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Abstract. In this paper, a system of equilibrium problems is investigated based on an implicit iterative

algorithms with errors. The theorem of weak convergence for solutions of the system of equilibrium

problems is established in the framework of Hilbert spaces.
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1. Introduction

Equilibrium problems which were introduced by Blum and Oettli [1] in 1994 have

had a great impact and influence in the development of several branches of pure and

applied sciences. It has been shown that the equilibrium problem theory provides a novel

and unified treatment of a wide class of problems which arise in economics, Finance,

image reconstruction, ecology, transportation, network, elasticity and optimization. It has

been shown that equilibrium problems include variational inequalities, fixed point, Nash

equilibrium and game theory as special cases. Hence collectively, equilibrium problems

cover a vast range of applications. To study solution problem of equilibrium problem,
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iterative methods are efficient. Indeed, many well known problems arising in various

branches of science can be studied by using algorithms which are iterative in their nature.

For iterative algorithms, the oldest and simplest one is Picard iterative algorithm. For a

contraction mapping T , it is known that T enjoys a unique fixed point and the sequence

generated in Picard iterative algorithm can converge to the unique fixed point. However,

for more general nonexpansive mappings, Picard iterative algorithm fails to convergence

to fixed points of nonexpansive even that it enjoys a fixed point. Recently, implicit or

explicit type iterative algorithms have been considered for the approximation of fixed

points of nonexpansive mappings and solutions of equilibrium problem; see, for example

[2-19]. For implicit iterative algorithms, classical weak convergence theorems of implicit

iterative algorithms were established in Xu and Ori [15]. In this paper, we study a system

of equilibrium problems based on an implicit iterative algorithm. Convergence theorems

for solutions of equilibrium problems are established in Hilbert spaces.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space, whose inner product

and norm are denoted by 〈·, ·〉 and ‖ · ‖. Let C be a nonempty closed and convex subset

of H and A : C → H a nonlinear mapping.

Recall that the classical variational inequality problem is to find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (2.1)

It is known that x ∈ C is a solution to the variational inequality (2.1) if and only if x

is a fixed point of the mapping PC(I − ρA), where PC is the metric projection from H

onto C, ρ > 0 is a constant and I is identity mapping. This implies that the variational

inequality (2.1) is equivalent to a fixed point problem. This alternative formula is very

important form the numerical analysis point of view.

Let F1 and F2 be bifunctions of C × C into R, where R is the set of real numbers. In

this paper, we consider the following problem based on an implicit iterative algorithm:

Find x ∈ C such that Fi(x, y) ≥ 0, ∀y ∈ C, (2.2)
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where i ∈ {1, 2}. To study bifunctions equilibrium problem, we may assume that the

bifunction F : C × C → R satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, lim supt↓0 F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semi-continuous.

Let T : C → C be a mapping. Recall that the mapping T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

In 2001, Xu and Ori [15] introduced the following implicit iteration process for a finite

family of nonexpansive mappings {T1, T2, . . . , TN}, with {αn} a real sequence in (0, 1),

and an initial point x0 ∈ C:

x1 = α1x0 + (1− α1)T1x1,

x2 = α2x1 + (1− α2)T2x2,

...

xN = αNxN−1 + (1− αN)TNxN ,

xN+1 = αN+1xN + (1− αN+1)T1xN+1,

...

which can be re-written in the following compact form:

xn = αnxn−1 + (1− αn)Tnxn, ∀n ≥ 1, (2.3)

where Tn = Tn(modN) (here the mod N function takes values in {1, 2, . . . , N}). Xu and

Ori [15] obtained the following results in a Hilbert space.

Theorem XO. Let H be a real Hilbert space, C a nonempty closed convex subset of

H, and T : C → C be a finite family of nonexpansive self-mappings on C such that

F = ∩Ni=1F (Ti) 6= ∅. Let {xn} be defined by (2.3). If {αn} is chosen so that αn → 0, as

n→∞, then {xn} converges weakly to a common fixed point of the family of {Ti}Ni=1.
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We remark that, from the view of computation, the implicit iterative scheme (2.3)

is often impractical since, for each step, we must solve a nonlinear operator equation.

Therefore, one of the interesting and important problems in the theory of implicit iterative

algorithm is to consider the iterative algorithm with errors. That is an efficient iterative

algorithm to compute approximately fixed point of nonlinear mappings and solutions of

equilibrium problems.

In this paper, motivated by Xu and Ori [15], we introduce a two-step implicit iterative

algorithm with errors for the problem (2.2). Weak convergence theorems of purposed

implicit iterative schemes are established in the framework of Hilbert spaces.

In order to prove our main results, we need the following concepts and lemmas.

Recall that a space X is said to satisfy Opial condition [17], if for each sequence {xn}

in X, the condition that the sequence xn → x weakly implies that

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

for all y ∈ X and y 6= x.

Lemma 2.1 ([18]). Suppose that H is a real Hilbert space and 0 < p ≤ tn ≤ q < 1 for all

n ≥ 1. Suppose further that {xn} and {yn} are sequences of H such that

lim sup
n→∞

‖xn‖ ≤ r, lim sup
n→∞

‖yn‖ ≤ r

and

lim
n→∞

‖tnxn + (1− tn)yn‖ = r

hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

The following lemma can be found in [1] and [16].

Lemma 2.2. Let C be a nonempty closed convex subset of H ad let F : C ×C → R be a

bifunction satisfying (A1)-(A4). Then, for any r > 0 and x ∈ H, there exists z ∈ C such

that F (z, y) + 1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C. Further, define a mapping

Trx = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all r > 0 and x ∈ H. Then, the following hold:
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(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;

(3) F (Tr) = EP (F );

(4) EP (F ) is closed and convex.

Lemma 2.3 ([19]). Let {an}, {bn} and {cn} be three nonnegative sequences satisfying the

following condition:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0.

where n0 is some nonnegative integer,
∑∞

n=0 cn <∞ and
∑∞

n=0 bn <∞. Then limn→∞ an

exists.

3. Main results

Theorem 3.1. Let C be a nonempty closed and convex subset of H. Let F1 and F2 be two

bifunctions from C×C to R satisfying (A1)-(A4) such that EP = EP (F1)∩EP (F2) 6= ∅.

Let {xn} be a sequence generated by the following manner:
x0 ∈ H, chosen arbitrily

yn = βnxn + (1− βn)θn + vn,

xn = αnxn−1 + (1− αn)ηn + un, ∀n ≥ 1,

(3.1)

where θn, and ηn are such that

F1(θn, µ) +
1

λn
〈µ− θn, θn − xn〉 ≥ 0, ∀µ ∈ C,

and

F2(ηn, ν) +
1

ρn
〈ν − ηn, ηn − yn〉 ≥ 0, ∀ν ∈ C,

{λn} ⊂ (0,∞), {ρn} ⊂ (0,∞), {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {un}, {vn} are bounded

sequences. Assume that the following conditions are satisfied

(1) a ≤ αn, βn ≤ b, where 0 < a < b < 1;

(2) lim infn→∞ λn > 0 and lim infn→∞ ρn > 0;
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(3)
∑∞

n=1(‖un‖+ ‖vn‖) <∞.

Then the sequence {xn} converges weakly to some point in EP .

Proof. In view of Lemma 2.2, we see that ηn = Sρnyn and θn = Tλnxn. Whenever needed,

we shall equivalently write the implicit iteration (3.1) as


x0 ∈ H, chosen arbitrily

yn = βnxn + (1− βn)Tλnxn + vn,

xn = αnxn−1 + (1− αn)Sρnyn + un.

(3.2)

Fixing p ∈ EP , we obtain that

‖yn − p‖ ≤ βn‖xn − p‖+ (1− βn)‖Tλnxn − p‖+ ‖vn‖

≤ ‖xn − p‖+ ‖un‖.
(3.3)

This implies that

‖xn − p‖ ≤ αn‖xn−1 − p‖+ (1− αn)‖Sρnyn − p‖+ ‖un‖

≤ αn‖xn−1 − p‖+ (1− αn)‖yn − p‖+ ‖un‖

≤ αn‖xn−1 − p‖+ (1− αn)‖xn − p‖+ ‖un‖+ ‖un‖.

This in turn implies that

‖xn − p‖ ≤ ‖xn−1 − p‖+
‖un‖+ ‖un‖

a
.

In view of Lemma 2.3, we obtain that limn→∞ ‖xn − p‖ exits. Next, we assume that

limn→∞ ‖xn − p‖ = d > 0. Note that

lim sup
n→∞

‖xn−1 − p+ un‖ ≤ d. (3.4)

In view of (3.3), we see that

lim sup
n→∞

‖Sρnyn − p+ un‖ ≤ lim sup
n→∞

(‖yn − p‖+ ‖un‖) ≤ d. (3.5)

On the other hand, we have

lim
n→∞

‖xn − p‖ = lim
n→∞

‖αn(xn−1 − p+ un) + (1− αn)(Sρnyn − p+ un)‖ = d. (3.6)
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Combining (3.4), (3.5) with (3.6), we obtain from Lemma 2.1 that

lim
n→∞

‖xn−1 − Sρnyn‖ = 0. (3.7)

It follows from (3.2) that

xn − xn−1 = (1− αn)(Sρnyn − xn−1) + un.

In view of (3.7), we see from the condition (3) that

lim
n→∞

‖xn−1 − xn‖ = 0. (3.8)

Note that

‖xn − p‖ ≤ αn‖xn−1 − p‖+ (1− αn)‖Sρnyn − p‖+ un

≤ αn‖xn−1 − Sρnyn‖+ ‖Sρnyn − p‖+ un

≤ αn‖xn−1 − Sρnyn‖+ ‖yn − p‖+ un,

from which it follows that lim infn→∞ ‖yn − p‖ ≥ d. In view of (3.3), we also have

lim supn→∞ ‖yn − p‖ ≤ d. It follows that

lim
n→∞

‖yn − p‖ = lim
n→∞

‖βn(xn − p+ vn) + (1− βn)(Tλnxn − p+ vn)‖ = d.

On the other hand, we have

lim sup
n→∞

‖xn − p+ vn‖ ≤ d

and

lim sup
n→∞

‖Tλnxn − p+ vn‖ ≤ lim sup
n→∞

(‖xn − p‖+ ‖vn‖) ≤ d.

By virtue of Lemma 2.1, we obtain that

lim
n→∞

‖Tλnxn − xn‖ = 0. (3.9)

Note that

‖Sρnxn − xn‖ ≤ ‖Sρnxn − Sρnxn−1‖+ ‖Sρnxn−1 − Sρnyn‖+ ‖Sρnyn − xn‖

≤ 2‖xn − xn−1‖+ ‖xn−1 − yn‖+ ‖Sρnyn − xn−1‖

≤ 3‖xn − xn−1‖+ ‖Tλnxn − xn‖+ vn + ‖Sρnyn − xn−1‖.
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In view of (3.7), (3.8) and (3.9), we arrive at

lim
n→∞

‖Sρnxn − xn‖ = 0. (3.10)

Since the sequence {xn} is a bounded, we see that there exists a subsequence {xni
} of

{xn} such that xni
⇀ q. It follows that θni

⇀ q.

Next, we show that q ∈ EP . First, we prove q ∈ FP (F1). Since θn = Tλnxn, we have

F1(θn, µ) +
1

λn
〈µ− θn, θn − xn〉 ≥ 0, ∀µ ∈ C.

It follows from (A2) that

〈µ− θn,
θn − xn
λn

〉 ≥ F1(µ, θn)

and hence

〈µ− θni
,
θni
− xni

λni

〉 ≥ F1(µ, θni
).

Since
θni−xni

λni
→ 0, θni

⇀ q and (A4), we have F1(µ, q) ≤ 0 for all µ ∈ C. For t with

0 < t ≤ 1 and µ ∈ C, let µt = tµ+ (1− t)q. Since µ ∈ C and q ∈ C, we have µt ∈ C and

hence F1(µt, q) ≤ 0. So, we obtain from (A1) and (A4) that

0 = F1(µt, µt) ≤ tF1(µt, µ) + (1− t)F1(µt, q) ≤ tF1(µt, µ).

That is, F1(µt, µ) ≥ 0. It follows from (A3) that F1(q, µ) ≥ 0 for all µ ∈ C and hence

q ∈ EP (F1). Note that

‖yn − Sρnyn‖ ≤ ‖yn − xn−1‖+ ‖xn−1 − Sρnyn‖

≤ βn‖xn − xn−1‖+ (1− βn)‖Tλnxn − xn−1‖+ ‖xn−1 − Sρnyn‖+ ‖vn‖

≤ ‖xn − xn−1‖+ (1− βn)‖Tλnxn − xn‖+ ‖xn−1 − Sρnyn‖+ ‖vn‖.

From (3.7), (3.8) and (3.9), we see that

lim
n→∞

‖yn − Sρnyn‖ = 0.

On the other hand, we have

‖Sρnyn − xn‖ ≤ ‖Sρnyn − xn−1‖+ ‖xn−1 − xn‖.
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In view of (3.7) and (3.8), we arrive at

lim
n→∞

‖Sρnyn − xn‖ = 0.

This in turn implies that ηni
⇀ q. In a similar way, we can obtain that q ∈ EP (F2). This

proves that q ∈ EP = EP (F1) ∩ FP (F2).

Finally, we show that the sequence {xn} converges weakly to q. Suppose the contrary

holds. It follows that there exists some subsequence {xnj
} of {xn} such that xnj

⇀ q̄ and

q 6= q̄. By the same method as given above, we can prove that q̄ ∈ EP . Put

lim
n→∞

‖xn − q‖ = d1 and lim
n→∞

‖xn − q̄‖ = d2,

where d1 and d2 are two nonnegative numbers. In view of Opial’s condition, we see that

d1 = lim inf
i→∞

‖xni
− q‖ < lim inf

j→∞
‖xni

− q̄‖ = lim inf
j→∞

‖xnj
− q̄‖ < lim inf

j→∞
‖xnj

− q‖ = d1.

This is a contradiction. Hence q̄ = q. This shows that the sequence {xn} converges weakly

to q. The proof is completed.

As corollaries of Theorem 3.1, we have the following results.

Corollary 3.2. Let C be a nonempty closed and convex subset of H. Let F be a bifunction

from C × C to R satisfying (A1)-(A4) such that EP (F ) 6= ∅. Let {xn} be a sequence

generated by the following manner:
x0 ∈ H, chosen arbitrily

yn = βnxn + (1− βn)θn + vn,

xn = αnxn−1 + (1− αn)PCyn + un, ∀n ≥ 1,

where θn is such that

F (θn, µ) +
1

λn
〈µ− θn, θn − xn〉 ≥ 0, ∀µ ∈ C,

{λn} ⊂ (0,∞), {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {un}, {vn} are bounded sequences.

Assume that the following conditions are satisfied

(1) a ≤ αn, βn ≤ b, where 0 < a < b < 1;

(2) lim infn→∞ λn > 0;
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(3)
∑∞

n=1(‖un‖+ ‖vn‖) <∞.

Then the sequence {xn} weakly converges to some point in EP (F ).

Proof. Put F2(x, y) = 0 for all x, y ∈ C and ρn = 1 for all n ≥ 1. It follows that

ηn = PCyn. We can conclude the desired conclusion easily from Theorem 2.1.

If we put F1(x, y) = 0 for all x, y ∈ C and λn = 1 for all n ≥ 1, then we have the

following result.

Corollary 3.3. Let C be a nonempty closed and convex subset of a real Hilbert space H.

Let F be a bifunction from C × C to R satisfying (A1)-(A4) such that EP (F ) 6= ∅. Let

{xn} be a sequence generated by the following manner:
x0 ∈ C, chosen arbitrily

xn = αnxn−1 + (1− αn)ηn, ∀n ≥ 1,

where ηn is such that

F (ηn, ν) +
1

ρn
〈ν − ηn, ηn − xn〉 ≥ 0, ∀ν ∈ C,

{ρn} ⊂ (0,∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1). Assume that the following conditions are

satisfied

(1) a ≤ αn, βn ≤ b, where 0 < a < b < 1;

(2) lim infn→∞ ρn > 0.

Then the sequence {xn} weakly converges to some point in EP (F ).

Remark 3.4. In this paper, we study a system of bifunction equilibrium problems

based on an implicit iterative algorithm. Weak convergence theorems of solutions are

established. However, we do no know what restrictions imposed on the parameters or the

subset C can let strong convergence theorems be guaranteed. It is of interest to improve

the paper on the framework from Hilbert spaces to Banach spaces.
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