, J−1x∗) for all x ∈ E and x∗ ∈ E∗. We

know the following lemma.

Lemma 2.6. [1] Let E be a reflexive strictly convex and smooth Banach space with E∗

as its dual. Then

V (x, x∗) + 2〈J−1x∗ − x, y∗〉 ≤ V (x, x∗ + y∗),

for all x ∈ E and x∗, y∗ ∈ E∗.
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Lemma 2.7. [1] Let C be a convex subset of a real smooth Banach space E. Let x ∈ E.

Then x0 = ΠCx if and only if

〈z − x0, Jx− Jx0〉 ≤ 0,∀z ∈ C.

Lemma 2.8. [20] Let E be a uniformly convex Banach space and BR(0) be a closed ball of

E. Then, there exists a continuous strictly increasing convex function g : [0,∞)→ [0,∞)

with g(0) = 0 such that

||αx+ (1− α)y||2 ≤ α||x||2 + (1− α)||y||2 − α(1− α)g(||x− y||),

for α ∈ (0, 1) and for x, y ∈ BR(0) := {x ∈ E : ||x|| ≤ R}.

Lemma 2.9. [18] Let {an} be a sequence of nonnegative real numbers satisfying the

following relation:

an+1 ≤ (1− βn)an + βnδn, n ≥ n0,

where {βn} ⊂ (0, 1) and {δn} ⊂ R satisfying the following conditions: lim
n→∞

βn = 0,
∞∑
n=1

βn =

∞, and lim sup
n→∞

δn ≤ 0. Then, lim
n→∞

an = 0.

Lemma 2.10. [10] Let {an} be sequences of real numbers such that there exists a subse-

quence {ni} of {n} such that ani
< ani+1 for all i ∈ N. Then there exists a nondecreasing

sequence {mk} ⊂ N such that mk → ∞ and the following properties are satisfied by all

(sufficiently large) numbers k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.

3. Main results

We remark that, as it is mentioned in [24], if C is a subset of a real Banach space E and

A : C → E∗ is a mapping satisfying ||Ax|| ≤ ||Ax−Ap||, ∀x ∈ C and p ∈ V I(C,A), then

V I(C,A) = A−1(0) = {p ∈ C : Ap = 0}. We shall make use of this remark to prove the
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next theorem.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a uniformly smooth and

2-uniformly convex real Banach space E. Let A : C → E∗ be a γ-inverse strongly mono-

tone mapping satisfying ||Ax|| ≤ ||Ax− Ap||, ∀x ∈ C and p ∈ V I(C,A). Let T : C → C

be an asymptotically regular uniformly continuous relatively asymptotically nonexpansive

mapping with sequences {kn}. Assume that F := V I(C,A)∩F (T ) is nonempty. Let {xn}

be a sequence generated by



x0 = w ∈ C, chosen arbitrarily,

wn = J−1(Jxn − λnAxn),

yn = ΠCJ
−1(αnJw + (1− αn)Jwn),

xn+1 = ΠCJ
−1(βnJwn + (1− βn)JT nyn),

(13)

where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞, limn→∞
kn−1
αn

= 0, {βn} ⊂

[c, d] ⊂ (0, 1) and {λn} is a sequence in [a, b] for some real numbers a, b such that 0 < a ≤

λn ≤ b < c2γ
2

, for 1
c

a 2-uniformly convex constant of E. Then {xn} converges strongly to

an element of F .

Proof. Let p := ΠFw. Then by Lemma 2.4 and Lemma 2.6 we get that

φ(p, wn) = φ(p, J−1(Jxn − λnAxn)) = V (p, Jxn − λnAxn)

≤ V (p, (Jxn − λnAxn) + λnAxn〉

−2〈J−1(Jxn − λnAxn)− p, λnAxn〉

= V (p, Jxn)− 2λn〈J−1(Jxn − λnAxn)− p,Axn〉

= φ(p, xn)− 2λn〈xn − p,Axn〉 − 2λn〈J−1(Jxn − λnAxn)− xn, Axn〉(14)
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Thus, since p ∈ F and A is γ−inverse strongly monotone, Lemma 2.1 and the fact that

λn <
c2

2
γ, we have from (14) that

φ(p, wn) ≤ φ(p, xn)− 2λn〈xn − p,Axn − Ap〉

−2λn〈J−1(Jxn − λnAxn)− xn, Axn〉

≤ φ(p, xn)− 2λnγ||Axn||2

+2λn||J−1(Jxn − λnAxn)− J−1(Jxn)||||Axn||

≤ φ(p, xn)− 2λnγ||Axn||2 +
4

c2
λ2n||Axn||2

= φ(p, xn) + 2λn(
2

c2
λn − γ)||Axn||2(15)

≤ φ(p, xn).(16)

Now from (13), Lemma 2.4, property of φ and (16) we get that

φ(p, yn) = φ(p,ΠCJ
−1(αnJw + (1− αn)Jwn)

≤ φ(p, J−1(αnJw + (1− αn)Jwn)

= ||p||2 − 2〈p, αnJw + (1− αn)Jwn〉+ ||αnJw + (1− αn)Jwn||2

≤ ||p||2 − 2αn〈p, Jw〉 − 2(1− αn)〈p, Jwn〉

+αn||Jw||2 + (1− αn)||Jwn||2

= αnφ(p, w) + (1− αn)φ(p, wn)

≤ αnφ(p, w) + (1− αn)φ(p, xn).(17)

Then, from (13) and property of φ we get that

φ(p, xn+1) = φ(p,ΠCJ
−1(βnJwn + (1− βn)JT nyn)

≤ φ(p, J−1(βnJwn + (1− βn)JT nyn)

≤ βnφ(p, wn) + (1− βn)φ(p, JT nyn)),
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which implies using relatively asymptotic nonexpansiveness of T , (16) and (17) that

φ(p, xn+1) ≤ βnφ(p, wn) + (1− βn)knφ(p, yn)

≤ βnφ(p, xn) + (1− βn)φ(p, yn)) + (1− βn)(kn − 1)φ(p, yn)

≤ βnφ(p, xn) + (1− βn)
[
αnφ(p, w) + (1− αn)φ(p, xn)

]
+(1− βn)(kn − 1)

[
αnφ(p, w) + (1− αn)φ(p, xn)

]
,

≤
[
αn(1− βn) + (1− βn)(kn − 1)αn

]
φ(p, w)

+
[
(1− αn(1− βn)) + (1− βn)(kn − 1)(1− αn)

]
φ(p, xn)

≤ δnφ(p, w) +
[
1− (1− ε)δn

]
φ(p, xn),(18)

where δn = (1− βn)knαn, since there exists N0 > 0 such that (kn−1)
αn
≤ εkn for all n ≥ N0

and for some ε > 0 satisfying (1− ε)δn ≤ 1. Thus, by induction,

φ(p, xn+1) ≤ max{φ(p, x0), (1− ε)−1φ(p, w)},∀n ≥ N0.

which implies that {xn} is bounded and hence {yn} and {wn} are bounded. Now let

zn = J−1(αnJw + (1 − αn)Jwn). Then we have that yn = ΠCzn. Using Lemma 2.4,

Lemma 2.6 and property of φ we obtain that

φ(p, yn) ≤ φ(p, zn) = V (p, Jzn)

≤ V (p, Jzn − αn(Jw − Jp))− 2〈zn − p,−αn(Jw − Jp)〉

= φ(p, J−1(αnJp+ (1− αn)Jwn) + 2αn〈zn − p, Jw − Jp〉

≤ αnφ(p, p) + (1− αn)φ(p, wn) + 2αn〈zn − p, Jw − Jp〉

= (1− αn)φ(p, wn) + 2αn〈zn − p, Jw − Jp〉

≤ (1− αn)φ(p, xn) + 2αn〈zn − p, Jw − Jp〉.(19)
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Furthermore, from (13), Lemma 2.8 and relatively asymptotic nonexpansiveness of T we

have that

φ(p, xn+1) = φ(p,ΠCJ
−1(βnJwn + (1− βn)JT nyn))

≤ βnφ(p, wn) + (1− βn)φ(p, JT nyn)

−(1− βn)βng(||Jwn − JT nyn||)

≤ βnφ(p, wn) + (1− βn)φ(p, yn)

+(1− βn)(kn − 1)φ(p, yn)− (1− βn)βng(||Jwn − JT nyn||),

which implies from (15) and (19) that

φ(p, xn+1) ≤ βn

[
φ(p, xn) + 2λn(

2

c2
λn − γ)||Axn||2

]
+(1− βn)

[
(1− αn)φ(p, xn) + 2αn〈zn − p, Jw − Jp〉

]
+(1− βn)(kn − 1)φ(p, yn)− (1− βn)βng(||Jwn − JT nyn||)

≤ (1− θn)φ(p, xn) + 2θn〈zn − p, Jw − Jp〉+ (kn − 1)M

−(1− βn)βng(||Jwn − JT nyn||)− 2λnβn(γ − 2

c2
λn)||Axn||2(20)

≤ (1− θn)φ(p, xn) + 2θn〈zn − p, Jw − Jp〉+ (kn − 1)M,(21)

for some M > 0, where θn := αn(1− βn) for all n ∈ N . Note that θn satisfies lim
n
θn = 0

and
∑∞

n=1 θn =∞.

Now, the rest of the proof is divided into two parts:

Case 1. Suppose that there exists n0 ∈ N such that {φ(p, xn)} is non-increasing. In

this situation, {φ(p, xn)} is convergent. Then from (20) we have that

2λnβn(γ − 2

c2
λn)||Axn||2 + (1− βn)βng(||Jwn − JT nyn|| → 0,(22)

which implies, by the property of g and the fact that λn <
c2

2
γ, that

||Axn|| → 0 and Jwn − JT nyn → 0, as n→∞,(23)
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and hence, since J−1 is uniformly continuous on bounded sets we obtain that

wn − T nyn → 0, as n→∞.(24)

Furthermore, Lemma 2.4, property of φ and the fact that αn → 0, as n→∞, imply that

φ(wn, yn) = φ(wn,ΠCzn) ≤ φ(wn, zn)

= φ(wn, J
−1(αnJw + (1− αn)Jwn)

≤ αnφ(wn, w) + (1− αn)φ(wn, wn)

≤ αnφ(wn, w) + (1− αn)φ(wn, wn)→ 0 as n→∞,(25)

and hence

wn − yn → 0 and wn − zn → 0, as n→∞.(26)

Therefore, from (24) and (26) we obtain that

yn − zn → 0 and yn − T nyn → 0, as n→∞.(27)

Therefore, since

||yn − Tyn|| ≤ ||yn − T nyn||+ ||T nyn − T n+1yn||+ ||T n+1yn − Tyn||,

= ||yn − T nyn||+ ||T nyn − T n+1yn||+ ||T (T nyn)− Tyn||,

(28)

we have from (27), asymptotic regularity and uniform continuity of T that

||yn − Tyn|| → 0, as n→∞.(29)

Since {zn} is bounded and E is reflexive, we choose a subsequence {zni
} of {zn} such that

zni
⇀ z and lim sup

n→∞
〈zn − p, Jw − Jp〉 = lim

i→∞
〈zni
− p, Jw − Jp〉. Then, from (27) we get

that

yni
⇀ z,wni

⇀ z, as i→∞.(30)

Thus, since T satisfies condition (N3) we obtain from (29) that z ∈ F (T ).
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Next, we show that z ∈ A−1(0). Now, from Lemma 2.4 and Lemma 2.6 we have that

φ(xn, wn) = φ(xn, J
−1(Jxn − λnAxn)) ≤ V (xn, Jxn − λnAxn))

≤ V (xn, (Jxn − λnAxn) + λnAxn)− 2〈J−1(Jxn − λnAxn)− xn, λnAxn〉

= φ(xn, xn) + 2〈J−1(Jxn − λnAxn)− xn,−Anxn〉

= 2λn〈J−1(Jxn − λnAxn)− xn,−Anxn〉

≤ 2λn||J−1(Jxn − λnAxn)− J−1Jxn||.||Axn|| ≤
4

c2
λ2n||Axn||2,

then, using (23) we obtain that

φ(xn, wn)→ 0, as n→∞,(31)

which implies by Lemma 2.5 that

xn − wn → 0, as n→∞,(32)

and hence from (30) we have that xni
⇀ z. Now, since A is γ-inverse strongly monotone,

we have

γ||Axni
− Az||2 ≤ 〈xni

− z, Axni
− Az〉 → 0, as i→∞.(33)

In particular, Axni
→ Az. Because, Axn → 0, so Az = 0. Hence, z ∈ A−1(0).

Thus, from the above discussions we obtain that z ∈ F := F (T )∩V I(C,A). Therefore, by

Lemma 2.7, we immediately obtain that lim sup
n→∞

〈zn−p, Jw−Jp〉 = lim
i→∞
〈zni
−p, Jw−Jp〉 =

〈z − p, Jw − Jp〉 ≤ 0. It follows from Lemma 2.9 and (21) that φ(p, xn)→ 0, as n→∞.

Consequently, xn → p.

Case 2. Suppose that there exists a subsequence {ni} of {n} such that

φ(p, xni
) < φ(p, xni+1)

for all i ∈ N. Then, by Lemma 2.10, there exist a nondecreasing sequence {mk} ⊂ N such

that mk → ∞, φ(p, xmk
) ≤ φ(p, xmk+1) and φ(p, xk) ≤ φ(p, xmk+1), for all k ∈ N. Then
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from (20) and the fact that θn → 0 we have

||Axmk
|| → 0 and g(||Jwmk

− JTmkymk
||)→ 0, as k →∞.

Thus, using the same proof as in Case 1, we obtain that wmk
−Tymk

→ 0, wmk
−ymk

→ 0,

wmk
− zmk

→ 0, wmk
− xmk

→ 0, as k →∞ and hence we obtain that

lim sup
k→∞

〈zmk
− p, Jw − Jp〉 ≤ 0.(34)

Then from (21) we have that

φ(p, xmk+1) ≤ (1− θmk
)φ(p, xmk

) + 2θmk
〈zmk

− p, Jw − Jp〉+ (kmk
− 1)M.

(35)

Since φ(p, xmk
) ≤ φ(p, xmk+1), (35) implies that

θmk
φ(p, xmk

) ≤ φ(p, xmk
)− φ(p, xmk+1) + 2θmk

〈zmk
− p, Jw − Jp〉

+(kmk
− 1)M

≤ 2θmk
〈zmk

− p, Jw − Jp〉+ (kmk
− 1)M.

In particular, since θmk
> 0, we get

φ(p, xmk
) ≤ 2〈zmk

− p, Jw − Jp〉+
(kmk

− 1)

θmk

M.

Then, from (34) and the fact that
(kmk

−1)
θmk

→ 0 we obtain φ(p, xmk
)→ 0, as k →∞. This

together with (35) gives φ(p, xmk+1) → 0, as k → ∞. But φ(p, xk) ≤ φ(p, xmk+1), for all

k ∈ N, thus we obtain that xk → p. Therefore, from the above two cases, we can conclude

that {xn} converges strongly to p and the proof is complete.

It is worth to mention that the method of proof of Theorem 3.1 provides the following

theorem.

Theorem 3.2. Let C be a nonempty, closed and convex subset of a uniformly smooth

and 2-uniformly convex real Banach space E. Let A : C → E∗ be a γ-inverse strongly
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monotone mapping. Let T : C → C be an asymptotically regular uniformly continuous

relatively asymptotically nonexpansive mapping with sequences {kn}. Assume that F :=

A−1(0) ∩ F (T ) is nonempty. Let {xn} be a sequence generated by

x0 = w ∈ C, chosen arbitrarily,

wn = J−1(Jxn − λnAxn),

yn = ΠCJ
−1(αnJw + (1− αn)Jwn),

xn+1 = ΠCJ
−1(βnJwn + (1− βn)JT nyn),

(36)

where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞, limn→∞
kn−1
αn

= 0, {βn} ⊂

[c, d] ⊂ (0, 1) and {λn} is a sequence in [a, b] for some real numbers a, b such that 0 < a ≤

λn ≤ b < c2γ
2

, for 1
c

a 2-uniformly convex constant of E. Then {xn} converges strongly to

an element of F .

The following is an example of an asymptotically regular uniformly continuous relatively

asymptotically nonexpansive mapping.

Example 3.3. Let C := [−1
π
, 1
π
] and define T : C → C by

T (x) =


x
2

sin( 1
x
), x 6= 0,

x, x = 0.

Then following an argument used in [6], it can be seen that T is relatively asymptotically

nonexpansive, asymptotically regular and uniformly continuous mapping. For detail, see

[26].

If in Theorem 3.1, we assume that A ≡ 0, then the assumption that E be 2-uniformly

convex may not be needed. In fact, we have the following corollary.

Corollary 3.4. Let C be a nonempty, closed and convex subset of a uniformly smooth

and uniformly convex real Banach space E. Let T : C → C be an asymptotically regular

uniformly continuous relatively asymptotically nonexpansive mapping with sequences {kn}.
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Assume that F := F (T ) is nonempty. Let {xn} be a sequence generated by
x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1− αn)Jxn),

xn+1 = ΠCJ
−1(βnJxn + (1− βn)JT nyn),

(37)

where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞, limn→∞
kn−1
αn

= 0, {βn} ⊂

[c, d] ⊂ (0, 1). Then {xn} converges strongly to an element of F .

Proof. If we put A ≡ 0 in (13) then we get that wn = xn and (13) reduces to (37).

Therefore, the conclusion follows from Theorem 3.1 without the requirement that E be

2-uniformly convex.

If in Theorem 3.1, we assume that T ≡ I, identity map on C then we get the following

corollary.

Corollary 3.5. Let C be a nonempty, closed and convex subset of a uniformly smooth

and 2-uniformly convex real Banach space E. Let A : C → E∗, be a γ-inverse strongly

monotone mapping satisfying ||Ax|| ≤ ||Ax − Ap||, ∀x ∈ C and p ∈ V I(C,A). Assume

that F := V I(C,A) is nonempty. Let {xn} be a sequence generated by
x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1− αn)(Jxn − λnAxn)),

xn+1 = ΠCJ
−1(βnJwn + (1− βn)Jyn),

(38)

where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞, {βn} ⊂ [c, d] ⊂ (0, 1) and

{λn} is a sequence in [a, b] for some real numbers a, b such that 0 < a ≤ λn ≤ b < c2γ
2

, for

1
c

a 2-uniformly convex constant of E. Then {xn} converges strongly to an element of F .

Proof. If we put T ≡ I, identity map on C, then (13) reduces to (38). Therefore, the

conclusion follows from Theorem 3.1.

If in Theorem 3.1, we assume that T is relatively nonexpansive we get the following corol-

lary.
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Corollary 3.6. Let C be a nonempty, closed and convex subset of a uniformly smooth

and 2-uniformly convex real Banach space E. Let A : C → E∗, be a γ-inverse strongly

monotone mapping satisfying ||Ax|| ≤ ||Ax − Ap||, ∀x ∈ C and p ∈ V I(C,A). Let

T : C → C be a relatively nonexpansive mapping. Assume that F := V I(C,A) ∩ F (S) is

nonempty. Let {xn} be a sequence generated by



x0 = w ∈ C, chosen arbitrarily,

wn = J−1(Jxn − λnAxn),

yn = ΠCJ
−1(αnJw + (1− αn)Jwn),

xn+1 = ΠCJ
−1(βnJwn + (1− βn)JTyn),

(39)

where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞, {βn} ⊂ [c, d] ⊂ (0, 1) and

{λn} is a sequence in [a, b] for some real numbers a, b such that 0 < a ≤ λn ≤ b < c2γ
2

, for

1
c

a 2-uniformly convex constant of E. Then {xn} converges strongly to an element of F .

Proof. We note that the method of proof of Theorem 3.1 provides the required assertion.

If E = H, a real Hilbert space, then E is 2-uniformly convex and uniformly smooth real

Banach space. In this case, J = I, identity map on H and ΠC = PC , projection mapping

from H onto C. Thus, the following corollary holds.

Corollary 3.7. Let C be a nonempty, closed and convex subset of a real Hilbert space

H. Let A : C → H be a γ-inverse strongly monotone mapping satisfying ||Ax|| ≤ ||Ax−

Ap||, ∀x ∈ C and p ∈ V I(C,A). Let T : C → C be an asymptotically regular uniformly

continuous relatively asymptotically nonexpansive mapping with sequences {kn}. Assume

that F := V I(C,A) ∩ F (T ) is nonempty. Let {xn} be a sequence generated by



x0 = w ∈ C, chosen arbitrarily,

wn = xn − λnAxn,

yn = PC(αnw + (1− αn)wn),

xn+1 = PC(βnwn + (1− βn)T nyn),

(40)
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where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞, limn→∞
kn−1
αn

= 0, {βn} ⊂

[c, d] ⊂ (0, 1) and {λn} is a sequence in [a, b] for some real numbers a, b such that

0 < a ≤ λn ≤ b < γ. Then {xn} converges strongly to an element of F .

4. Applications

In this section, we study the problem of finding a minimizer of a continuously Fréchet

differentiable convex functional in Banach spaces. We shall make use of the following

lemma by Baillon and Haddad [2].

Lemma 4.1. Let E be a Banach space, Let f be a continuous Fréchet differentiable con-

vex functional on E and let 5f be the gradient of f . If 5f is 1
α

-Lipschitzian continuous,

then 5f is α-inverse-strongly monotone.

Theorem 4.2. Let E be a 2-uniformly convex and uniformly smooth real Banach s-

pace. Let f be a continuously Fréchet differentiable convex functional on E and 5f is

1
α

-Lipschitzian continuous and F := (5f)−1(0) = {z ∈ E : f(z) = miny∈E f(y)} 6= ∅. Let

{xn} be a sequence generated by


x0 = w ∈ C, chosen arbitrarily,

yn = ΠCJ
−1(αnJw + (1− αn)(Jxn − λn5 f(xn)),

xn+1 = ΠCJ
−1(βnJwn + (1− βn)Jyn),

(41)

where αn ∈ (0, 1) such that limn→∞ αn = 0,
∑∞

n=1 αn = ∞, {βn} ⊂ [c, d] ⊂ (0, 1) and

{λn} is a sequence in [a, b] for some real numbers a, b such that 0 < a ≤ λn ≤ b < c2α
2

, for

1
c

a 2-uniformly convex constant of E. Then {xn} converges strongly to an element of F .

Proof. We note from Lemma 4.1 that 5f is α-inverse strongly monotone operator from

E into E∗. Thus, using Theorem 3.2 with T ≡ I, {xn} converges strongly to F .

Remark 4.3.
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(1) Theorem 3.1 improves and extends the corresponding results of Zegeye et al. [20],

Zegeye and Shahzad [24] and [25] in the sense that either our scheme does not

require computation of Cn+1 for each n ≥ 1 or the assumption that the interior of

F is nonempty is not required.

(2) Corollary 3.4 improves the corresponding results of Nakajo and Takahashi [12]

and Matsushita and Takahashi [11] in the sense that either our scheme does not

require computation of Cn+1 for each n ≥ 1 or the class of mappings considered

in our corollary is more general.

(3) Corollary 3.5 improves the corresponding results of Iiduka and Takahashi [3] and

Iiduka, Takahashi and Toyoda [4] in the sense that our scheme does not require

computation of Cn+1 for each n ≥ 1.
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