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Abstract. In this paper, we introduce a generalized system of nonlinear relaxed cocoercive variational

inclusions involving (A, η)-monotone mappings in the framework of real Hilbert spaces. Based on the gen-

eralized resolvent operator technique associated with (A, η)-monotonicity, we consider the approximation

solvability of solutions.
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1. Introduction

Variational inclusions problems are among the most interesting and intensively studied

classes of mathematical problems and have wide applications in the fields of optimization

and control, economics and transportation equilibrium and engineering sciences. Vari-

ational inclusions problems have been generalized and extended in different directions

using the novel and innovative techniques. Various kinds of iterative algorithms to solve
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the variational inequalities and variational inclusions have been developed by many au-

thors. There exists a vast literature [1-31] on the approximation solvability of nonlinear

variational inequalities as well as nonlinear variational inclusions using projection type

methods, resolvent operator type methods or averaging techniques. In most of the re-

solvent operator methods, the maximal monotonicity has played a key role, but more

recently introduced notions of A-monotonicity [20] and H-monotonicity [8,9] have not

only generalized the maximal monotonicity, but gave a new edge to resolvent operator

methods. Recently Verma [19] generalized the recently introduced and studied notion

of A-monotonicity to the case of (A, η)-monotonicity. Furthermore, these developments

added a new dimension to the existing notion of the maximal monotonicity and its ap-

plications to several other fields such as convex programming and variational inclusions.

Inspired and motivated by the recent research going on in this area, in this paper, we

explore the approximation solvability of a generalized system of nonlinear variational in-

clusion problems based on (A, η)-resolvent operator technique in the framework Hilbert

spaces.

2. Preliminaries

In this section, we explore some basic properties derived from the notion of (A, η)-

monotonicity. Let H denote a real Hilbert space with the norm ‖ · ‖ and inner product

〈·, ·〉. Let η : H ×H :→ H be a single-valued mapping. The map η is called τ -Lipschitz

continuous if there is a constant τ > 0 such that

‖η(u, v)‖ ≤ τ‖y − v‖, ∀u, v ∈ H.

Let M be a multivalued mapping from a Hilbert space H to 2H , the power set of H.

Recall following definition:

(i) The set D(M) defined by

D(M) = {u ∈ H : M(u) 6= ∅},

is called the effective domain of M.
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(ii) The set R(M) defined by

R(M) =
⋃
u∈H

M(u),

is called the range of M .

(iii) The set G(M) defined by

G(M) = {(u, v) ∈ H ×H : u ∈ D(M), v ∈M(u)},

is the graph of M .

Definition 2.1. Let η : H × H → H be a single-valued mapping and let M : H → 2H

be a multivalued mapping on H.

(i) The map M is said to be (r, η)-strongly monotone if

〈u∗ − v∗, η(u, v)〉 ≥ r‖u− v‖, ∀(u, u∗), (v, v∗) ∈ G(M).

(ii) η-pseudomonotone if 〈v∗, η(u, v)〉 ≥ 0 implies

〈u∗, η(u, v)〉 ≥ 0, ∀(u, u∗), (v, v∗) ∈ G(M).

(iii) (m, η)-relaxed monotone if there exists a positive constant m such that

〈u∗ − v∗, η(u, v)〉 ≥ −m‖u− v‖2, ∀(u, u∗), (v, v∗) ∈ G(M).

Definition 2.2 [8,9]. Let H : X → X be a nonlinear mapping and M : X → 2X a

multivalued mapping. The mapping M is said to be H-monotone if (H + ρM)X = X for

ρ > 0.

Definition 2.3 [20]. Let A : H → H be a nonlinear mapping and M : H → 2H a

multivalued mapping. The mapping M is said to be A-monotone if

(i) M is m-relaxed monotone.

(ii) A+ ρM is maximal monotone for ρ > 0.

Definition 2.4 [19]. A mapping M : H → 2H is said to be maximal (m, η)-relaxed

monotone if
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(i) M is (m, η)-relaxed monotone,

(ii) for (u, u∗) ∈ H ×H and

〈u∗ − v∗, η(u, v)〉 ≥ −m‖u− v‖2, (v, v∗) ∈ graph(M),

we have u∗ ∈M(u).

Definition 2.5 [19]. Let A : H → H and η : H×H → H be two single-valued mappings.

The map M : H → 2H is said to be (A, η)-monotone if

(i) M is (m, η)-relaxed monotone,

(ii) R(A+ ρM) = H for ρ > 0.

Note that alternatively, the mapping M : H → 2H is said to be (A, η)-monotone if

(i) M is (m, η)-relaxed monotone,

(ii) A+ ρM is η-pseudomonotone for ρ > 0.

Definition 2.6. Let A : H → H be an (r, η)-strong monotone mapping and M : H → H

an (A, η)-monotone mapping. Then the generalized resolvent operator JA,ηM,ρ : H → H is

defined by

JA,ηM,ρ(u) = (A+ ρM)−1(u), ∀u ∈ H,

where ρ > 0 is a constant.

Definition 2.7. The mapping N : H → H is said to be relaxed (β, γ)-cocoercive with

respect to A if there exists two positive constants α, β such that

〈Nx−Ny,Ax− Ay〉 ≥ (−β)‖Nx−Ny‖2 + γ‖x− y‖2,

for all (x, y, u) ∈ H ×H ×H.

Proposition 2.8 [8]. Let H : X → X be a strictly monotone mapping and M : X → 2X

an H-monotone mapping. Then the operator (H + ρM)−1 is single-valued.

Proposition 2.9 [20]. Let A : H → H be an r-strongly monotone mapping and M :

H → 2H an A-monotone mapping. Then the operator (A+ ρM)−1 is single-valued.
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Proposition 2.10 [19]. Let η : H× → H a single-valued mapping, A : H → H (r, η)-

strongly monotone mapping and M : H → 2H an (A, η)-monotone mapping. Then the

mapping (A+ ρM)−1 is single-valued.

3. Algorithm

LetN1, N2 : H → H, η1, η2 : H×H → H g1, g2 : H → H be six nonlinear mappings. Let

M1 : H → 2H be an (A, η)-monotone mapping and M2 : H → 2H an (A2, η2)-monotone

mapping, respectively. Then the nonlinear system of variational inclusion (NSVI) prob-

lem: determine elements u, v ∈ H such that

0 ∈ A1g1(u)− A1g1(v) + ρ1[N1v +M1g1(u)], (3.1)

0 ∈ A2g2(v)− A2g2(u) + ρ2[N2u+M2g2(v)]. (3.2)

Next, we consider some special cases of NSVI problem (3.1)-(3.2).

(I) If A1 = A2 = A, M1 = M2 = M , η1 = η2 = η, g1 = g2 = g and N1 = N2 = N , then

NSVI problem (3.1)-(3.2) is reduced to the following NSVI problem: find u, v ∈ H such

that

0 ∈ Ag(u)− Ag(v) + ρ1[Nv +Mg(u)], (3.3)

0 ∈ Ag(v)− Ag(u) + ρ2[Nu+Mg(v)]. (3.4)

(II) If A1 = A2 = A, M1 = M2 = M , η1 = η2 = η, g1 = g2 = I and N1 = N2 = N , then

NSVI problem (3.1)-(3.2) is reduced to the following NSVI problem: find u, v ∈ H such

that

0 ∈ Au− Av + ρ1(Nv +Mu), (3.5)

0 ∈ Av − Au+ ρ2(Nu+Mv). (3.6)

(III) If A1 = A2 = A, M1 = M2 = M , N1 = N2 = N , u = v, η1 = η2 = η, g1 = g2 = g

and ρ1 = ρ2 = ρ in NSVI (3.1)-(3.2), we have the following NVI problem: find an element

u ∈ H such that

0 ∈ Nu+Mg(u), (3.7)
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(IV) If A1 = A2 = A, M1 = M2 = M , N1 = N2 = N , u = v, η1 = η2 = η, g1 = g2 = I

and ρ1 = ρ2 = ρ in NSVI (3.1)-(3.2), we have the following NVI problem: find an element

u ∈ H such that

0 ∈ Nu+Mu, (3.8)

In order to prove our main results, we need the following lemmas.

Lemma 3.1. Let H be a real Hilbert space and let η : H × H → H be a τ -Lipschitz

continuous nonlinear mapping. Let A : H → H be a (r, η)-strongly monotone and let

M : H → 2H be (A, η)-monotone. Then the generalized resolvent operator JA,ηM,ρ : H → H

is τ/(r − ρm), that is,

‖JA,ηM,ρ(x)− JA,ηM,ρ(y)‖ ≤ τ

r − ρm
‖x− y‖, ∀x, y ∈ H.

Lemma 3.2. Let H be a real Hilbert space. Let Ai : H → H be a (ri, ηi)-strongly mono-

tone mapping, Mi : H → 2H an (Ai, ηi)-monotone mapping and ηi : H × H → H an

τi-Lipschitz continuous nonlinear mapping for each i = 1, 2. Then (u, v) is the solution

of NSVI (3.1)-(3.2) if and only if it satisfies

g1(u) = JA1,η1
M1,ρ1

[A1g1(v)− ρ1N1v], (3.9)

g2(v) = JA2,η2
M2,ρ2

[A2g2(u)− ρ2N2u]. (3.10)

Next, we construct the following iterative algorithms based on (3.9)-(3.10).

Algorithm 3.1. For any u0, v0 ∈ H, compute the sequences {un} and {vn} by the

iterative process:
un+1 = un − g(un) + JA1,η1

M1,ρ1
[A1g(vn)− ρ1N1vn], n ≥ 0

g(vn) = JA2,η2
M2,ρ2

[A2g(un)− ρ2N2un], n ≥ 0.

(I) If A1 = A2 = A, M1 = M2 = M , η1 = η2 = η, g1 = g2 = g and N1 = N2 = N in

Algorithm 3.1, then we have the following algorithm:



GENERALIZED SYSTEMS OF VARIATIONAL INCLUSIONS 7

Algorithm 3.2. For any u0, v0 ∈ H, compute the sequence {un} and {vn} by the iterative

process: 
un+1 = un − g(un) + JA,ηM,ρ1

[Ag(vn)− ρ1Nvn], n ≥ 0

g(vn) = JA,ηM,ρ2
[Ag(un)− ρ2Nun], n ≥ 0.

Remark 3.1. Algorithm 3.2 gives the approximate solution to the NSVI (3.3)-(3.4).

(II) If A1 = A2 = A, M1 = M2 = M , η1 = η2 = η, g1 = g2 = I and N1 = N2 = N in

Algorithm 3.1, then we have the following algorithm:

Algorithm 3.3. For any u0, v0 ∈ H, compute the sequence {un} by the iterative pro-

cesses: 
un+1 = JA,ηM,ρ1

[Avn − ρ1Nvn], n ≥ 0,

vn = JA,ηM,ρ2
[Aun − ρ2Nun], n ≥ 0.

Remark 3.2. Algorithm 3.3 gives the approximate solution to the NSVI (3.5)-(3.6).

(III) If A1 = A2 = A, M1 = M2 = M , N1 = N2 = N , u = v, η1 = η2 = η, g1 = g2 = g

and ρ1 = ρ2 = ρ in Algorithm 3.1, then we have the following algorithm:

Algorithm 3.4. For any u0 ∈ H, compute the sequence {un} by the iterative processes:

un+1 = un − g(un) + JA,ηM,ρ[Ag(un)− ρNun], n ≥ 0.

Remark 3.3. Algorithm 3.4 gives the approximate solution to the NVI (3.7).

(IV) If A1 = A2 = A, M1 = M2 = M , N1 = N2 = N , u = v, η1 = η2 = η, g1 = g2 = I

and ρ1 = ρ2 = ρ in Algorithm 3.1, then we have the following algorithm:

Algorithm 3.5. For any u0 ∈ H, compute the sequence {un} by the iterative processes:

un+1 = JA,ηM,ρ[Aun − ρNun], n ≥ 0.

Remark 3.4. Algorithm 3.5 gives the approximate solution to the NVI (3.8).

4. Results on algorithmic convergence analysis
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Theorem 4.1. Let H be a real Hilbert space. Let Ai : H × H be a (ri, ηi)-strongly

monotone and si-Lipschitz continuous mapping and Mi : H → 2H an (Ai, ηi)-monotone

mapping. Let ηi : H×H → H be a τi-Lipschitz continuous mapping and Ni : H×H → H

a relaxed (αi, βi)-cocoercive (with respect to Aigi) and µi-Lipschitz continuous mapping.

Let gi : H → H be relaxed (γi, δi)-cocoercive and σi-Lipschitz for i = 1, 2. Let (u∗, v∗) be

the solution of NSVI problem (3.1)-(3.2). Let {un} and {vn} be sequences generated by

Algorithm 3.1. Suppose that the following condition is satisfied:

τ1τ2θ1θ2 < (1− θ3)(1− θ4)(r1 − ρ1m1)(r2 − ρ2m2),

where

θ1 =
√
σ2
1s

2
1 − 2ρ1β1 + 2ρ1α1µ2

1 + ρ21µ
2
1, θ2 =

√
σ2
2s

2
2 − 2ρ2β2 + 2ρ2α2µ2

2 + ρ22µ
2
2,

θ3 =
√

1 + 2σ2
2γ2 − 2δ2 + σ2

2

and

θ4 =
√

1 + 2σ2
1γ1 − 2δ1 + σ2

1.

Then the sequences {un} and {vn} converge strongly to u∗ and v∗, respectively.

Proof. Letting (u∗, v∗) ∈ H be the solution of NSVI problem (3.1)-(3.2), we have
u∗ = u∗ − g1(u∗) + JA1,η1

M1,ρ1
[A1g1(v

∗)− ρ1N1v
∗],

g2(v
∗) = JA2,η2

M2,ρ2
[A2g2(u

∗)− ρ2N2u
∗].

It follows that

‖un+1 − u∗‖ = ‖un − g1(un) + JA1,η1
M1,ρ1

[A1g1(vn)− ρ1N1vn]− u∗‖

= ‖un − u∗ −
(
g1(un) + g1(u

∗)
)

+ JA1,η1
M1,ρ1

[A1g1(vn)− ρ1N1v]

− JA1,η1
M1,ρ1

(
A1g1(v

∗)− ρ1N1v
∗)‖

≤ ‖un − u∗ −
(
g1(un)− g1(u∗)

)
‖

+ ‖JA1,η1
M1,ρ1

[A1g1(vn)− ρ1N1vn]− JA1,η1
M1,ρ1

[A1g1(v
∗)− ρ1N1v

∗]‖

≤ ‖un − u∗ −
(
g1(un)− g1(u∗)

)
‖

+
τ1

r1 − ρ1m1

‖A1g1(vn)− A1g1(v
∗)− ρ1(N1vn −N1v

∗)‖.

(4.1)
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It follows from relaxed (α1, β1)-cocoercive monotonicity and µ1-Lipschitz continuity of N1,

A1 is s1-Lipschitz continuous and g1 is σ1-Lipschitz continuous that

‖A1g1(vn)− A1g1(v
∗)− ρ1(N1vn −N1v

∗)‖2

= ‖A1g1(vn)− A1g1(v
∗)‖2 − 2ρ1〈N1vn −N1v

∗, A1g1(vn)− A1g1(v
∗)〉

+ ρ21‖N1vn −N1v
∗‖2

≤ θ21‖vn − v∗‖2,

(4.2)

where

θ1 =
√
σ2
1s

2
1 − 2ρ1β1 + 2ρ1α1µ2

1 + ρ21µ
2
1.

On the other hand, we have

‖g2(vn)− g2(v∗)‖ = ‖JA2,η2
M2,ρ2

[A2g(un)− ρ2N2un]− JA2,η2
M2,ρ2

[A2g2(u
∗)− ρ2N2u

∗]‖

≤ τ2
r2 − ρ2m2

‖A2g(un)− A2g2(u
∗)− ρ2[N2un −N2u

∗]‖.
(4.3)

It follows from relaxed (α2, β2)-cocoercive monotonicity and µ2-Lipschitz continuity of N2,

A2 is s2-Lipschitz continuous and g2 is σ2-Lipschitz continuous that

‖A2g2(un)− A2g2(u
∗)− ρ(N2un −N2u

∗)‖2

= ‖A2g2(un)− A2g2(u
∗)‖2 − 2ρ2〈N2un −N2u

∗, A2g2(un)− A2g2(u
∗)〉

+ ρ22‖N2un −N2u
∗‖2

≤ θ22‖un − u∗‖2,

(4.4)

where

θ2 =
√
σ2
2s

2
2 − 2ρ2β2 + 2ρ2α2µ2

2 + ρ22µ
2
2.

Substituting (4.4) into (4.3), we obtain that

‖g2(vn)− g2(v∗)‖ ≤
τ2θ2

r2 − ρ2m2

‖un − u∗‖. (4.5)

Note that

‖vn − v∗‖ ≤ ‖vn − v∗ −
(
g2(vn)− g2(v∗)

)
‖+ ‖g2(vn)− g2(v∗)‖. (4.6)
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From the relaxed (γ2, δ2)-cocoercive monotonicity and σ2-Lipschitz continuity of g2 that

‖vn − v∗ −
(
g2(vn)− g2(v∗)

)
‖2

= ‖vn − v∗‖2 − 2〈g2(vn)− g2(v∗), vn − v∗〉+ ‖g2(vn)− g2(v∗)‖2

≤ ‖vn − v∗‖2 − 2
(
− γ2‖g2(vn)− g2(v∗)‖2 + δ2‖vn − v∗‖2

)
+ ‖g2(vn)− g2(v∗)‖2

≤ ‖vn − v∗‖2 + 2σ2
2γ2‖vn − v∗‖2 − 2δ2‖vn − v∗‖2 + σ2

2‖vn − v∗‖2

= θ23‖vn − v∗‖2,

(4.7)

where

θ3 =
√

1 + 2σ2
2γ2 − 2δ2 + σ2

2.

Substituting (4.5) and (4.7) into (4.6) yields that

‖vn − v∗‖ ≤ θ3‖vn − v∗‖+
τ2θ2

r2 − ρ2m2

‖un − u∗‖.

It follows that

‖vn − v∗‖ ≤
τ2θ2

(1− θ3)(r2 − ρ2m2)
‖un − u∗‖. (4.8)

Substituting (4.8) into (4.2), we arrive at

‖A1g1(vn)− A1g1(v
∗)− ρ1(N1vn −N1v

∗)‖

≤ τ2θ2θ1
(1− θ3)(r2 − ρ2m2)

‖un − u∗‖,
(4.9)

On the other hand, it follows from relaxed (γ1, δ1)-cocoercive monotonicity and σ1-

Lipschitz continuity of g1 that

‖un − u∗ − g1(un)− g1(u∗)‖2

= ‖un − u∗‖2 − 2〈g1(un)− g1(u∗), un − u∗〉+ ‖g1(un)− g1(u∗)‖2

≤ ‖un − u∗‖2 − 2
(
− γ1‖g1(un)− g1(u∗)‖2 + δ1‖un − u∗‖2

)
+ ‖g1(un)− g1(u∗)‖2

≤ ‖un − u∗‖2 + 2σ2
1γ1‖un − u∗‖2 − 2δ1‖un − u∗‖2 + σ2

1‖un − u∗‖2

= θ24‖un − u∗‖2,

(4.10)

where

θ4 =
√

1 + 2σ2
1γ1 − 2δ1 + σ2

1.
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Substituting (4.9) and (4.10) into (4.1), we obtain that

‖un+1 − u∗‖ ≤ [θ4 +
τ1τ2θ1θ2

(r1 − ρ1m1)(1− θ3)(r2 − ρ2m2)
]‖un − u∗‖. (3.21)

In view of the condition

τ1τ2θ1θ2 < (1− θ3)(1− θ4)(r1 − ρ1m1)(r2 − ρ2m2),

we can obtain the desired conclusion. This completes the proof.

From Theorem 4.1, we have the following results immediately.

Corollary 4.2. Let H be a real Hilbert space. Let A : H×H be a (r, η)-strongly monotone

and s-Lipschitz continuous mapping and M : H → 2H an (A, η)-monotone mapping. Let

η : H × H → H be a τ -Lipschitz continuous mapping and N : H × H → H a relaxed

(α, β)-cocoercive (with respect to Ag) and µ-Lipschitz continuous mapping. Let g : H → H

be relaxed (γ, δ)-cocoercive and σ-Lipschitz. Let (u∗, v∗) be the solution of NSVI problem

(3.3)-(3.4). Let {un} and {vn} be sequences generated by Algorithm 3.2. Suppose that the

following condition is satisfied:

τθ < (1− θ′)(r − ρm),

where

θ =
√
σ2s2 − 2ρβ + 2ραµ2 + ρ2µ2

and

θ′ =
√

1 + 2σ2γ − 2δ + σ2.

Then the sequences {un} and {vn} converge strongly to u∗ and v∗, respectively.

Corollary 4.3. Let H be a real Hilbert space. Let A : H×H be a (r, η)-strongly monotone

and s-Lipschitz continuous mapping and M : H → 2H an (A, η)-monotone mapping. Let

η : H × H → H be a τ -Lipschitz continuous mapping and N : H × H → H a relaxed

(α, β)-cocoercive (with respect to A) and µ-Lipschitz continuous mapping. Let (u∗, v∗) be

the solution of NSVI problem (3.5)-(3.6). Let {un} and {vn} be sequences generated by

Algorithm 3.3. Suppose that the following condition is satisfied:

τ
√
s2 − 2ρβ + 2ραµ2 + ρ2µ2 < (r − ρm).
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Then the sequences {un} and {vn} converge strongly to u∗ and v∗, respectively.

Corollary 4.4. Let H be a real Hilbert space. Let A : H×H be a (r, η)-strongly monotone

and s-Lipschitz continuous mapping and M : H → 2H an (A, η)-monotone mapping. Let

η : H×H → H be a τ -Lipschitz continuous mapping and N : H×H → H a relaxed (α, β)-

cocoercive (with respect to Ag) and µ-Lipschitz continuous mapping. Let g : H → H be

relaxed (γ, δ)-cocoercive and σ-Lipschitz. Let u∗ be the solution of NVI problem (3.7). Let

{un} be a sequence generated by Algorithm 3.4. Suppose that the following condition is

satisfied:

τθ < (1− θ′)(r − ρm),

where

θ =
√
σ2s2 − 2ρβ + 2ραµ2 + ρ2µ2

and

θ′ =
√

1 + 2σ2γ − 2δ + σ2.

Then the sequence {un} converges strongly to u∗.

Corollary 4.5. Let H be a real Hilbert space. Let A : H×H be a (r, η)-strongly monotone

and s-Lipschitz continuous mapping and M : H → 2H an (A, η)-monotone mapping. Let

η : H×H → H be a τ -Lipschitz continuous mapping and N : H×H → H a relaxed (α, β)-

cocoercive (with respect to A) and µ-Lipschitz continuous mapping. Let u∗ be the solution

of NVI problem (3.8). Let {un} be a sequence generated by Algorithm 3.5. Suppose that

the following condition is satisfied:

τ
√
s2 − 2ρβ + 2ραµ2 + ρ2µ2 < (r − ρm).

Then the sequence {un} converges strongly to u∗.
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