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1. Introduction

The relationship between the convergence of a sequence of self mappings {Tn} of a

metric (resp. topological space) X and their fixed points, known as the stability (or

continuity) of fixed points, has been widely studied in fixed point theory in various settings

(cf. [1-5], [13-20], [22-28]) ). The origin of this problem seems into a classical result of

Bonsall [5] (see also Sonnenschein [28]) for contraction mappings. Subsequent results by

Nadler Jr. [20] and others address mainly the problem of replacing the completeness of the
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space X by the existence of fixed points (which was ensured otherwise by the completeness

of X) and various relaxations on the contraction constant. Recently, in attempt to provide

the localized versions of certain stability results of Bonsall [5] and Nadler [20], significant

weakenings were made to the well-known notions of pointwise and uniform convergence

by Barbet and Nachi [4]. In addition, these notions have been successfully utilized by

them to obtain certain stability results in a metric space. These results have been further

generalized by Mishra and Kalinde [17], Mishra, Singh and Pant [18] and Mishra, Singh

and Stofile [19]. The purpose of this paper is to extend the results of Barbet and Nachi

[4] to 2-metric spaces due to Gähler [6]. We note that the results obtained here in may

be considered as significant in the sense that these spaces differ substantially in terms of

their topological properties from those of metric spaces (see Remark 1.4).

We first recall some basic concepts on 2-metric spaces. For details we refer to Gähler

[6] and Iséki [7-9].

Definition 1.1. Let X be a nonempty set, consisting of at least three points. A 2-metric

on X is a real-valued function ρ on X ×X ×X which satisfies the following conditions:

(a): To each pair of distinct points x, y ∈ X there exists a point a ∈ X such that

ρ(x, y, a) 6= 0.

(b): If at least two of x, y, a are equal then ρ(x, y, a) = 0.

(c): ρ(x, y, a) = ρ(y, a, x) = ρ(x, a, y) for all x, y, a ∈ X.

(d): ρ(x, y, a) ≤ ρ(x, y, z) + ρ(x, z, a) + ρ(z, y, a) for all x, y, z, a ∈ X.

It is easily seen that ρ is non-negative. The pair (X, ρ) is called a 2-metric space.

Definition 1.2. A sequence { xn} in a 2-metric space (X, ρ) is said to be convergent

with limit z ∈ X if

lim
n→∞

ρ(xn, z, a) = 0 for all a ∈ X.

Notice that if the sequence { xn} converges to z, then

lim
n→∞

ρ(xn, a, b) = ρ(z, a, b) for all a, b ∈ X.
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A sequence { xn } in a 2-metric space (X, ρ) is said to be a Cauchy sequence if

lim
m,n→∞

ρ(xm, xn, a) = 0 for all a ∈ X.

A 2-metric space (X, ρ) is said to be complete if every Cauchy sequence in X is con-

vergent.

Definition 1.3. A 2-metric space (X, ρ) is said to be bounded if there is a constant K

such that ρ(a, b, c) ≤ K for all a, b, c ∈ X.

Remark 1.4. The following remarks capture some distinct features of topological prop-

erties of 2-metric spaces which differ from those of metric spaces.

(i): Given any metric space which consists of more than two points, there always

exists a 2-metric compatible with the topology of the space. But the converse is

not always true as one can find a 2-metric space which does not have a countable

basis associated with one of its arguments (see Gähler [6, page 123]).

(ii): It is known that a 2-metric ρ is continuous in any one of its arguments . Gen-

erally, we cannot however assert the continuity of ρ in all the three arguments.

But if it is continuous in any two arguments, then it is continuous in all the three

arguments (see Gäher [6, Theorem 20 and example on page 145]).

(iii): In a complete 2-metric space a convergent sequence need not be Cauchy (see

Naidu and Prasad [21, Example 0.1]).

(iv): In a 2-mertic space (X, ρ) every convergent sequence is Cauchy whenever ρ is

continuous. However, the converse need not be true (see Naidu and Prasad [21,

Example 0.2]).

Definition 1.5. Let (X, ρ) be a 2-metric space. A mapping T : X → X is called

k-Lipschitz (or simply Lipschitz ) if there exists a real k > 0 such that

ρ(Tx, Ty, a) ≤ kρ(x, y, a) for all x, y, a ∈ X.

In case the above condition is satisfied for k ∈ (0, 1), T is called k-contraction (or

simply contraction).(cf. [10], [12]).
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Definition 1.6. Let (X, ρ) be a 2-metric space, S, T : Y ⊆ X → X. Then the pair (S, T )

will be called J-Lipschitz (Jungck Lipschitz) if there exists a constant µ > 0 such that

ρ(Sx, Sy, a) ≤ µρ(Tx, Ty, a) for all x, y, a ∈ Y.

The pair (S, T ) is generally called Jungck contraction (or simply J−contraction) when

µ ∈ (0, 1) and the constant µ in this case is a called Jungck constant (see, for instance,

[24]). Indeed, J-contractions and their generalized versions became popular because of the

constructive approach of proof adopted by Jungck [11]. Now onwards, a J-Lpschitz (resp.

J-contraction) with Jungck constant µ will be called J-Lipschitz (resp. J-contraction) with

constant µ (cf. [19] for details).

Throughout, (X, ρ) will denote a 2-metric space with ρ continuous, N, the set of

naturals and N = N ∪ {∞}.

2. (G)-convergence and stability

Definition 2.1. Let (X, ρ) be a 2-metric space, {Xn}n∈N a sequence of nonempty subsets

of X and {Sn : Xn → X}n∈N a sequence of mappings. Then {Sn}n∈N is said to converge

(G)-pointwise to a map S∞: X∞ → X, or equivalently {Sn}n∈N satisfies the property

(G), if the following condition holds:

(G): Gr(S∞) ⊂ lim inf Gr(Sn) : for every x ∈ X∞, there exists a sequence {xn} in

Π
n∈N

Xn such that for any a ∈ X,

lim
n
ρ(xn, x, a) = 0 and lim

n
ρ(Snxn, S∞x, a) = 0,

where Gr(T ) stands for the graph of T .

In view of Barbet and Nachi [4], we note that:

(i): A (G)-limit need not be unique.

(ii): The property (G) is more general than pointwise convergence. However, the

two notions are equivalent provided the sequence {Sn}n∈N is equicontinuous when

the domains of definitions are identical.
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The following theorem gives a sufficient condition for the existence of a unique (G)-limit.

Theorem 2.2. Let (X, ρ) be a 2-metric space, {Xn}n∈N a family of nonempty subsets of

X and {Sn : Xn → X}
n∈ N

a sequence of J-contraction mappings relative to a continuous

mapping T : X → X with constant µ. If S∞ : X∞ → X is a (G)-limit of the sequence

{Sn}, then S∞ is unique.

Proof. Suppose that S∞, S
∗
∞ : X∞ → X are (G)-limit maps of the sequence {Sn}. Then

for every x ∈ X∞, there exist sequences {xn} and {yn} in Π
n∈N
Xn such that for any a ∈ X,

lim
n
ρ(xn, x, a) = 0 and lim

n
ρ(Snxn, S∞x, a) = 0,

lim
n
ρ(yn, x, a) = 0 and lim

n
ρ(Snyn, S

∗
∞x, a) = 0.

Further, since Sn is a J-contraction for each n ∈ N, there exists a constant µ ∈ (0, 1)

such that for any a ∈ X,

ρ(Snxn, Snyn, a) ≤ µρ(Txn, T yn, a).

Therefore for any n ∈ N and a ∈ X,

ρ(S∞x, S
∗
∞x, a) ≤ ρ(S∞x, S

∗
∞x, Snxn) + ρ(S∞x, Snxn, a) + ρ(Snxn, S

∗
∞x, a)

≤ ρ(S∞x, S
∗
∞x, Snxn) + ρ(S∞x, Snxn, Snyn) + ρ(S∞x, Snyn, a)

+ ρ(Snyn, Snxn, a) + ρ(Snxn, S
∗
∞x, a)

≤ ρ(S∞x, S
∗
∞x, Snxn) + µρ(S∞x, Txn, T yn) + ρ(S∞x, Snyn, a)

+ ρ(Snyn, Snxn, a) + ρ(Snxn, S
∗
∞x, a)

≤ ρ(S∞x, S
∗
∞x, Snxn) + µ[ρ(S∞x, Txn, Tx) + ρ(S∞x, Tx, Tyn)

+ ρ(Tx, Txn, T yn)] + ρ(S∞x, Snyn, a) + ρ(Snyn, Snxn, a)

+ ρ(Snxn, S
∗
∞x, a).

Since T is continuous and xn → x and yn → x as n → ∞, it follows that Txn → Tx,

Tyn → Tx. Hence the R.H.S. of the above expression tends to 0 as n → ∞. Therefore

S∞x = S∗∞x.�

Corollary 2.3. Theorem 2.2 with J-contraction replaced by J-Lipschitz.
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The following result is an extension of Barbet and Nachi [4, Proposition 1] to 2-metric

spaces (see [18, Proposition 2.2]).

Corollary 2.4. Let (X, ρ) be a 2-metric space,{Xn}n∈N a family of nonempty subsets of

X and Sn : Xn → X a k− contraction (resp. k-Lipschitz) mapping for each n ∈ N. If

S∞ : X∞ → X is a (G)−limit of {Sn}n∈N , then S∞ is unique.

Proof. It comes from Theorem 2.2 when T is the identity mapping and µ ∈ (0, 1) (resp.

µ > 0).�

Now we present our first stability result.

Theorem 2.5. Let (X, ρ) be a 2-metric space, {Xn}n∈ N a family of nonempty subsets

of X and {Sn, Tn : Xn → X}n∈ N two families of mappings, each satisfying the property

(G) and such that for all n ∈ N, the pair (Sn, Tn) is a J-contraction with constant µ and

Tn continuous. If for all n ∈ N, zn is a common fixed point of Sn and Tn, then the sequence

{zn} converges to z∞.

Proof. Since zn is a common fixed point of Sn and Tn for each n ∈ N, the property (G)

holds and z∞ ∈ X∞, there exists a sequence {yn} with yn ∈ Xn (for all n ∈ N) such that

for any a ∈ X,

lim
n
ρ(yn, z∞, a) = 0, lim

n
ρ(Snyn, S∞z∞, a) = 0 and lim

n
ρ(Tnyn, T∞z∞, a) = 0.

Using the fact that the pair (Sn, Tn) is a J-contraction for all n ∈ N, we have for any

a ∈ X,

ρ(zn, z∞, a) = ρ(Snzn, S∞z∞, a)

≤ ρ(Snzn, S∞z∞, Snyn) + ρ(Snzn, Snyn, a) + ρ(Snyn, S∞z∞, a)

≤ ρ(Snzn, S∞z∞, Snyn) + µρ(Tnzn, Tnyn, a) + ρ(Snyn, S∞z∞, a)

≤ ρ(Snzn, S∞z∞, Snyn) + ρ(Snyn, S∞z∞, a)

+ µ[ρ(Tnzn, Tnyn, T∞z∞) + ρ(Tnzn, T∞z∞, a) + ρ(T∞z∞, Tnyn, a)].

The R.H.S. of the above expression tends to 0 as n→∞ and the conclusion follows.�
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When for each n ∈ N, Tn is an identity mapping on Xn in Theorem 2.5, we have the

following result as an extension of Barbet and Nachi [4, Theorem 2] to 2-metric spaces

(see [18, Theorem 2.3]).

Corollary 2.6. Let (X, ρ) be a 2-metric space, {Xn}n∈N a family of nonempty subsets

of X and {Sn : Xn → X}n∈N a family of mappings satisfying the property (G) and Sn is

a k− contraction for each n ∈ N. If xn is a fixed point of Sn for each n ∈ N, then the

sequence {xn}n∈N converges to x∞.

The following result gives a comparison with Rhoades [22, Theorem 2] and presents a

2-metric space version of Bonsall [5, Theorem 1.2, page 6].

Corollary 2.7. Let X be a complete 2-metric space and { Sn : X → X} n∈N a family of

contraction mappings with the same Lipschitz constant k < 1 and such that the sequence

{Sn} n∈N converges pointwise to S∞. Then, for all n ∈ N, Tn has a unique fixed point xn

and the sequence { xn} n∈N converges to x∞.

Proof. This comes from Corollary 2.6 and the fact that X is complete.�

Again, when Xn = X, for all n ∈ N, we obtain, as a consequence of Theorem 2.5 the

following result.

Corollary 2.8. Let (X, ρ) be a 2-metric space and Sn, Tn : X → X be such that the

pair (Sn, Tn) is a J-contraction with constant µ and Tn continuous, and with at least one

common fixed point zn for all n ∈ N. If the sequences {Sn} and {Tn} converge pointwise

respectively to S∞, T∞ : X → X, then the sequence {zn} converges to z∞.

Notice that Corollary 2.8 presents an extension of a result of Singh [24, Theorem 1] to

2-metric spaces.

We remark that under the conditions of Theorem 2.5 the pair (S∞, T∞) of (G)-limit

maps is also a J-contraction. Indeed, we have the following stability result.

Theorem 2.9. Let (X, ρ) be a 2-metric space, {Xn}n∈N a family of nonempty subsets of

X and {Sn, Tn : Xn → X}n∈N two families of mappings, each satisfying the property (G)

and such that for all n ∈ N, the pair (Sn, Tn) is a J-contraction with constant {µn}n∈N ,
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a bounded (resp. convergent) sequence and Tn continuous. Then the pair (S∞, T∞) is a

J-contraction with constant µ = supn∈N µn ( resp. µ = limn µn).

Proof. Let x, y ∈ X∞. Then by the property (G), there exist two sequences {xn} and

{yn} in Π
n∈N

Xn such that:

lim
n
ρ (xn, x, a) = 0, lim

n
ρ (Snxn, S∞x, a) = 0, lim

n
ρ (Tnxn, T∞x, a) = 0,

lim
n
ρ (yn, y, a) = 0, lim

n
ρ (Snyn, S∞y, a) = 0, lim

n
ρ (Tnyn, T∞y, a) = 0

for all a ∈ X.

Since for any n ∈ N and each a ∈ X,

lim sup
n
µnρ(Tnxn, Tnyn, a) ≤ µρ(T∞x, T∞y, a),

the above inequality yields

ρ(S∞x, S∞y, a) ≤ µρ(T∞x, T∞y, a),

and the conclusion follows.�

Corollary 2.10. Theorem 2.9 with J-contraction replaced by J- Lipscitz.

When for each n ∈ N, Tn is an identity mapping in Theorem 2.9, we have the following

extension of Barbet and Nachi [4, Proposition 4] (see [18, Proposition 2.7]).

Corollary 2.11. Let X be a 2-metric space, { Xn} n∈N a family of nonempty subsets of

X and {Sn : Xn → X} n∈N a family of mappings, satisfying the property (G) and such

that, for any n ∈ N, Sn is J-Lipschitz (resp. J-contraction) with constant { kn} n∈N a

bounded (resp. convergent) sequence. Then S∞ is J-Lipschitz (resp. J-contraction) with

constant k := supn∈N kn (resp. k := lim kn).

The existence of a fixed point for a (G)-limit mapping is characterized by the following

result when it is a contraction.

Proposition 2.12. Let X be a 2-metric space, {Xn}n∈N a family of nonempty subsets

of X and {Sn, Tn : Xn → X}n∈N two families of mappings, each satisfying the property

(G) and such that, for all n ∈ N, the pair (Sn, Tn) is a J-contraction with constant µ and
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Tn continuous. Assume that, for any n ∈ N, xn is a common fixed point of Sn and Tn.

Then:

S∞ and T∞ admit a common fixed point ⇔ {xn} converges and lim
n
xn ∈ X∞

⇔ {xn} admits a subsequence converging to a point of X∞.

Proof. In view of Theorem 2.9, we only have to prove the sufficient condition. Let {xnj
}

be a subsequence of {xn} such that limj xnj
= x∞ ∈ X∞. By (G), there exists a sequence

{yn} in Π
n∈N

Xn such that

lim
n
ρ(yn, z∞, a) = 0, lim

n
ρ(Snyn, S∞x∞, a) = 0 and lim

n
ρ(Tnyn, T∞x∞, a) = 0 for all a ∈ X.

First we show that S∞x∞ = x∞. For any a ∈ X and n ∈ N, we have

ρ(x∞, S∞x∞, a) ≤ ρ(x∞, xnj
, a) + ρ(Snj

xnj
, S∞x∞, a) + ρ(x∞, S∞x∞, Snj

xnj
)

≤ ρ(x∞, xnj
, a) + ρ(Snj

xnj
, S∞x∞, Snj

ynj
) +

ρ(Snj
xnj

, Snj
ynj

, a) + ρ(Snj
ynj
, S∞x∞, a)

+ρ(x∞, S∞x∞, Snj
xnj

)

≤ ρ(x∞, xnj
, a) + ρ(Snj

xnj
, S∞x∞, Snj

ynj
) + µρ(Tnj

xnj
, Tnj

ynj
, a)

+ ρ(Snj
ynj

, S∞x∞, a) + ρ(x∞, S∞x∞, Snj
xnj

).

The R.H.S. of the above expression tends to zero as n→∞ and hence S∞x∞ = x∞.

Next, by the triangle inequality we have

ρ(x∞, T∞x∞, a) ≤ ρ(x∞, xnj
, a) + ρ(Tnj

xnj
, T∞x∞, a) + ρ(x∞, T∞x∞, Tnj

xnj
).

The R.H.S. of the above expression tends to zero as n → ∞ and hence T∞x∞ = x∞.

Therefore S∞x∞ = T∞x∞ = x∞ and x∞ is a common fixed point of S∞ and T∞.�

Remark 2.13. Under the assumptions of Proposition 2.12 and if
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(i): lim inf Xn ⊂ X∞ (i.e., the limit of any convergent sequence {xn} in
∏
n∈N

Xn is in

X∞), then:

S∞ and T∞ admit a common fixed point ⇔{xn} converges.

(ii): lim supXn ⊂ X∞ (i.e., the cluster point of any sequence {xn} in
∏
n∈N

Xn is in

X∞ ) then:

S∞ and T∞ admit a common fixed point⇔{xn} admits a convergent subsequence.

Under a compactness assumptions, we have the following.

Theorem 2.14. Let {Xn}n∈N be a family of nonempty subsets of a 2-metric space,

(X, ρ) {Sn, Tn : Xn → X}n∈N two families of mappings, each satisfying the property (G)

and such that, for any n ∈ N, the pair (Sn, Tn) is a J-contraction with constant µ and

Tn continuous. Assume that, lim supXn ⊂ X∞ and ∪
n∈N

Xn is relatively compact. If for

any n ∈ N, xn is a common fixed point of Sn and Tn, then the pair (S∞, T∞) of (G)-

limit mappings of Sn and Tn admits a common fixed point x∞ and the sequence {xn}n∈N

converges to x∞.

Proof. Let {xn}n∈N be the common fixed point of Sn and Tn. Then by the compactness

assumption, {xn}n∈N has a convergent subsequence {xnj
}. Now, by Remark 2.13, S∞ and

T∞ admit a common fixed point x∞ and by Theorem 2.5 {xn}n∈N converges to x∞.�

Remark 2.15. By choosing Xn and Tn suitably in Proposition 2.12 and Theorem 2.14,

we obtain the extensions of the corresponding results of Barbet and Nachi [4, Corollary

6 and Theorem 7] (see [18, Corollary 2.5 and Theorem 2.10]).

We now introduce another notion of convergence which is weaker than (G)-convergence.

Definition 2.16. Let (X, ρ) be a 2-metrc space, {Xn}n∈N a sequence of nonempty subsets

of X and {Sn : Xn → X}n∈N a sequence of mappings. Then {Sn}n∈N is said to converge

(G−) to a mapping S∞: X∞ → X, or equivalently {Sn}n∈N satisfies the property (G−), if

the following condition holds:
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(G−): Gr(T∞) ⊂ lim supGr(Tn) : for all z ∈ X∞, there exists a sequence {xn}n∈N
in
∏
n∈N

Xn, and which has a subsequence
{
xnj

}
such that

lim
j
ρ(xnj

, z, a) = 0 and lim
j
ρ(Tnj

xnj
, T∞z, a) = 0 for all a ∈ X.

We shall establish in the next result that a fixed point of a (G−)-limit map is a cluster

point of the sequence of fixed points associated with {Tn} .

Theorem 2.17. Let {Xn} be a family of nonempty subsets of a 2-metric space (X, ρ)

and {Sn, Tn : Xn → X}n∈N two families of J-contraction mappings with constant µ and

Tn continuous, each satisfying the property (G−) . If, for any n ∈N, xn is a common fixed

point of Sn and Tn, then x∞ is a cluster point of the sequence {xn}n∈N.

Proof. By the property (G−), there exists a sequence {yn} in
∏
n

Xn which has a subse-

quence {ynj
} such that:

lim
j
ρ(ynj

, x∞, a) = 0, lim
j
ρ(Snj

ynj
, S∞x∞, a) = 0, and lim

j
ρ(Tnj

ynj
, T∞x∞, a) = 0 for all a ∈ X.

Since the pair (Snj
, Tnj

) is a J-contraction for each j ∈ N, for any a ∈ X we have

ρ(xnj
, x∞, a) = ρ(Snj

xnj
, S∞x∞, a)

≤ ρ(Snj
xnj

, Snj
ynj

, a) + ρ(Snj
ynj

, S∞x∞, a) + ρ(xnj
, S∞x∞, Snj

ynj
)

≤ µρ(Tnj
xnj

, Tnj
ynj

, a) + ρ(Snj
ynj

, S∞x∞, a) + ρ(xnj
, S∞x∞, Snj

ynj
)

≤ µ[ρ(Tnj
xnj

, Tnj
ynj

, x∞) + ρ(Tnj
xnj

, Tnj
x∞, a) + ρ(Tnj

x∞, Tnj
ynj

, a)]

+ ρ(Snj
ynj

, S∞x∞, a) + ρ(xnj
, S∞x∞, Snj

ynj
)

The R.H.S. of the above expression tends to zero as j → ∞ and hence {xnj
} converges

to x∞, the common fixed point of S∞ and T∞.�

When for all n ∈ N, Xn = X and Tn is an identity mapping, we get the following

analogue of Barbet and Nachi [4, Theorem 8] to 2-metric spaces (see [18, Theorem 2.12]).

Corollary 2.18. Let {Xn} be a family of nonempty subsets of a 2-metric space (X, ρ) and

{Sn : Xn → X}n∈N a family of k-contraction mappings satisfying the property (G−) . If,

for any n ∈N, xn is a fixed point of Sn, then x∞ is a cluster point of the sequence {xn}n∈N.
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3. (H)-convergence and Stability

Definition 3.1. Let (X, ρ) be a 2-metric space, {Xn}n∈ N a family of nonempty subsets

of X and {Sn : Xn → X}n∈N a sequence of mappings. Then S∞ is called an (H)−limit of

the sequence {Sn}n∈N or, equivalently {Sn}n∈N satisfies the property (H) if the following

condition holds:

(H): For all sequences {xn} in Π
n∈ N

Xn, there exists a sequence {yn} in X∞ such that

for any a ∈ X,

lim
n
ρ(xn, yn, a) = 0 and lim

n
ρ(Snxn, Snyn, a) = 0.

In case X is a metric space, we get the corresponding definitions due to Barbet and

Nachi [4]. In view of [4] we note that:

(a): A (G)-limit map is not necessarily an (H)-limit.

(b): If {Sn}n∈N converges uniformly to S∞ on a common domain Y , then S∞ is an

(H)-limit of {Sn} .

(c): The converse of (b) holds only when S∞ is uniformly continuous on Y.

For details and examples we again refer to Barbet and Nachi [4, page 56].

The following theorem presents another stability result.

Theorem 3.2. Let (X, ρ) be a 2-metric space, {Xn}n∈N a family of nonempty subsets

of X and let {Sn, Tn : Xn → X}n∈N be two families of mappings, each satisfying the

property (H). Further, let the pair (S∞, T∞) be a J-contraction with constant µ∞ and T∞

continuous. If, for any n ∈ N, zn is a common fixed point of Sn and Tn, then the sequence

{zn} converges to z∞.

Proof. The property (H) implies that, there exists a sequence {yn} in X∞ such that for

any a ∈ X,

lim
n
ρ(zn, yn) = 0, lim

n
ρ(Snzn, S∞yn, a) = 0 and lim

n
ρ(Tnzn, T∞yn, a) = 0.



76 S. N. MISHRA1,∗, S.L. SINGH2, RAJENDRA PANT1 AND S. STOFILE1

Then

ρ(zn, z∞, a) = ρ(Snzn, S∞z∞, a)

≤ ρ(Snzn, S∞z∞, S∞yn) + ρ(Snzn, S∞yn, a) + ρ(S∞yn, S∞z∞, a)

≤ ρ(Snzn, S∞z∞, S∞yn) + ρ(Snzn, S∞yn, a) + µ∞ρ(T∞yn, T∞z∞, a)

≤ ρ(Snzn, S∞z∞, S∞yn) + ρ(Snzn, S∞yn, a)

+ µ∞[ρ(T∞yn, T∞z∞, Tnzn) + ρ(T∞yn, Tnzn, a) + ρ(Tnzn, T∞z∞, a)].

Since the right hand side of the above inequality tends to 0 as n → ∞, we deduce that

zn → z∞ as n→∞.�

The following corollary is an extension of Barbet and Nachi [4, Theorem 11] to 2-metric

spaces (see [18, Theorem 3.4]).

Corollary 3.3. Let (X, ρ) be a 2-metric space, {Xn}n∈N a family of nonempty subsets

of X and {Sn : Xn → X}n∈N a family of mappings satisfying the property (H) and such

that S∞ is a k∞-contraction. If, for any n ∈ N, xn is a fixed point of Sn then the sequence

{xn}n∈N converges to x∞.

Proof. It comes from Theorem 3.2 when for all n ∈ N, Tn is an identity mapping.�

When Xn = X, for all n ∈ N in Corollary 3.3, we get a special case of Rhoades [22,

Theorem 3] which in turn presents a 2−metric space version of Nadler [20, Theorem 1].

Corollary 3.4. Let (X, ρ) be a 2-metric space, {Sn : X → X}n∈N a sequence of mappings

which converges uniformly to a contraction mapping S∞ : X → X. If, for any n ∈N, xn

is a fixed point of Tn then the sequence {xn}n∈N converges to x∞.
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