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1. Introduction 

Recently, Huang and Zhang [1] have generalized the concept of a metric space, replacing the set 

of real numbers by an ordered Banach space and obtained some fixed point theorems for 

mapping satisfying different contractive conditions. Subsequently many authors have studied the 

strong convergence to a fixed point with contractive constant in Cone metric space, see 

[2],[8],[9],[10] and [11].  Seong Hoon Cho and Mi Sun Kim [6] have proved certain fixed point 

theorems by using multivalued mapping in the setting of contractive constant in metric spaces. In 

this paper, we obtain common fixed point for a pair of multivalued maps satisfying a generalized 

contractive type conditions in Cone metric spaces. 

 Let 𝐸 be a Banach space and a subset 𝑃 of 𝐸 is said to be a cone if it satisfies that following 

conditions, 

i) 𝑃 is closed, non-empty and 𝑃 ≠ {0}; 

ii) 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃  for all 𝑥, 𝑦 ∈ 𝑃  and non-negative real numbers 𝑎, 𝑏; 

iii) 𝑥 ∈ 𝑃  and −𝑥 ∈ 𝑃 ⇒ 𝑥 = 0 ⇔ 𝑃 ∩ (−𝑃) = {0}. 
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The partial ordering ≤ with respect to the cone 𝑃 by 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃. If  𝑦 − 𝑥 ∈ 

interior of 𝑃,  then it is denoted by 𝑥 ≪ 𝑦.  The cone 𝑃 is said to be Normal if a number 𝐾 > 0 

such that for all 𝑥, 𝑦 ∈ 𝐸, 0 ≤ 𝑥 ≤ 𝑦   implies  ‖𝑥‖ ≤ 𝐾‖𝑦‖ .The cone 𝑃  is called regular of 

every increasing sequence which is bounded above is convergent and every decreasing sequence 

which is bounded below is convergent. 

Definition 1.1.  Let 𝑋  be a non-empty set of 𝐸.  Suppose that the map 𝑑: 𝑋×𝑋 → 𝐸  satisfies;  

(i) 0 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋  and 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦; 

(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋; 

(iii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Then 𝑑 is called cone metric on 𝑋  and (𝑋, 𝑑) is called Cone metric space. 

Example 1.2. Let 𝐸 = 𝑅2, 𝑃 = {(𝑥, 𝑦) ∈ 𝐸: 𝑥, 𝑦 ≥ 0} 𝑅2, 𝑋 = 𝑅 and 𝑑: 𝑋×𝑋 → 𝐸 defined by 

                 𝑑(𝑥, 𝑦) = (|𝑥 − 𝑦|,|𝑥 − 𝑦|) 

where  ≥ 0 is a constant.  Then (𝑋, 𝑑) is a Cone metric space [1]. 

Definition 1.3. Let (𝑋, 𝑑) be a Cone metric space, 𝑥 ∈ 𝑋 and {𝑥𝑛} a sequence in 𝑋. Then 

(i) {𝑥𝑛} converges to  𝑥 whenever for every 𝑐 ∈ 𝐸 with 0 ≪ 𝑐 there is a natural number 

𝑁 such that 𝑑(𝑥𝑛, 𝑥) ≪ 𝑐 for all 𝑛 ≥ 𝑁. 

(ii) {𝑥𝑛} is a Cauchy sequence whenever for every 𝑐 ∈ 𝐸 with 0 ≪ 𝑐 there is a natural 

number 𝑁 such that 𝑑(𝑥𝑛, 𝑥𝑚) ≪ 𝑐 for all 𝑛, 𝑚 ≥ 𝑁. 

Definition 1.4. Let (𝑋, 𝑑) is said to be a complete cone metric space, if every Cauchy sequence 

is convergent in 𝑋.  

 Let (𝑋, 𝑑) be a metric space.  We denote by 𝐶𝐵(𝑋) the family of nonempty closed bounded 

subset of 𝑋 and let 𝐶(𝑋) denote the set of all nonempty compact subsets of 𝑋.  Let 𝐻(. , . ) be the 

Hausdorff distance on 𝐶𝐵(𝑋). That is, for 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋), 

    𝐻(𝐴, 𝐵) =    𝑚𝑎𝑥 {  𝑆𝑢𝑝  
𝑎∈𝐴

𝑑(𝑎, 𝐵) , 𝑆𝑢𝑝  
𝑏∈𝐵

𝑑(𝐴, 𝑏) } 

where 𝑑(𝑎, 𝐵) = inf {𝑑(𝑎, 𝑏): 𝑏 ∈ 𝐵} is the distance from the point 𝑎 to the subset  𝐵. 

Theorem 1.5[7]. A multivalued mapping 𝑇: 𝑋 → 𝐶𝐵(𝑋) is called a contraction mapping if there 

exists 𝑘 ∈ (0,1) such that 

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑(𝑥, 𝑦)∀𝑥, 𝑦 ∈ 𝑋  and 𝑥 ∈ 𝑋 is said to be a fixed point of 𝑇 if 𝑥 ∈ 𝑇(𝑋). 

 

2. Fixed Point 
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In this section, we shall give some results which generalizes the result of [3], [4], [5], [7], [12] 

and [13]. 

Theorem 2.1. Let (𝑋, 𝑑) be a complete cone metric space and let mapping 𝑇1, 𝑇2: 𝑋 → 𝐶(𝑋) 

satisfying the following conditions 

(i) For each 𝑥 ∈ 𝑋,  𝑇1(𝑥), 𝑇2(𝑥) ∈ 𝐶𝐵(𝑋). 

(ii) 𝐻(𝑇1(𝑥), 𝑇2(𝑦)) ≤∝ 𝑑(𝑥, 𝑦) + 𝛽𝑑(𝑥, 𝑇1(𝑥)) + 𝛾𝑑(𝑦, 𝑇2(𝑦)) 

where ∝, 𝛽, 𝛾  are non negative real numbers and ∝ +𝛽 + 𝛾 < 1.   𝑇ℎ𝑒𝑛 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡𝑠  𝑝 ∈

𝑋  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝 ∈ 𝑇1(𝑥) ∩ 𝑇2(𝑥 ).  

 Proof. Let 𝑥𝑜 ∈ 𝑋,   𝑇1(𝑥𝑜)  is a nonempty closed bounded subset of 𝑋.  Choose  𝑥1 ∈ 𝑇1(𝑥𝑜), 

for this 𝑥1 by the same reason mentioned above 𝑇2(𝑥1) is nonempty closed bounded subset of 𝑋. 

Since 𝑥1 ∈ 𝑇1(𝑥𝑜) and 𝑇1(𝑥𝑜) and 𝑇2(𝑥1) are closed bounded subset of 𝑋, ∃ 𝑥2 ∈ 𝑇2(𝑥1) such 

that  

𝑑(𝑥1,𝑥2) ≤ 𝐻(𝑇1(𝑥𝑜), 𝑇2(𝑥1)) + 𝑞  

where 𝑞 = 𝑚𝑎𝑥 {
∝+𝛽

1−𝛾
,

∝+𝛾

1−𝛽
}. 

Hence 𝑞 ∈ (0,1). Then we have 

 𝑑(𝑥1,𝑥2) ≤ 𝐻(𝑇1(𝑥𝑜), 𝑇2(𝑥1)) + 𝑞  

                 ≤∝ 𝑑(𝑥0,𝑥1) + 𝛽𝑑 (𝑥0, 𝑇1(𝑥𝑜)) + 𝛾𝑑(𝑥1,𝑇2(𝑥1)) + 𝑞  

                 ≤∝ 𝑑(𝑥0,𝑥1) + 𝛽𝑑(𝑥0, 𝑥1) + 𝛾𝑑(𝑥1, 𝑥2) + 𝑞  

𝑑(𝑥1, 𝑥2) ≤
∝ +𝛽

1 − 𝛾
𝑑(𝑥𝑜 , 𝑥1) + 𝑞 

𝑑(𝑥1, 𝑥2) ≤ 𝑞𝑑(𝑥𝑜 , 𝑥1) + 𝑞. 

For this 𝑥2, 𝑇1(𝑥2) is a nonempty closed bounded subset of 𝑋.Since 𝑥2 ∈ 𝑇2(𝑥1) and 𝑇2(𝑥1) and 

𝑇1(𝑥2) are closed bounded subset of 𝑋, ∃ 𝑥3 ∈ 𝑇1(𝑥2)  such that 

𝑑(𝑥2,𝑥3) ≤ 𝐻(𝑇1(𝑥2), 𝑇2(𝑥1)) + 𝑞2  

             ≤∝ 𝑑(𝑥2,𝑥1) + 𝛽𝑑 (𝑥2, 𝑇1(𝑥2)) + 𝛾𝑑(𝑥1,𝑇2(𝑥1)) + 𝑞2  

             ≤∝ 𝑑(𝑥1,𝑥2) + 𝛽𝑑(𝑥2, 𝑥3) + 𝛾𝑑(𝑥1, 𝑥2) + 𝑞2  

𝑑(𝑥2, 𝑥3) ≤
∝ +𝛾

1 − 𝛽
𝑑(𝑥1, 𝑥2) + 𝑞2 

               ≤ 𝑞{𝑞𝑑(𝑥𝑜 , 𝑥1) + 𝑞}+𝑞2 

               ≤ 𝑞2𝑑(𝑥𝑜 , 𝑥1) + 2𝑞2. 
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Continuing this process, we get a sequence {𝑥𝑛} such that 𝑥𝑛+1 ∈ 𝑇2(𝑥𝑛) or 𝑥𝑛+1 ∈ 𝑇1(𝑥𝑛)  and   

𝑑(𝑥𝑛+1,𝑥𝑛) ≤ 𝑞𝑛𝑑(𝑥0,𝑥1) + 𝑛𝑞𝑛. 

Let 0 ≪ 𝑐 be given, choose a natural number 𝑁1 such that 𝑞𝑛𝑑(𝑥0,𝑥1) + 𝑛𝑞𝑛 ≪ 𝑐  for all 𝑛 ≥

𝑁1 this implies  𝑑(𝑥𝑛+1,𝑥𝑛) ≪ 𝑐. 

{𝑥𝑛} is a Cauchy sequence in {𝑋, 𝑑) is a complete cone metric space, there exists 𝑝 ∈ 𝑋 such that 

𝑥𝑛 → 𝑝. 

  Choose a natural number 𝑁2  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑑(𝑥𝑛, 𝑝) ≪
𝑐(1−𝛾)

2𝑚
 

  and  𝑑(𝑥𝑛−1, 𝑝) ≪
𝑐(1−𝛾)

2𝑚∝
 for all 𝑛 ≥ 𝑁2.  

𝑑(𝑇1(𝑝), 𝑝) ≤ 𝑑(𝑝, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑇1(𝑝))     

                   ≤ 𝑑(𝑝, 𝑥𝑛) + 𝐻(𝑇2(𝑥𝑛−1), 𝑇1(𝑝)) 

                        ≤ 𝑑(𝑝, 𝑥𝑛)+∝ 𝑑(𝑥𝑛−1, 𝑝) + 𝛽𝑑(𝑥𝑛−1, 𝑇2(𝑥𝑛−1))  

                                 +𝛾𝑑(𝑝, 𝑇1(𝑝)) 

                       ≤ 𝑑(𝑝, 𝑥𝑛)+∝ 𝑑(𝑥𝑛−1, 𝑝) + 𝛽𝑑(𝑥𝑛−1, 𝑥𝑛 )  

                          +𝛾𝑑(𝑝, 𝑇1(𝑝)) 

 (1 − 𝛾)𝑑(𝑝, 𝑇1(𝑝)) ≤ 𝑑(𝑝, 𝑥𝑛)+∝ 𝑑(𝑥𝑛−1, 𝑝)  

                                            +𝛽𝑑(𝑥𝑛−1, 𝑥𝑛) 

        𝑑(𝑝, 𝑇1(𝑝)) ≤
1

1−𝛾
𝑑(𝑝, 𝑥𝑛) +

∝

1−𝛾
𝑑(𝑝, 𝑥𝑛−1)  

                                     +
𝛽

1−𝛾
𝑑(𝑥𝑛−1, 𝑥𝑛)       for all n≥ 𝑁2. 

      𝑑(𝑇1(𝑝), 𝑝) ≪
𝑐

𝑚
     for all 𝑚 ≥ 1, we get  

𝑐

𝑚
− 𝑑(𝑇1(𝑝), 𝑝) ∈ 𝑃 and as 𝑚 → ∞, we get  

𝑐

𝑚
→ 0 and P is closed – 𝑑(𝑇1(𝑝), 𝑝) ∈ 𝑃, but 

 𝑑(𝑇1(𝑝), 𝑝) ∈ 𝑃. Therefore 𝑑(𝑇1(𝑝), 𝑝) = 0  and so 𝑝 ∈ 𝑇1(𝑝). 

Similarly, it can be established that  𝑝 ∈ 𝑇2(𝑝).  Hence  𝑝 ∈ 𝑇1(𝑝) ∩ 𝑇2(𝑝). 

Theorem 2.2. Let (𝑋, 𝑑)  be a complete cone metric space and let mapping 𝑇1, 𝑇2: 𝑋 → 𝐶(𝑋)  

satisfying the following conditions 

(i) For each 𝑥 ∈ 𝑋, 𝑇1(𝑥), 𝑇2(𝑥) ∈ 𝐶𝐵(𝑋). 

(ii) 𝐻(𝑇1(𝑥), 𝑇2(𝑦)) ≤∝ 𝑑(𝑥, 𝑦) + 𝛽𝑑(𝑥, 𝑇2(𝑦)) + 𝛾𝑑(𝑦, 𝑇1(𝑥)) 

where ∝, 𝛽, 𝛾 are non-negative real numbers and ∝ +𝛽 + 𝛾 < 1. Then there exists 𝑝 ∈ 𝑋 such 

that 𝑝 ∈ 𝑇1(𝑥) ∩ 𝑇2(𝑥 ). 
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Proof. Let 𝑥0 ∈ 𝑋,  𝑇1(𝑥0) is a nonempty closed bounded subset of 𝑋.  Choose 𝑥1 ∈ 𝑇1(𝑥𝑜), for 

this 𝑥1 by the same reason mentioned above 𝑇2(𝑥1) is nonempty closed bounded subset of 𝑋.  

Since 𝑥1 ∈ 𝑇1(𝑥0) and 𝑇1(𝑥0) and 𝑇2(𝑥1) are closed bounded subset of 𝑋, ∃ 𝑥2 ∈ 𝑇2(𝑥1) such 

that 

 𝑑(𝑥1,𝑥2) ≤ 𝐻(𝑇1(𝑥𝑜), 𝑇2(𝑥1)) + 𝑞  

where 𝑞 = 𝑚𝑎𝑥 {
∝+𝛽

1−𝛽
,

∝+𝛾

1−𝛾
}. 

Hence 𝑞 ∈ (0,1). Then we have 

 𝑑(𝑥1,𝑥2) ≤ 𝐻(𝑇1(𝑥𝑜), 𝑇2(𝑥1)) + 𝑞  

               ≤∝ 𝑑(𝑥0,𝑥1) + 𝛽𝑑 (𝑥0, 𝑇2(𝑥1)) + 𝛾𝑑(𝑥1,𝑇1(𝑥0)) + 𝑞  

                   ≤∝ 𝑑(𝑥0,𝑥1) + 𝛽𝑑(𝑥0, 𝑥2) + 𝛾𝑑(𝑥1, 𝑥1) + 𝑞 

               ≤∝ 𝑑(𝑥0,𝑥1) + 𝛽[𝑑 (𝑥0, 𝑥1) + 𝑑(𝑥1, 𝑥2)] + 𝑞  

𝑑(𝑥1, 𝑥2) ≤
∝ +𝛽

1 − 𝛽
𝑑(𝑥𝑜 , 𝑥1) + 𝑞 

𝑑(𝑥1, 𝑥2) ≤ 𝑞𝑑(𝑥𝑜 , 𝑥1) + 𝑞. 

For this 𝑥2,𝑇1(𝑥2) is a nonempty closed bounded subset of  𝑋.Since 𝑥2 ∈ 𝑇2(𝑥1) and 𝑇2(𝑥1) and 

𝑇1(𝑥2) are closed bounded subset of 𝑋, ∃ 𝑥3 ∈ 𝑇1(𝑥2) such that 

𝑑(𝑥2,𝑥3) ≤ 𝐻(𝑇1(𝑥2), 𝑇2(𝑥1)) + 𝑞2  

              ≤∝ 𝑑(𝑥2,𝑥1) + 𝛽𝑑 (𝑥2, 𝑇2(𝑥1)) + 𝛾𝑑(𝑥1,𝑇1(𝑥2)) + 𝑞2  

              ≤∝ 𝑑(𝑥2,𝑥1) + 𝛽𝑑(𝑥2, 𝑥2) + 𝛾𝑑(𝑥1, 𝑥3) + 𝑞2 

              ≤∝ 𝑑(𝑥1,𝑥2) + 𝛾[𝑑(𝑥1, 𝑥2) + 𝑑(𝑥2, 𝑥3)] + 𝑞2 

𝑑(𝑥2, 𝑥3) ≤
∝ +𝛾

1 − 𝛾
𝑑(𝑥1, 𝑥2) + 𝑞2 

              ≤ 𝑞{𝑞𝑑(𝑥𝑜 , 𝑥1) + 𝑞} + 𝑞2 

              ≤ 𝑞2𝑑(𝑥𝑜 , 𝑥1) + 2𝑞2. 

Continuing this process, we get a sequence {𝑥𝑛} such that 𝑥𝑛+1 ∈ 𝑇2(𝑥𝑛) or 𝑥𝑛+1 ∈ 𝑇1(𝑥𝑛) and  

                 𝑑(𝑥𝑛+1,𝑥𝑛) ≤ 𝑞𝑛𝑑(𝑥0,𝑥1) + 𝑛𝑞𝑛. 

Let 0 ≪ 𝑐 be given, choose a natural number 𝑁1 such that 𝑞𝑛𝑑(𝑥0,𝑥1) + 𝑛𝑞𝑛 ≪ 𝑐  for all 𝑛 ≥

𝑁1 this implies 𝑑(𝑥𝑛+1,𝑥𝑛) ≪ 𝑐. 
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{𝑥𝑛} is a Cauchy sequence in {𝑋, 𝑑) is a complete cone metric space, there exists 𝑝 ∈ 𝑋 such that 

𝑥𝑛 → 𝑝. 

Choose a natural number 𝑁2 such that 𝑑(𝑥𝑛, 𝑝) ≪
𝑐(1−𝛽)

2𝑚(1+𝛾)
 

and  𝑑(𝑥𝑛−1, 𝑝) ≪
𝑐(1−𝛽)

2𝑚(∝+𝛽 )
 for all 𝑛 ≥ 𝑁2.  

𝑑(𝑇1(𝑝), 𝑝) ≤ 𝑑(𝑝, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑇1(𝑝))     

                   ≤ 𝑑(𝑝, 𝑥𝑛) + 𝐻(𝑇2(𝑥𝑛−1), 𝑇1(𝑝)) 

                        ≤ 𝑑(𝑝, 𝑥𝑛)+∝ 𝑑(𝑥𝑛−1, 𝑝) + 𝛽𝑑(𝑥𝑛−1, 𝑇1(𝑝)) +𝛾𝑑(𝑝, 𝑇2(𝑥𝑛−1)) 

                  ≤ 𝑑(𝑝, 𝑥𝑛)+∝ 𝑑(𝑥𝑛−1, 𝑝) + 𝛽𝑑(𝑥𝑛−1, 𝑇1(𝑝 ) ) +𝛾𝑑(𝑝, 𝑥𝑛 ) 

                  ≤ (1 + 𝛾)𝑑(𝑝, 𝑥𝑛) + (∝ +𝛽)𝑑(𝑥𝑛−1, 𝑝) + 𝛽𝑑(𝑇1(𝑝), 𝑝)  

𝑑(𝑇1(𝑝), 𝑝) ≤
1+𝛾

1−𝛽
𝑑(𝑥𝑛, 𝑝) +

∝+𝛽

1−𝛽
𝑑(𝑥𝑛−1,𝑝)  for all n≥ 𝑁2.  

𝑑(𝑇1(𝑝), 𝑝) ≪
𝑐

𝑚
   for all 𝑚 ≥ 1, we get  

𝑐

𝑚
− 𝑑(𝑇1(𝑝), 𝑝) ∈ 𝑃 and as 𝑚 → ∞, we get  

𝑐

𝑚
→ 0 and 

P is closed – 𝑑(𝑇1(𝑝), 𝑝) ∈ 𝑃, but  𝑑(𝑇1(𝑝), 𝑝) ∈ 𝑃. Therefore  𝑑(𝑇1(𝑝), 𝑝)  = 0 and so 𝑝 ∈

𝑇1(𝑝). 

Similarly, it can be established that  𝑝 ∈ 𝑇2(𝑝).  Hence 𝑝 ∈ 𝑇1(𝑝) ∩ 𝑇2(𝑝). 
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