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1. Introduction

In 1989, The concept of b-metric space was introduced by Bakht, who used it to prove the

Banach contraction mapping principle [1-5]. In 2007, Huang and Zhang introduced cone metric

spaces and established fixed point theorems of nonlinear operators [8]. Since 2007, fixed point

problem in the framework of cone metric spaces have been extensive investigated by many

authors; see, for example, [2-12] and the references therein. As a generalization and unification

of cone metric spaces and b-metric spaces, Khamsi and Husssain defined a new type of spaces
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which was called cone metric type spaces. For the results in the framework of cone metric type

spaces, we refer authors to [13-15] and the references therein.

The aim of this paper is to obtain coincidence points and common fixed points for two, three

and four self nonlinear mappings in a normal cone metric type spaces. The results presented in

this paper generalize some recent results announced by many authors.

2. Preliminaries

Definition 2.1. [7] A subset P of a real Banach space E is called a cone if it has the following

properties:

(1) P is non-empty,closed and P 6= {θ};

(2) 0≤ a,b ∈ R and x,y ∈ P⇒ ax+by ∈ P;

(3) P∩ (−P) = {θ}.

For a given cone P ⊆ E,a partial ordering ≤ on E with respect to P by x ≤ y if and only if

y− x ∈ P. We use x� y for y− x ∈ intP,intP stands for the interior of P.

Definition 2.2. [7] A cone P is said to be normal if there exists a constant κ > 0 such that

‖ x ‖≤ κ ‖ y ‖, f or all x,y ∈ E,θ ≤ x≤ y.

The least number κ is called the normal constant of P.

Definition 2.3. [16,17] Let X be a nonempty set,s ≥ 1 be a real number and E a real Banach

space with cone P.Suppose that the mapping d : X×X → E satisfies:

(1) d(x,y)≥ θ for all x,y ∈ X and d(x,y) = θ if and only if x = y;

(2) d(x,y) = d(y,x) for all x,y ∈ X ;

(3) d(x,z)≤ s[d(x,y)+d(y,z)] for all x,y,z ∈ X .

Then d is called a cone metric type on X and (X ,d,s) is called a cone metric type space.

Example 2.4. [13] Let B = {ei|i = 1,2...,n} be an orthonormal basis of Rn with inner product

(·, ·) and p > 0. Define

Xp = {[x]|x : [0,1]→ Rn,
∫ 1

0
|(x(t),e j)|pdt, j = 1,2, ...,n},
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where [x] represents the class of equivalence of x with respect to relation of functions equal

almost everywhere. Let E = Rn and

PB = {y ∈ Rn|(y,ei)≥ 0, i = 1,2, ...,n}

be a solid cone. Define d : XP×XP→ PB ⊂ Rn by

d( f ,g) =
n

∑
i=1

ei

∫ 1

0
|(( f −g)(t),ei)|pdt, f ,g ∈ Xp.

Then (XP,d,s) is a cone metric type space with s = 2p−1.

Definition 2.5. [16] Let (X ,d,s) be a cone metric type space,xn a sequence in X and x ∈ X .

(1) {xn} converges to x if for ∀c ∈ E with 0� c there exists n0 ∈N such that d(xn,x)� c for

all n > n0,and we write limn→∞ d(xn,x) = θ .

(2) {xn} is called a Cauchy sequence if for ∀c ∈ E with 0� c there exists n0 ∈ N such that

d(xn,xm)� c for all m,n > n0,and we write limn→∞ d(xn,xm) = θ .

Lemma 2.6. [10] Let (X ,d,s) be a cone metric type space and P a normal cone,then

(1) {xn} converges to x if and only if d(xn,x)→ θ ,as n→ ∞;

(2) {xn} is called a Cauchy sequence if and only if d(xn,xm)→ θ ,as n,m→ ∞.

Definition 2.7. [18] Let f and g be self-mappings on a set X ,if

w = f x = gx f or some x in X ,

then x is called coincidence point of f and g ,w is called a point of coincidence of f and g.

Definition 2.8. [18] Let f and g be self-mappings on a set X ,if f gw = g f w for all coincidence

points w, then the pair ( f ,T ) is said to be weakly compatible.

3. Main results

Theorem 3.1. Let (X ,d,s) be a cone metric type space with coefficient s ≥ 1 and P a normal

cone with normal constant κ .Suppose the mappings f ,g : X → X for all x,y ∈ X satisfy:

d( f x, f y)≤ a1d(gx,gy)+a2d( f x,gx)+a3d( f y,gy)+a4d( f x,gy)+a5d( f y,gx)
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where ai ≥ 0, i = 1, · · ·,5 with

2sa1 +(s+1)(a2 +a3)+(s2 + s)(a4 +a5)< 2. (3.1)

Also, suppose that f (X) ⊆ g(X) and g(X) is a complete subspace of X. Then f and g have a

unique point of coincidence. Moreover,if ( f ,g) is weakly compatible,then f and g have a unique

common fixed point.

Proof. Let x0 be an arbitrary point in X . Since f (X)⊂ g(X), we can choose a point x1 in X such

that f x0 = gx1. Similarly, choose a point x2 in X such that f x1 = gx2. Continuing this process,

we obtain the sequence {xn} by f xn = gxn+1 for all n≥ 0. Then

d(gxn+1,gxn)≤ a1d(gxn,gxn−1)+a2d( f xn,gxn)+a3d( f xn−1,gxn−1)

+a4d( f xn,gxn−1)+a5d( f xn−1,gxn)

= a1d(gxn,gxn−1)+a2d(gxn+1,gxn)+a3d(gxn,gxn−1)

+a4d(gxn+1,gxn−1)+a5d(gxn,gxn)

≤ a1d(gxn,gxn−1)+a2d(gxn+1,gxn)+a3d(gxn,gxn−1)

+ sa4d(gxn−1,gxn)+ sa4d(gxn,gxn+1)

= (a1 +a3 + sa4)d(gxn,gxn−1)+(a2 + sa4)d(gxn+1,gxn),

and

d(gxn,gxn+1) = d( f xn−1, f xn)

≤ a1d(gxn−1,gxn)+a2d( f xn−1,gxn−1)+a3d( f xn,gxn)

+a4d( f xn−1,gxn)+a5d( f xn,gxn−1)

= a1d(gxn−1,gxn)+a2d(gxn,gxn−1)+a3d(gxn+1,gxn)

+a4d(gxn,gxn)+a5d(gxn+1,gxn−1)

≤ a1d(gxn−1,gxn)+a2d(gxn,gxn−1)+a3d(gxn+1,gxn)

+ sa5d(gxn+1,gxn)+ sa5d(gxn,gxn−1)

= (a1 +a2 + sa5)d(gxn,gxn−1)+(a3 + sa5)d(gxn+1,gxn).
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Adding the last two inequalities, we have

2d(gxn,gxn+1)≤ (2a1+a2+a3+sa4+sa5)d(gxn,gxn−1)+(a2+a3+sa4+sa5)d(gxn,gxn+1).

Then

d(gxn,gxn+1)≤
2a1 +a2 +a3 + sa4 + sa5

2−a2−a3− sa4− sa5
d(gxn,gxn−1),

for all n≥ 0. Put

λ =
2a1 +a2 +a3 + sa4 + sa5

2−a2−a3− sa4− sa5
.

It follows that sλ < 1 and d(gxn,gxn+1)≤ λd(gxn,gxn−1)≤ λ nd(gx0,gx1). Now for m > n, we

have

d(gxn,gxm)≤ sd(gxn,gxn+1)+ s2d(gxn+1,gxn+2)+ · · ·+ sm−n−1d(gxm−2,gxm−1)

+ sm−nd(gxm−1,gxm)

≤ (sλ
n + s2

λ
n+1 + · · ·+ sm−n−1

λ
m−2 + sm−n

λ
m−1)d(gx0,gx1)

≤ sλ n

1− sλ
d(gx0,gx1).

Since P is a normal cone with normal constant κ , we have

‖ d(gxn,gxm) ‖≤ κ
sλ n

1− sλ
‖ d(gx0,gx1) ‖,

Thus, if n,m→ ∞, then d(gxn,gxm)→ θ . Hence, {gxn} is a Cauchy sequence. Since g(X) is

complete, there exist u,v ∈ X such that gxn→ v = gu. Since

d(gxn, f u) = d( f xn−1, f u)

≤ a1d(gxn−1,gu)+a2d( f xn−1,gxn−1)+a3d( f u,gu)

+a4d( f xn−1,gu)+a5d( f u,gxn−1)

= a1d(gxn−1,v)+a2d(gxn,gxn−1)+a3d( f u,v)

+a4d(gxn,v)+a5d( f u,gxn−1)

≤ a1d(gxn−1,v)+a2d(gxn,gxn−1)+ sa3d( f u,gxn)+ sa3d(gxn,v)

+a4d(gxn,v)+ sa5d( f u,gxn)+ sa5d(gxn,gxn−1),
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we find that

d(gxn, f u)≤ 1
1− sa3− sa5

[a1d(gxn−1,v)+(a2 + sa5)d(gxn,gxn−1)

+(sa3 +a4)d(gxn,v)].

Hence, we have

‖ d(gxn, f u) ‖ ≤ κ

1− sa3− sa5
‖ a1d(gxn−1,v)+(a2 + sa5)d(gxn,gxn−1)

+(a4 + sa3)d(gxn,v) ‖ .

If n→ ∞,then we have d(gxn, f u)→ θ , Also, d(gxn,gu)→ θ as n→ ∞. The uniqueness of a

limit in a cone metric type space implies that f u = gu = v. Now we show that f and g have a

unique point of coincidence. For this end, assume that there exists another point u∗ in X such

that f u∗ = gu∗ = v∗. Then

d(v,v∗) = d( f u, f u∗)

≤ a1d(gu,gu∗)+a2d( f u,gu)+a3d( f u∗,gu∗)

+a4d( f u,gu∗)+a5d( f u∗,gu)

= a1d(v,v∗)+a2d(v,v)+a3d(v∗,v∗)

+a4d(v,v∗)+a5d(v∗,v)

≤ (a1 +a4 +a5)d(v,v∗),

which gives a contraction, Hence,w e have v = v∗. If ( f ,g) is weakly compatible, then f v =

f gu = g f u = gv. So u = v by uniqueness. Thus v is the unique common fixed point of f and g.

Corollary 3.2. Let (X ,d,s) be a cone metric type space with coefficient s ≥ 1 and P a nor-

mal cone with normal constant κ .Suppose the mappings f and g be self-mappings on X,such

that f (X) ⊆ g(X) and g(X) is a complete subspace of X. Suppose that one of the following

conditions holds:

(1) d( f x, f y)≤ a1d(gx,gy)+a2d( f x,gx)+a3d( f y,gy),

for all x,y ∈ X, where a1,a2,a3 ≥ 0 and 2sa1 +(s+1)(a2 +a3)< 2.
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(2) d( f x, f y)≤ a1d(gx,gy)+a2d( f x,gy)+a3d( f y,gx),

for all x,y ∈ X, where a1,a2,a3 ≥ 0 and 2sa1 +(s2 + s)(a2 +a3)< 2.

(3) d( f x, f y)≤ a1d( f x,gx)+a2d( f y,gy),

for all x,y ∈ X, where a1,a2 ≥ 0 and a1 +a2 <
2

s+1 .

(4) d( f x, f y)≤ a1d( f x,gy)+a2d( f y,gx),

for all x,y ∈ X, where a1,a2 ≥ 0 and a1 +a2 <
2

s2+s .

(5) d( f x, f y)≤ a1d(gx,gy),

for all x,y ∈ X, where 0 < a1 <
1
s .

Then f and g have a unique point of coincidence.Moreover,if ( f ,g) is weakly compatible,then

f and g have a unique common fixed point.

Putting g = iX in Theorem 3.1 and Corollary 3.2, we get the following results.

Corollary 3.3. Let (X ,d,s) be a cone metric type space with coefficient s ≥ 1 and P a normal

cone with normal constant κ .Let f : X → X be a map such that f (X) is a complete subspace of

X. Suppose that one of the following conditions holds:

(1) d( f x, f y)≤ a1d(x,y)+a2d( f x,x)+a3d( f y,y)+a4d( f x,y)+a5d( f y,x),

for all x,y ∈ X, where a1,a2,a3,a4,a5 ≥ 0 with 2sa1 +(s+1)(a2 +a3)+(s2 + s)(a4 +a5)< 2.

(2) d( f x, f y)≤ a1d(x,y)+a2d( f x,x)+a3d( f y,y),

for all x,y ∈ X, where a1,a2,a3 ≥ 0 and 2sa1 +(s+1)(a2 +a3)< 2.

(3) d( f x, f y)≤ a1d(x,y)+a2d( f x,y)+a3d( f y,x),

for all x,y ∈ X, where a1,a2,a3 ≥ 0 and 2sa1 +(s2 + s)(a2 +a3)< 2.

(4) d( f x, f y)≤ a1d( f x,x)+a2d( f y,y),

for all x,y ∈ X, where a1,a2 ≥ 0 and a1 +a2 <
2

s+1 .

(5) d( f x, f y)≤ a1d( f x,y)+a2d( f y,x),

for all x,y ∈ X, where a1,a2 ≥ 0 and a1 +a2 <
2

s2+s .

(6) d( f x, f y)≤ a1d(x,y),

for all x,y ∈ X, where 0 < a1 <
1
s .

Then f has a unique fixed point.

Theorem 3.4. Let(X,d,s) be a cone metric type space with coefficient s ≥ 1 and P a normal

cone with normal constant κ . Suppose the mappings S,T and f are three self-mappings on X,
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satisfy: d(Sx,Ty)≤ a1d( f x, f y)+a2d(Sx, f x)+a3d(Ty, f y)+a4d(Sx, f y)+a5d(Ty, f x)

for all x,y ∈ X, where a1,a2,a3,a4,a5 ≥ 0 with

2sa1 +(s+1)(a2 +a3)+(s2 + s)(a4 +a5)< 2. (3.2)

Also, suppose that S(X)
⋃

T (X)⊆ f (X) and f (X) is a complete subspace of X. Then S,T and

f have a unique point of coincidence.Moreover,if (S, f ) and (T, f ) are weakly compatible,then

S,T and f have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X . Since S(X)
⋃

T (X)⊆ f (X), we can choose a point x1

in X such that Sx0 = f x1. Similarly, choose a point x2 in X such that T x1 = f x2. Continuing this

process, we obtain the sequence {xn} by f x2k+1 = Sx2k, f x2k+2 = T x2k+1, for all k ≥ 0. Then

d( f x2k+1, f x2k+2)≤ a1d( f x2k, f x2k+1)+a2d(Sx2k, f x2k)+a3d(T x2k+1, f x2k+1)

+a4d(Sx2k, f x2k+1)+a5d(T x2k+1, f x2k)

≤ a1d( f x2k, f x2k+1)+a2d( f x2k+1, f x2k)+a3d( f x2k+2, f x2k+1)

+a4d( f x2k+1, f x2k+1)+a5d( f x2k+2, f x2k)

≤ a1d( f x2k, f x2k+1)+a2d( f x2k+1, f x2k)+a3d( f x2k+2, f x2k+1)

+ sa5d( f x2k+2, f x2k+1)+ sa5d( f x2k+1, f x2k),

which implies that

d( f x2k+1, f x2k+2)≤
a1 +a2 + sa5

1−a3− sa5
d( f x2k, f x2k+1).

Similarly, we have

d( f x2k+3, f x2k+2)≤ a1d( f x2k+2, f x2k+1)+a2d(Sx2k+2, f x2k+2)+a3d(T x2k+1, f x2k+1)

+a4d(Sx2k+2, f x2k+1)+a5d(T x2k+1, f x2k+2)

≤ a1d( f x2k+2, f x2k+1)+a2d( f x2k+3, f x2k+2)+a3d( f x2k+2, f x2k+1)

+a4d( f x2k+3, f x2k+1)+a5d( f x2k+2, f x2k+2)

≤ a1d( f x2k+2, f x2k+1)+a2d( f x2k+3, f x2k+2)+a3d( f x2k+2, f x2k+1)

+ sa4d( f x2k+3, f x2k+2)+ sa4d( f x2k+2, f x2k+1).
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Hence, we have

d( f x2k+2, f x2k+3)≤
a1 +a3 + sa4

1−a2− sa4
d( f x2k+1, f x2k+2).

Let

λ =
a1 +a2 + sa5

1−a3− sa5
,µ =

a1 +a3 + sa4

1−a2− sa4
.

By induction, we have

d( f x2k+1, f x2k+2)≤ λd( f x2k, f x2k+1)

≤ λ µd( f x2k−1, f x2k)

≤ λ µλd( f x2k−2, f x2k−1)

≤ · · · ≤ λ (µλ )kd( f x0, f x1)

and

d( f x2k+2, f x2k+3)≤ µd( f x2k+1, f x2k+2)

≤ µλd( f x2k, f x2k+1)

≤ · · · ≤ (µλ )k+1d( f x0, f x1)

for all k ≥ 0. From the condition (2.2), we have λ µ < 1
s2 . Now, for p < q, we have

d( f x2p, f x2q+1)≤ sd( f x2p, f x2p+1)+ s2d( f x2p+1, f x2p+2)+ s3d( f x2p+2, f x2p+3)

+ · · ·+ s2q−2p+1d( f x2q, f x2q+1)

≤ s(λ µ)pd( f x0, f x1)+ s2
λ (λ µ)pd( f x0, f x1)+ s3(λ µ)p+1d( f x0, f x1)

+ · · ·+ s2q−2p+1(λ µ)q+1d( f x0, f x1)

≤ [
s(λ µ)p

1− s2(λ µ)
+

s2λ (λ µ)p

1− s2(λ µ)
]d( f x0, f x1)

≤ (1+ sλ )
s(λ µ)p

1− s2(λ µ)
d( f x0, f x1).

Similarly, we can obtain

d( f x2p, f x2q)≤ (1+ sλ )
s(λ µ)p

1− s2(λ µ)
d( f x0, f x1),
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d( f x2p+1, f x2q)≤ (1+ sµ)
sλ (λ µ)p

1− s2(λ µ)
d( f x0, f x1),

d( f x2p+1, f x2q+1)≤ (1+ sµ)
sλ (λ µ)p

1− s2(λ µ)
d( f x0, f x1).

Hence, for 0 < n < m, there exists p < n < m such that p→ ∞ as n→ ∞, and

d( f xn, f xm)≤max{(1+ sλ )
s(λ µ)p

1− s2(λ µ)
,(1+ sµ)

sλ (λ µ)p

1− s2(λ µ)
}d( f x0, f x1).

Since P is a normal cone with normal constant κ , we have

‖ d( f xn, f xm) ‖≤ κ max{(1+ sλ )
s(λ µ)p

1− s2(λ µ)
,(1+ sµ)

sλ (λ µ)p

1− s2(λ µ)
} ‖ d( f x0, f x1) ‖ .

Since λ µ < 1
s2 , we have if n,m→ ∞. Then

max{(1+ sλ )
s(λ µ)p

1− s2(λ µ)
,(1+ sµ)

sλ (λ µ)p

1− s2(λ µ)
}→ 0.

So d( f xn, f xm)→ θ . Hence, { f xn} is a Cauchy sequence. Since f (X) is complete, there exist

u,v ∈ X such that f xn→ f u = v. Since

d(Su, f u)≤ sd( f u, f x2n)+ sd( f x2n,Su)

= sd( f u, f x2n)+ sd(T x2n−1,Su)

≤ sd( f u, f x2n)+ sa1d( f u, f x2n−1)+ sa2d(Su, f u)+ sa3d(T x2n−1, f x2n−1)

+ sa4d(Su, f x2n−1)+ sa5d(T x2n−1, f u)

≤ sd( f u, f x2n)+ sa1d( f u, f x2n−1)+ sa2d(Su, f u)+ sa3d( f x2n, f x2n−1)

+ sa4d(Su, f x2n−1)+ sa5d( f x2n, f u)

≤ sd( f u, f x2n)+ sa1d( f u, f x2n−1)+ sa2d(Su, f u)+ sa3d( f x2n, f x2n−1)

+ s2a4d(Su, f u)+ s2a4d( f u, f x2n−1)+ sa5d( f x2n, f u),

we find that

d(Su, f u)

≤ 1
1− sa2− s2a4

[sd( f u, f x2n)+ sa1d( f u, f x2n−1)+ sa3d( f x2n, f x2n−1)

+ s2a4d( f u, f x2n−1)+ sa5d( f x2n, f u)].
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Hence, we have

‖ d(Su, f u) ‖

≤ κ

1− sa2− s2a4
‖ sd( f u, f x2n)+ sa1d( f u, f x2n−1)+ sa3d( f x2n, f x2n−1)

+ s2a4d( f u, f x2n−1)+ sa5d( f x2n, f u) ‖ .

If n→∞, then we have ‖ d( f u,Su) ‖= 0. Hence, f u= Su. Similarly, we can show that f u= Tu,

that is, v = f u = Su = Tu. Now we show that S,T and f have a unique point of coincidence.

For this, assume that there exists another point u∗ in X such that f u∗ = Su∗ = Tu∗ = v∗. Then

d(v,v∗) = d(Su,Tu∗)

≤ a1d( f u, f u∗)+a2d(Su, f u)+a3d(Tu∗, f u∗)

+a4d(Su, f u∗)+a5d(Tu∗, f u)

= a1d(v,v∗)+a2d(v,v)+a3d(v∗,v∗)

+a4d(v,v∗)+a5d(v∗,v)

≤ (a1 +a4 +a5)d(v,v∗),

which gives a contraction, Hence, we have v = v∗. If (S, f ) and (T, f ) are weakly compatible,

then Sv = S f u = f Su = f v and T v = T f u = f Tu = f v It implies that Sv = T v = f v. So u = v

by uniqueness. Thus v is the unique common fixed point of S,T and f .

Corollary 3.5. Let (X ,d,s) be a cone metric type space with coefficient s ≥ 1 and P a normal

cone with normal constant κ . Suppose the mappings S,T and f be self-mappings on X,such that

S(X)
⋃

T (X)⊆ f (X) and f (X) is a complete subspace of X. Suppose that one of the following

two conditions holds:

(1) d(Sx,Ty)≤ a1d( f x, f y)+a2d(Sx, f x)+a3d(Ty, f y)

for all x,y ∈ X, where a1,a2,a3 ≥ 0 and 2sa1 +(s+1)(a2 +a3)< 2.

(2) d(Sx,Ty)≤ a1d( f x, f y)+a2d(Sx, f y)+a3d(Ty, f x)

for all x,y ∈ X, where a1,a2,a3 ≥ 0 and 2sa1 +(s2 + s)(a2 +a3)< 2.

(3) d(Sx,Ty)≤ a1d(Sx, f x)+a2d(Ty, f y)

for all x,y ∈ X, where a1,a2 ≥ 0 and a1 +a2 <
2

s+1 .
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(4) d(Sx,Ty)≤ a1d(Sx, f y)+a2d(Ty, f x)

for all x,y ∈ X, where a1,a2 ≥ 0 and a1 +a2 <
2

s2+s .

(5) d(Sx,Ty)≤ a1d( f x, f y)

for all x,y ∈ X, where a1 ≥ 0 and a1 <
1
s .

Then S,T and f have a unique point of coincidence.Moreover,if (S, f ) and (T, f ) are weakly

compatible, then S,T and f have a unique common fixed point.

Theorem 3.6. Let (X ,d,s) be a cone metric type space with coefficient s ≥ 1 and P a normal

cone with normal constant κ .Suppose the mappings f ,g,S and T be self-mappings on X, satis-

fying:

d( f x,gy)≤ a1d(Sx,Ty)+a2d( f x,Sx)+a3d(gy,Ty)+a4d( f x,Ty)+a5d(gy,Sx)

for all x,y ∈ X, where a1,a2,a3,a4,a5 ≥ 0 with

2sa1 +(s+1)(a2 +a3)+(s2 + s)(a4 +a5)< 2 (3.3).

Also, suppose that f (X)⊂ T (X),g(X)⊂ S(X) and one of f (X),g(X),S(X),T (X) is a complete

subspace of X. Then ( f ,S) and (g,T ) have a common point of coincidence.Moreover,if ( f ,S)

and (g,T ) are weakly compatible, then f ,g,S and T have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X . Since f (X) ⊂ T (X),g(X) ⊂ S(X), we can choose a

point x1 in X such that f x0 = T x1. Similarly, choose a point x2 in X such that gx1 = Sx2. Con-

tinuing this process, we obtain the sequence {xn} and {yn} by y2n−1 = f x2n−2 = T x2n−1,y2n =

gx2n−1 = Sx2n, for all n≥ 0. Then

d(y2n−1,y2n) = d( f x2n−2,gx2n−1)

≤ a1d(Sx2n−2,T x2n−1)+a2d( f x2n−2,Sx2n−2)+a3d(gx2n−1,T x2n−1)

+a4d( f x2n−2,T x2n−1)+a5d(gx2n−1,Sx2n−2)

≤ a1d(y2n−2,y2n−1)+a2d(y2n−1,y2n−2)+a3d(y2n,y2n−1)

+a4d(y2n−1,y2n−1)+a5d(y2n,y2n−2)

≤ a1d(y2n−2,y2n−1)+a2d(y2n−1,y2n−2)+a3d(y2n,y2n−1)

+ sa5d(y2n,y2n−1)+ sa5d(y2n−1,y2n−2),
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which implies that d(y2n−1,y2n)≤ a1+a2+sa5
1−a3−sa5

d(y2n−2,y2n−1). Similarly we can show that

d(y2n,y2n+1)≤
a1 +a3 + sa4

1−a2− sa4
d(y2n−1,y2n).

Letting λ = max{a1+a2+sa5
1−a3−sa5

, a1+a3+sa4
1−a2−sa4

}, we know that 0 < λ < 1
s . Therefore d(yn,yn+1) ≤

λd(yn−1,yn)≤ λ nd(y0,y1), for all n ∈ N. Now, for m > n we have

d(yn,ym)≤ sd(yn,yn+1)+ s2d(yn+1,yn+2)+ · · ·+ sm−n−1d(ym−2,ym−1)

+ sm−nd(ym−1,ym)

≤ (sλ
n + s2

λ
n+1 + · · ·+ s

m−n−1λ m−2+sm−nλ m−1
)d(y0,y1)

≤ sλ n

1− sλ
d(y0,y1)

Since P is a normal cone with normal constant κ , we have ‖ d(yn,ym) ‖≤ κ
sλ n

1−sλ
‖ d(y0,y1) ‖

Thus, if n,m→ ∞, then d(yn,ym)→ 0. Hence, {yn} is a Cauchy sequence. Suppose that S(X)

is complete. Then there exist u,v ∈ X such that Sx2n = y2n→ v = Su. We claim that f u = v. For

this end, consider

d( f u,v)≤ sd( f u,gx2n−1)+ sd(gx2n−1,v)

≤ sa1d(Su,T x2n−1)+ sa2d( f u,Su)+ sa3d(gx2n−1,T x2n−1)

+ sa4d( f u,T x2n−1)+ sa5d(gx2n−1,Su)+ sd(gx2n−1,v)

= sa1d(v,y2n−1)+ sa2d( f u,v)+ sa3d(y2n,y2n−1)

+ sa4d( f u,y2n−1)+ sa5d(y2n,v)+ sd(y2n,v)

≤ sa1d(v,y2n−1)+ sa2d( f u,v)+ sa3d(y2n,y2n−1)

+ s2a4d( f u,v)+ s2a4d(v,y2n−1)+ sa5d(y2n,v)+ sd(y2n,v).

It implies that

d( f u,v)

≤ 1
1− sa2− s2a4

[sa1d(v,y2n−1)+ sa3d(y2n,y2n−1)

+ s2a4d(v,y2n−1)+(sa5 + s)d(y2n,v)].



COINCIDENCE POINT AND COMMON FIXED POINT THEOREMS 355

Hence, we have

‖ d( f u,v) ‖

≤ κ

1− sa2− s2a4
‖ sa1d(v,y2n−1)+ sa3d(y2n,y2n−1)

+ s2a4d(v,y2n−1)+(sa5 + s)d(y2n,v) ‖ .

If n→ ∞, then we have ‖ d( f u,v) ‖= 0. Hence, f u = v = Su. Since v ∈ f (X) ⊂ T (X), there

exists a point w ∈ X such that Tw = v. Now we will show that gw = v. Since

d(gw,v)≤ sd( f x2n,gw)+ sd( f x2n,v)

≤ sa1d(Sx2n,Tw)+ sa2d( f x2n,Sx2n)+ sa3d(gw,Tw)

+ sa4d( f x2n,Tw)+ sa5d(gw,Sx2n)+ sd( f x2n,v)

= sa1d(y2n,v)+ sa2d(y2n+1,y2n)+ sa3d(gw,v)

+ sa4d(y2n+1,v)+ sa5d(gw,y2n)+ sd(y2n+1,v)

≤ sa1d(y2n,v)+ sa2d(y2n+1,y2n)+ sa3d(gw,v)

+ sa4d(y2n+1,v)+ s2a5d(y2n,v)+ s2a5d(gw,v)+ sd(y2n+1,v).

It implies that

d(gw,v)

≤ 1
1− sa3− s2a5

[sa1d(y2n,v)+ sa2d(y2n,y2n+1)

+(sa4 + s)d(y2n+1,v)+ s2a5d(y2n,v)].

Hence, we have

‖ d(gw,v) ‖

≤ κ

1− sa3− s2a5
‖ sa1d(v,y2n)+ sa2d(y2n,y2n+1)

+(sa4 + s)d(v,y2n+1)+ s2a5d(y2n,v) ‖ .

Letting n→ ∞ in the above equality, we get ‖ d(gw,v) ‖= 0. Hence, gw = v = Tw. Thus ( f ,S)

and (g,T ) have a common point of coincidence in X . Now if ( f ,S) and (g,T ) are weakly
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compatible, then f v = f Su = S f u = Sv = w1 (say) and gv = gTw = T gw = T v = w2 (say).

Since

d(w1,w2) = d( f v,gv)

≤ a1d(Sv,T v)+a2d( f v,Sv)+a3d(gv,T v)+a4d( f v,T v)+a5d(gv,Sv)

≤ a1d(w1,w2)+a2d(w1,w1)+a3d(w2,w2)+a4d(w1,w2)+a5d(w2,w1)

≤ (a1 +a4 +a5)d(w1,w2),

we find a contradiction. Thus we have d(w1,w2) = 0, that is, w1 = w2. Hence, we have f v =

gv = Sv = T v. Now we shall show that f v = v. Since

d( f v,v) = d( f v,gw)

≤ a1d(Sv,Tw)+a2d( f v,Sv)+a3d(gw,Tw)+a4d( f v,Tw)+a5d(gw,Sv)

≤ a1d( f v,v)+a2d( f v, f v)+a3d(v,v)+a4d( f v,v)+a5d(v, f v)

≤ (a1 +a4 +a5)d( f v,v),

which is a contradiction. Thus we have f v = v, and v is a common fixed point of f ,g,S and T .

Next we prove the uniqueness. Let v∗ be another fixed point. Then

d(v,v∗) = d( f v,gv∗)

≤ a1d(Sv,T v∗)+a2d( f v,Sv)+a3d(gv∗,T v∗)+a4d( f v,T v∗)+a5d(gv∗,Sv)

≤ a1d(v,v∗)+a2d(v,v)+a3d(v∗,v∗)+a4d(v,v∗)+a5d(v∗,v)

≤ (a1 +a4 +a5)d(v,v∗),

which is a contradiction. Thus we have v = v∗. This completes the proof.

Corollary 3.7. Let (X ,d,s) be a cone metric type space with coefficient s ≥ 1 and P a normal

cone with normal constant κ .Suppose the mappings f ,g,S and T be self-mappings on X, such

that f (X) ⊂ T (X),g(X) ⊂ S(X) and one of f (X),g(X),S(X),T (X) is a complete subspace of

X. Suppose that one of the following conditions holds:

(1) d( f x,gy)≤ a1d(Sx,Ty)+a2d( f x,Sx)+a3d(gy,Ty),

where a1,a2,a3 ≥ 0 and 2sa1 +(s+1)(a2 +a3)< 2.
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(2) d( f x,gy)≤ a1d(Sx,Ty)+a2d( f x,Ty)+a3d(gy,Sx),

where a1,a2,a3 ≥ 0 and 2sa1 +(s2 + s)(a2 +a3)< 2.

(3) d( f x,gy)≤ a1d( f x,Sx)+a2d(gy,Ty),

where a1,a2,a3 ≥ 0 and a1 +a2 <
2

s+1 .

(4)d( f x,gy)≤ a1d( f x,Ty)+a2d(gy,Sx),

where a1,a2,a3 ≥ 0 and a1 +a2 <
2

s2+s .

(5) d( f x,gy)≤ a1d(Sx,Ty)

for all x,y ∈ X, where a1 ≥ 0 and a1 <
1
s .

Then ( f ,S) and (g,T ) have a common point of coincidence. Moreover, if ( f ,S) and (g,T )

are weakly compatible, then f ,g,S and T have a unique common fixed point.
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