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Abstract. The aim of this work is to obtain some existence and uniqueness fixed point theorems for mixed g-

monotone mapping in any number of variables under general contractive conditions in partially ordered metric

spaces by using the condition of weak compatibility. Our results are different, more natural and generalizations of

many results on multidimensional fixed points. For illustration of the effectiveness of our generalizations, some

examples are equipped in this paper.
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1. Introduction and preliminaries

Bhaskar and Lakshmikantham [4] introduced the notion of mixed monotone property and cou-

pled fixed point for contractive operator of the form F : X×X→X , in the framework of partially

ordered metric spaces and then established some existence and uniqueness for fixed and coupled

∗Corresponding author

E-mail addresses: rr−rashwan54@yahoo.com (R.A. Rashwan), shimaa1362011@yahoo.com (I.M. Shimaa)

Received September 30, 2015
43



44 R. A. RASHWAN, I.M. SHIMAA

fixed points of F (x is a fixed point of F if F(x,x) = x). They also illustrated these important

results by proving the existence and uniqueness of the solution for a periodic boundary value

problem. Afterwards, In [12] Lakshmikantham and Ćirić extended these results by defining the

mixed g-monotone property and proved coupled coincidence and coupled common fixed point

theorems for nonlinear contractive mappings F : X×X → X and g : X → X in partially ordered

metric spaces as mentioned in the next dialogue. Then many authors focused on coupled fixed

point theory and proved remarkable results (see e.g., [9, 13, 18])

Definition 1.1. [7] A tripled (X ,d,�) is called an ordered metric space iff

(i): (X ,d) is a metric space,

(ii): (X ,�) is a partially ordered set.

The results of Lakshmikantham and Ćirić are as follows:

Definition 1.2. [12] Let (X ,�) be a partially ordered set and F : X ×X → X and g : X → X .

We say F has the mixed g-monotone property if F is monotone g-non-decreasing in its first

argument and monotone g-non-increasing in its second argument, that is, for any x,y ∈ X ,

x1,x2 ∈ X , g(x1)� g(x2) implies F(x1,y)� F(x2,y)

and

y1,y2 ∈ X , g(y1)� g(y2) implies F(x,y1)� F(x,y2).

If g is the identity mapping, we obtain the Bhaskar and Lakshmikantham’s mixed monotonicity

notion for the mapping F .

Definition 1.3. [12] An element (x,y) ∈ X ×X is called a coupled coincidence point of a map-

ping F : X×X → X and g : X → X if

F(x,y) = g(x), F(y,x) = g(y).

Also, if g is the identity mapping, then (x,y) is called a coupled fixed point of the mapping F .

Definition 1.4. [12] Let X be a non-empty set and F : X ×X → X and g : X → X . We say F

and g are commuting if,

F(gx,gy) = gF(x,y)
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for all x,y ∈ X .

Theorem 1.1. [12] Let (X ,�) be a partially ordered set and suppose there is a metric d on

X such that (X ,d) is a complete metric space. Assume that there is a function ϕ : [0,+∞)→

[0,+∞) with ϕ(t)< t and limr→t+ ϕ(r)< t for each t >?, and also suppose that F : X×X → X

and g : X → X are mappings such that F has the mixed g-monotone property and

d
(
F(x,y),F(u,v)

)
≤ ϕ

(
d(g(x),g(u))+d(g(y),g(v))

2

)
,

for all x,y,u,v ∈ X, for which g(x)� g(u) and g(y)� g(v).

Suppose that F(X ×X) ⊆ g(X), g is continuous and commutes with F, and also suppose that

either

(a): F is continuous, or

(b): X has the following properties

(i): If a non-decreasing sequence {xn}→ x, then xn � x for all n,

(ii): If a non-increasing sequence {yn}→ y, then y� yn for all n.

If there exist x0,y0 ∈X such that g(x0)�F(x0,y0) and g(y0)�F(y0,x0), then there exist x,y∈X

such that g(x) = F(x,y) and g(y) = F(y,x), i.e., F and g have a coupled coincidence point.

The authors in [12] endowed the product space X×X with the following partial order:

for (x,y), (u,v) ∈ X×X , (x,y)� (u,v) ⇔ x� u and y� v.

They also considered some additional conditions on the product space X × X to ensure the

existence and uniqueness of a coupled common fixed point.

Theorem 1.2. [12] In addition to the hypothesis of Theorem 1.1, suppose that for every (x,y),(x∗,y∗)

∈X×X, there exists (u,v)∈X×X such that (F(u,v),F(v,u)) is comparable to (F(x,y),F(y,x))

and (F(x∗,y∗),F(y∗,x∗)). Then F and g have a unique coupled common fixed point, i.e., there

exists a unique (x,y) ∈ X×X such that

x = g(x) = F(x,y), y = g(y) = F(y,x).

Berinde and Borcut [2] introduced the concept of tripled fixed point for nonlinear contractive

mappings of the form F : X3 → X , in partially ordered complete metric spaces and obtained
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existence and uniqueness theorems of tripled fixed points for some general classes of contractive

type mappings (see also, [5]).

Definition 1.5. [2] Let (X ,�) be a partially ordered set and F : X ×X ×X → X . The mapping

F is said to has the mixed monotone property if, for any x,y,z ∈ X ,

x1,x2 ∈ X , x1 � x2 ⇒ F(x1,y,z)� F(x2,y,z),

y1,y2 ∈ X , y1 � y2 ⇒ F(x,y1,z)� F(x,y2,z),

z1,z2 ∈ X , z1 � z2 ⇒ F(x,y,z1)� F(x,y,z2).

Definition 1.6. [2] An element (x,y,z) ∈ X3 is called a tripled fixed point of F : X3→ X if

F(x,y,z) = x, F(y,x,y) = y and F(z,y,x) = z.

Also, Berinde and Borcut [2] used the following partial order on the product space X3 :

(x,y,z)≤ (u,v,w) ⇔ x� u, y� v, z� w,

to prove the following result.

Theorem 1.3. Let (X ,�) be a partially ordered set and suppose there is a metric d on X such

that (X ,d) is a complete metric space. Let F : X×X×X→X have the mixed monotone property

and there exist j,r, l ≥ 0 with j+ r+ l < 1 such that

d(F(x,y,z),F(u,v,w))≤ jd(x,u)+ rd(y,v)+ ld(z,w),

for any x,y,z ∈ X for which x � u, v � y and z � w. Suppose either F is continuous or X has

the following properties

(1): if a non-decreasing sequence {xn}→ x, then xn � x for all n,

(2): if a non-increasing sequence {yn}→ y, then yn � y for all n.

If there exist x0,y0,z0 ∈ X such that, x0 � F(x0,y0,z0), y0 � F(y0,x0,z0) and z0 � F(z0,y0,x0),

then there exist x,y,z ∈ X such that:

F(x,y,z) = x, F(y,x,y) = y and F(z,y,x) = z,

that is, F has a triple fixed point.
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After that, in the paper of Karapinar and Luong [10], the quadruple fixed point is considered

and some new related fixed point theorems are obtained.

Definition 1.7. [10] Let (X ,�) be a partially ordered set and F : X4→ X be a mapping. We say

that F has the mixed monotone property if F(x,y,z,w) is monotone non-decreasing in x and z,

and monotone non-increasing in y and w, that is, for any x,y,z,w ∈ X ,

x1,x2 ∈ X , x1 � x2 ⇒ F(x1,y,z,w)� F(x2,y,z,w),

y1,y2 ∈ X , y1 � y2 ⇒ F(x,y1,z,w)� F(x,y2,z,w),

z1,z2 ∈ X , z1 � z2 ⇒ F(x,y,z1,w)� F(x,y,z2,w),

w1,w2 ∈ X , w1 � w2 ⇒ F(x,y,z,w1)� F(x,y,z,w1).

Definition 1.8. [10] An element (x,y,z,w) ∈ X4 is called a quadruple fixed point of F : X4→ X

if

F(x,y,z,w) = x,F(y,z,w,x) = y,F(z,w,x,y) = z and F(w,x,y,z) = w.

Finally, about N− fixed point or multidimensional case, we have to distinguish between two

types of definitions, to see the difference between them one can read the note of Karapinar et

al. [11].

∗: In some cases, the arguments are ordered, for instance, the following notion was given

in [8] and also mentioned in Paknazar et al., (Definition (1.12)):

xi = F(xi,xi−1, . . . ,x2,x1,x2 . . . ,xn−i+1) for all i ∈ {1,2, . . . ,n}.

This definition can be interpreted as an extension of the second equation of Berinde and

Borcut’s notion, that is, y = F(y,x,y).

∗: In other cases, the arguments are permuted, for instance, the notion of N-fixed point

introduced in Paknazar et al.[15] (Definition ?(2.1)) is as follows:

xi = F(xi,xi+1, . . . ,xn−1,xn,x1 . . . ,xi−1) for all i ∈ {1,2, . . . ,n}.

This notion generalizes Karapinar and Luong’s quadrupled concept.
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Recently, Roldán et al. [17] obtained some existence and uniqueness theorems that extend the

previous mentioned results for nonlinear mappings of any number of arguments, not necessarily

permuted or ordered, in the framework of partially ordered metric spaces by using weaker

contraction conditions.

Next we state some definitions and results that we use to perform this work.

Definition 1.9. [17] Let g : X → X be mapping and (X ,d,�) be an ordered metric space, then

X is said to have the sequential g- monotone property if it verifies the following properties:

(i): If {xm}m≥0 is a non-decreasing sequence in X and limm→∞ xm = x, then gxm � gx for

all m≥ 0,

(ii): If {ym}m≥0 is a non-increasing sequence in X and limm→∞ ym = y, then gym � gy for

all m≥ 0.

If g is the identity mapping, then X is said to have the sequential monotone property.

Definition 1.10. [17] We say that F and g are commuting if gF(x1, . . . ,xn) =F(gx1, . . . ,gxn) for

all x1, . . . ,xn ∈ X , and they are weakly compatible if they commute at their coincidence points.

Fix a partition {A,B} of the set Λn = {1,2, . . . ,n}, that is, A∪B = Λn and A∩B = /0, we will

denote

ΩA,B = {σ : Λn→ Λn : σ(A)⊆ A and σ(B)⊆ B}

and

ΏA,B = {σ : Λn→ Λn : σ(A)⊆ B and σ(B)⊆ A}.

If (X ,�) is a partially ordered space, x,y ∈ X and i ∈ Λn, we will use the following notation

x�i y⇔

 x� y, i ∈ A,

x� y, i ∈ B.

Definition 1.11. [17] Let (X ,�) be a partially ordered set and F : Xn→ X be a mapping. We

say that F has the mixed g-monotone property if F is g-monotone non-decreasing in arguments
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of A and g-monotone non-increasing in arguments of B, that is, for all x1,x2, . . . ,xn,y,z ∈ X and

i ∈ Λn.

gy� gz⇒ F(x1, . . . ,xi−1,y,xi+1, . . . ,xn)�i F(x1, . . . ,xi−1,z,xi+1, . . . ,xn).

Henceforth, let σ1, . . . ,σn,τ : Λn→Λn be n+1 mappings and φ be the (n+1)-tuple (σ1, . . . ,σn,τ).

Definition 1.12. [17] A point (x1,x2, . . . ,xn) ∈ Xn is called a φ−coincidence point of the map-

pings F and g if

F(xσi(1), . . . ,xσi(n)) = gxτ(i) for all i.

If g is the identity mapping on X , then (x1, . . . ,xn) ∈ Xn is called a φ− fixed point of the

mappings F .

Definition 1.13. A point (x1,x2, . . . ,xn)∈Xn is called a common φ−fixed point of the mappings

F and g if

F(xσi(1), . . . ,xσi(n)) = gxτ(i) = xτ(i) for all i.

Theorem 1.4. [17] Let (X ,d,�) be a complete ordered metric space. Let φ = (σ1,σ2, . . . ,σn,τ)

be a (n+1)-tuple of mappings from {1,2, . . . ,n} into itself such that τ ∈ΩA,B is a permutation

and verifying that σi ∈ ΩA,B if i ∈ A and σi ∈ ´ΩA,B if i ∈ B. Let F : Xn → X and g : X → X

be two mappings such that F has the mixed g-monotone property on X, F(Xn) ⊆ g(X) and g

commutes with F. Assume that there exists k ∈ [0,1) verifying

d(F(x1,x2, . . . ,xn),F(y1,y2, . . . ,yn))≤ k max
1≤i≤n

d(gxi,gyi)

for which gxi�i gyi for all i. Suppose either F is continuous or X has the sequential g-monotone

property. If there exist x1
0, . . . .x

n
0 ∈ X verifying

gxτ(i)
0 �i F(xσi(1)

0 ,xσi(2)
0 , . . . ,xσi(n)

0 ), for all i.

Then F and g have, at least, one φ− coincidence point.

In this paper, Inspired by Theorem 1.4, we prove a φ - coincidence point and common φ - fixed

point theorems of contractive type mappings that not necessarily commuting but only weakly

compatible.
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2. Main results

Theorem 2.1. Let (X ,�,d) be an ordered metric space and φ = (σ1, . . . ,σn,τ) be a (n+ 1)-

tuple of mappings from Λn into itself such that τ ∈ΩA,B is a permutation, σi ∈ΩA,B if i ∈ A and

σi ∈ ´ΩA,B if i ∈ B. Let F : Xn→ X and g : X → X be two given mappings such that F has the

mixed g-monotone property, F(Xn)⊆ g(X) and g(X) is a complete subspace of X. Assume that

there exist ai ∈ R, i ∈ Λn verifying ∑
n
i=1 ai < 1 and

d(F(x1, . . . ,xn),F(y1, . . . ,yn))≤
n

∑
i=1

aid(gxi,gyi),(2.1)

for which gxi �i gyi. If there exist x1
0, . . . ,x

n
0 ∈ X such that

(2.2) gxτ(i)
0 �i F(xσi(1)

0 , . . . ,xσi(n)
0 ), for all i ∈ Λn

and X has the sequential g-monotone property. Then F and g have, at least, one φ− coincidence

point.

Proof. As τ is a permutation of the set {1,2, . . . ,n}, then {τ(1), . . . ,τ(n)} = {1, . . . ,n}. Also,

for the point (x1
0, . . . ,x

n
0) there exists (x1

1, . . . ,x
n
1) ∈ Xn such that

gxτ(i)
1 = F(xσi(1)

0 , . . . ,xσi(n)
0 ), for all i ∈ Λn,

this can be done because F(Xn) ⊆ g(X). For this point (x1
1, . . . ,x

n
1) we can find another point

(x1
2, . . . ,x

n
2) ∈ Xn such that

gxτ(i)
2 = F(xσi(1)

1 , . . . ,xσi(n)
1 ), for all i ∈ Λn.

Continuing this process we can construct the sequences {x1
m}m≥0, . . . ., {xn

m}m≥0 such that

gxτ(i)
m+1 = F(xσi(1)

m , . . . ,xσi(n)
m ), for all m≥ 0 and i ∈ Λn.

By induction methodology for m≥ 0 we shall prove that

(2.3) gxi
m �i gxi

m+1, for all i ∈ Λn.

Indeed, from equation (2.2) we have

gxτ(i)
0 �i F(xσi(1)

0 , . . . ,xσi(n)
0 ) = gxτ(i)

1 .
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Since τ(i) ∈ A⇔ i ∈ A , τ(i) ∈ B⇔ i ∈ B and {τ(i)}n
i=1 = {i}n

i=1, we get

(2.4) gxτ(i)
0 �τ(i) gxτ(i)

1 , or gxi
0 �i gxi

1, for all i ∈ Λn.

Suppose that (2.3) is true for some m≥ 0 and we are going to prove it for m+1. Now we have

to distinguish between wether i ∈ A or i ∈ B,

(Case 1): Suppose that i ∈ A (σi ∈ΩA,B).

gxτ(i)
m+1 = F(xσi(1)

m , . . . ,xσi( j)
m , . . . ,xσi(n)

m ), for this argument xσi( j)
m we have two subcases,

(I): If j ∈ A (where F is g-monotone non-decreasing), σi( j) ∈ A (i.e., gxσi( j)
m �

gxσi( j)
m+1 ). Thus, F(xσi(1)

m , . . . ,xσi( j)
m , . . . ,xσi(n)

m )� F(xσi(1)
m , . . . ,xσi( j)

m+1 , . . . ,x
σi(n)
m ).

(II): j ∈ B (where F is g-monotone non-increasing), σi( j)∈ B (i.e., gxσi( j)
m � gxσi( j)

m+1 ).

Thus, F(xσi(1)
m , . . . ,xσi( j)

m , . . . ,xσi(n)
m )� F(xσi(1)

m , . . . ,xσi( j)
m+1 , . . . ,x

σi(n)
m ).

That is,

F(xσi(1)
m , . . . ,xσi( j)

m , . . . ,xσi(n)
m )� F(xσi(1)

m , . . . ,xσi( j)
m+1 , . . . ,x

σi(n)
m ) ∀ i ∈ A, j ∈ Λn

and

gxτ(i)
m+1 = F(xσi(1)

m , . . . ,xσi( j)
m , . . . ,xσi(n)

m )

� F(xσi(1)
m+1 , . . . ,x

σi( j)
m , . . . ,xσi(n)

m )

...

� F(xσi(1)
m+1 , . . . ,x

σi( j)
m+1 , . . . ,x

σi(n)
m )

...

� F(xσi(1)
m+1 , . . . ,x

σi( j)
m+1 , . . . ,x

σi(n)
m+1 ) = gxτ(i)

m+2.

Therefore

(2.5) gxi
m+1 � gxi

m+2, i ∈ A.

(Case 2): If i ∈ B (σi ∈ ´ΩA,B).

gxτ(i)
m+1 = F(xσi(1)

m , . . . ,xσi( j)
m , . . . ,xσi(n)

m ), for this argument xσi( j)
m we have two subcases,

(I): If j ∈ A (where F is g-monotone non-decreasing), σi( j) ∈ B (i.e., gxσi( j)
m �

gxσi( j)
m+1 ). Thus, F(xσi(1)

m , . . . ,xσi( j)
m , . . . ,xσi(n)

m )� F(xσi(1)
m , . . . ,xσi( j)

m+1 , . . . ,x
σi(n)
m ).
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(II): j ∈ B (where F is g-monotone non-increasing), σi( j)∈ A (i.e., gxσi( j)
m � gxσi( j)

m+1 ).

Thus, F(xσi(1)
m , . . . ,xσi( j)

m , . . . ,xσi(n)
m )� F(xσi(1)

m , . . . ,xσi( j)
m+1 , . . . ,x

σi(n)
m ).

We conclude that

F(xσi(1)
m , . . . ,xσi( j)

m , . . . ,xσi(n)
m )� F(xσi(1)

m , . . . ,xσi( j)
m+1 , . . . ,x

σi(n)
m ) ∀ i ∈ B, j ∈ Λn

and

gxτ(i)
m+1 = F(xσi(1)

m , . . . ,xσi( j)
m , . . . ,xσi(n)

m )

� F(xσi(1)
m+1 , . . . ,x

σi( j)
m+1 , . . . ,x

σi(n)
m+1 ) = gxτ(i)

m+2.

Therefore

(2.6) gxi
m+1 � gxi

m+2, i ∈ B.

From inequalities (2.5) and (2.6), we get

gxi
m+1 �i gxi

m+2.

Thus, inequality (2.3) is true for any i ∈ Λn and m ≥ 0. Note that the inequality (2.3) implies

(gxσi( j)
m−1 � j gxσi( j)

m , if i ∈ A, or gxσi( j)
m−1 � j gxσi( j)

m , if i ∈ B).

Then we use the previous fact and the contraction condition (2.1) to assert that the sequences

{gxi
m}m≥0 are Cauchy for all i ∈ Λn as follows:

d(gxτ(i)
m ,gxτ(i)

m+1) =d(F(xσi(1)
m−1 , . . . ,x

σi(n)
m−1 ),F(xσi(1)

m , . . . ,xσi(n)
m ))≤

n

∑
j=1

a jd(gxσi( j)
m−1 ,gxσi( j)

m )

≤
n

∑
j=1

a j max
1≤i≤n

d(gxτ(i)
m−1,gxτ(i)

m ).

Define δm = max1≤i≤n d(gxτ(i)
m ,gxτ(i)

m+1) and taking maximum above implies:

δm ≤
n

∑
j=1

a jδm−1,

δm ≤ λδm−1, λ =
n

∑
j=1

a j < 1,

δm ≤ ·· · ≤ λ
m

δ0

⇒ d(gxτ(i)
m ,gxτ(i)

m+1)≤ δm ≤ λ
m

δ0.

(2.7)



ON φ -COINCIDENCE AND COMMON φ - FIXED POINTS 53

For a fixed i we use the triangle inequality and (2.7) to obtain:

d(gxτ(i)
m ,gxτ(i)

m+p)≤ d(gxτ(i)
m ,gxτ(i)

m+1)+d(gxτ(i)
m+1,gxτ(i)

m+2)+ · · ·+d(gxτ(i)
m+p−1,gxτ(i)

m+p)

≤ (λ m +λ
m+1 + · · ·+λ

m+p−1)δ0

≤ λ
m(1+λ + · · ·+λ

p−1)δ0

≤ λ
m 1−λ p

1−λ
δ0 → 0 as m→ ∞.

Therefore, {gxi
m}m≥0 are Cauchy sequences (for all i ∈ Λn) in g(X). By the completeness of

g(X), there exist {gx1, . . . ,gxn} ∈ g(X), such that

(2.8) gxi
m→ gxi, as n→ ∞ for all i ∈ Λn.

Finally, we claim that the point (x1, . . . ,xn) is φ− coincidence point of F and g. Suppose

that X has the sequential g- monotone property, by (2.3) and (2.8) we have gxi
m �i gxi

m+1 and

gxi
m→ gxi, as m→∞ for all i ∈ Λn, implying gxi

m �i gxi and (gxσi( j)
m � j gxσi( j) or gxσi( j)

m � j

gxσi( j)). Now consider

d(F(xσi(1), . . . ,xσi(n)),gxτ(i))≤ d(F(xσi(1), . . . ,xσi(n)),F(xσi(1)
m , . . . ,xσi(n)

m ))+d(gxτ(i)
m+1,gxτ(i))

≤
n

∑
j=1

a jd(gxσi( j)
m ,gxσi( j))+d(gxτ(i)

m+1,gxτ(i)).

(2.9)

By (2.8), there exist m0,m1, . . . ,mn ∈ N such that

d(gxτ(i)
m+1,gxτ(i))<

ε

2
∀ m≥ m0, f or ε > 0

and

d(gxσi( j)
m ,gxσi( j))<

ε

2na j
∀ m≥ m j , j ∈ Λn.

Taking m≥ µ = max{m0,m1, . . . ,mn} and using (2.9), we get

d(F(xσi(1), . . . ,xσi(n)),gxτ(i))≤ (a1d(gxσi(1)
m ,gxσi(1))+ · · ·+and(gxσi(n)

m ,gxσi(n)))

≤ (a1
ε

2na1
+ · · ·+an

ε

2nan
)+

ε

2
≤ ε

2
+

ε

2
= ε.

Since ε is arbitrary, then F(xσi(1), . . . ,xσi(n)) = gxτ(i). That is, (x1, . . . ,xn) is a φ− coincidence

point of F and g.
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Remark 2.1. The sequential monotonicity of the set X can be replaced by the continuity of the

commutative mappings F and g.

Indeed, g(gxτ(i)
m+1) = g(F(xσi(1)

m , . . . ,xσi(n)
m )) = F(gxσi(1)

m , . . . ,gxσi(n)
m ), and then taking limit at

m→ ∞ and using (2.8) implies, g(gxτ(i)) = F(gxσi(1), . . . ,gxσi(n)). That is (gx1, . . . ,gxn) is a φ -

coincidence point for F and g.

Remark 2.2. Theorem 2.1 is different from corollary 10 in [17] for many reasons. First, we

do not assume the completeness of the whole space X , only we need the completeness of the

subspace g(X). Second, we omit the continuity condition of the mapping g. Third, we weaken

the commutativity condition of the mappings F and g, we use the weak-compatibility. Finally,

our proof is essentially different.

The conditions of Theorem 2.1 are not enough to prove the existence and uniqueness of the

common φ -fixed point for the mappings F and g. We apply the condition of weak- compatibility

of F and g to obtain the following fixed point theorem. For a product space Xn, we define a

partial ordering in the following way: for all (x1, . . . ,xn),(y1, . . . ,yn) ∈ Xn,

(x1, . . . ,xn)� (y1, . . . ,yn)⇔ xi �i yi for all i ∈ Λn

and (x1, . . . ,xn) = (y1, . . . ,yn)⇔ xi = yi, ∀ i. Let Φ be the set of all φ− coincidence points of

F and g.

Theorem 2.2. In addition to the the hypothesis of Theorem 2.1 suppose that for any two non

comparable elements (x1, . . . ,xn), (y1, . . . ,yn) ∈Φ there exists (u1, . . . ,un) such that:

(F(uσ1(1), . . . ,uσ1(n)), . . . ,F(uσn(1), . . . ,uσn(n))) is comparable, at the same time, to

(F(xσ1(1), . . . ,xσ1(n)), . . . ,F(xσn(1), . . . ,xσn(n))) and (F(yσ1(1), . . . ,yσ1(n)), . . . ,F(yσn(1), . . . ,yσn(n))).

Provided that F and g are weakly compatible. Then F and g have a unique common φ - fixed

point.

Proof. Due to Theorem 2.1 the set Φ is non-empty. Assume that (x1, . . . ,xn) and (y1, . . . ,yn)

are two φ - coincidence points of F and g, that is ,

gxτ(i) = F(xσi(1), . . . ,xσi(n))



ON φ -COINCIDENCE AND COMMON φ - FIXED POINTS 55

and

gyτ(i) = F(yσi(1), . . . ,yσi(n)), ∀ i ∈ Λn.

If (x1, . . . ,xn) and (y1, . . . ,yn) are comparable, say, xi �i yi, then d(gxτ(i),gyτ(i)) = 0 ∀ i, i.e.,

gxi = gyi ∀ i.

If not, by the assumption there is (u1, . . . ,un)∈Xn such that
(
F(uσ1(1), . . . ,uσ1(n)), . . . ,F(uσn(1), . . . ,uσn(n))

)
is comparable, at the same time, to

(
F(xσ1(1), . . . ,xσ1(n)), . . . ,F(xσn(1), . . . ,xσn(n))

)
and(

F(yσ1(1), . . . ,yσ1(n)), . . . ,F(yσn(1), . . . ,yσn(n))
)
. Put ui

0 = ui ∀ i and apply the same argument in

Theorem 2.1, one can determine the sequences {u1
m}m≥0, {u2

m}m≥0, . . . , {un
m}m≥0 such that

guτ(i)
m+1 = F(uσi(1)

m , . . . ,uσi(n)
m ), for all m, i.

Further, set xi
0 = xi and yi

0 = yi ∀ i, we can define the sequences {xi
m}m≥0 and {yi

m}m≥0, i ∈ Λn

with

gxτ(i)
m+1 = F(xσi(1)

m , . . . ,xσi(n)
m ) and gyτ(i)

m+1 = F(yσi(1)
m , . . . ,yσi(n)

m ) ∀ m, i.

Since gxτ(i)
0 = F(xσi(1)

0 , . . . ,xσi(n)
0 ) = gxτ(i)

1 , we have

gxτ(i)
0 �i gxτ(i)

1 , and gxτ(i)
0 �i gxτ(i)

1 .

Obviously, one can use the mathematical induction to claim that

gxτ(i)
m �i gxτ(i)

m+1 and gxτ(i)
m �i gxτ(i)

m+1 for all m≥ 0 and i ∈ Λn.

Therefore,

(2.10) gxτ(i)
m = gxτ(i) for all m≥ 0 and i ∈ Λn.

Similarly, We have

(2.11) gyτ(i)
m = gyτ(i).

Using the hypothesis of the theorem we have the inequality

F(uσi(1), . . . ,uσi(n))�i F(xσi(1), . . . ,xσi(n))

or

F(uσi(1), . . . ,uσi(n))�i F(xσi(1), . . . ,xσi(n)).
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Consider the first inequality holds, that is, guτ(i)
1 �i gxτ(i), then guτ(i)

m �i gxτ(i). The second

inequality is same, then, guτ(i)
m is comparable to gxτ(i). By a similar way one can assert that

guτ(i)
m is comparable to gyτ(i).

d(guτ(i)
m+1,gxτ(i)) =d(F(uσi(1)

m , . . . ,uσi(n)
m ),F(xσi(1), . . . ,xσi(n)))≤

n

∑
j=1

a jd(guσi( j)
m ,gxσi( j))

≤
n

∑
j=1

a j max
1≤i≤n

d(guτ(i)
m ,gxτ(i)).

Define δm = max1≤i≤n d(guτ(i)
m ,gxτ(i)) and taking maximum above implies:

δm+1 ≤
n

∑
j=1

a jδm,

δm+1 ≤ λδm, λ =
n

∑
j=1

a j < 1,

δm+1 ≤ ·· · ≤ λ
m

δ0→ 0 as m→ ∞

⇒ guτ(i)
m → gxτ(i) for all i ∈ {1, . . . ,n}.

(2.12)

By a similar way, we get

(2.13) guτ(i)
m → gyτ(i) for all i ∈ {1, . . . ,n}.

The uniqueness of the limit gives

gxi = gyi or F(xσi(1), . . . ,xσi(n)) = F(yσi(1), . . . ,yσi(n)).

Now apply the condition of weak compatibility

ggxτ(i) = gF(xσi(1), . . . ,xσi(n)) = F(gxσi(1), . . . ,gxσi(n)),

that means (gxi)n
i=1 is another φ - coincidence point of F and g, by the above fact that ggxi =

gxi for all i . Set gx = ξ , then ξ τ(i) = gξ τ(i) = F(ξ σi(1), . . . ,ξ σi(n)) Therefore, (ξ 1, . . . ,ξ n) is a

common fixed point of F and g.
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Example 2.1. Let X = [0,1] with the usual order and metric, i.e., (X ,≤,d) contain an ordered

metric space. Define the mappings F : Xn→ X and g : X → X by

F(x1,x2, . . . ,xn) =
x2

1
2
−

x2
2

4
+

x2
3

8
−

x2
4

16
· · ·+ x2

n
2n ,

g(x) = x, ∀ x ∈ X .

Consider φ = {τ,σ1, . . . ,σn} be an n+ 1-tuple of permutations from Λn = {1,2, . . . ,n} into

itself in the form:

τ = σ1 =

 1 2 3 . . . n

1 2 3 . . . n


σ2 =

 1 2 3 . . . n

2 1 2 . . . n


...

σi =

 1 2 3 . . . i . . . n

i i−1 i−2 . . . 1 . . . n− i+1


...

σn =

 1 2 3 . . . n

n n−1 n−2 . . . 1

 .

Let A be the set of odd numbers and B be the set of even numbers in Λn. One can easily see that

all conditions of theorems 2.1 and 2.2 hold as in the following:

First, σi ∈ΩA,B if i ∈ A and σi ∈ ΏA,B if i ∈ B.

Second, F has the mixed g-monotone property, that is,

gx≤ gy implies F(a1, . . . ,ai−1,x,ai+1, . . . ,an)≤i F(a1, . . . ,ai−1,y,ai+1, . . . ,an).

To claim this we have to consider two cases

•: if i∈A, then F(a1,a2 . . . ,ai−1,x,ai+1, . . . ,an) =
a2

1
2 −

a2
2

4 + · · ·− a2
i−1

2i−1 +
x2

2i −
a2

i+1
2i+1 + · · ·+

a2
n

2n

≤ a2
1

2 −
a2

2
4 + · · ·− a2

i−1
2i−1 +

y2

2i −
a2

i+1
2i+1 + · · ·+

a2
n

2n = F(a1,a2, . . . ,ai−1,y,ai+1, . . . ,an),

•: if i∈B, then F(a1,a2 . . . ,ai−1,x,ai+1, . . . ,an) =
a2

1
2 −

a2
2

4 + · · ·+ a2
i−1

2i−1 − x2

2i +
a2

i+1
2i+1 −·· ·+

a2
n

2n

≥ a2
1

2 −
a2

2
4 + · · ·+ a2

i−1
2i−1 − y2

2i +
a2

i+1
2i+1 + · · ·+

a2
n

2n = F(a1,a2, . . . ,ai−1,y,ai+1, . . . ,an).
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Third, for the contractive condition ( 2.1), we have for all (x1, . . . ,xn),(y1, . . . ,yn) ∈ Xn

d(F(x1,x2, . . . ,xn)F(y1,y2, . . . ,yn)) =|
x2

1
2
−

x2
2

4
+ · · ·+ x2

n
2n − (

y2
1

2
−

y2
2

4
+ · · ·+ y2

n
2n ) |

≤ 1
2
| x2

1− y2
1 |+

1
4
| y2

2− x2
2 |+ · · ·+

1
2n | x

2
n− y2

n |

≤ 1
2

d(gx1,gy1)+
1
4

d(gx2,gy2)+ · · ·+
1
2n d(gxn,gyn)

≤ Σ
n
i=1aid(gxi,gyi).

Where, gxi ≤i gyi and ai =
1
2i for all i ∈ Λn (note, Σiai < 1) .

Fourth, g(X) =X is complete, F(Xn)⊆ g(X) and X has the sequential monotone property. Thus

all conditions of Theorem 2.1 hold and then F and g have one coincidence point (0, . . . ,0). Fur-

thermore, F and g are weakly compatible (but not commuting) and the set Φ of all coincidence

points is a lattice then Theorem 2.2 ensures that (0, . . . ,0) is the unique common fixed point of

F,g.

If we consider τ by the identity permutation on Λn, i.e., τ(i) = i ∀ i, we will state and prove

the following theorem under more general contractive condition.

Theorem 2.3. Let (X ,�,d) be an ordered metric space and φ = (σ1, . . . ,σn) be a (n)-tuple of

mappings from Λn into itself such that, σi ∈ΩA,B if i ∈ A and σi ∈ ´ΩA,B if i ∈ B. Let F : Xn→ X

and g : X→ X be two given mappings such that F has the mixed g-monotone property, F(Xn)⊆

g(X) and g(X) is a complete subspace of X. Assume that there exist ai,bi,ci ∈R, i∈Λn verifying

∑
n
i=1 ai +∑

n
i=1 bi +∑

n
i=1 ci < 1 and

d
(
F(x1, . . . ,xn),F(y1, . . . ,yn)

)
≤

n

∑
j=1

a jd(gx j,gy j)

+
n

∑
j=1

b j
d
(
gx j,F(xσ j(1), . . . ,xσ j(n))

)
d
(
gy j,F(yσ j(1), . . . ,yσ j(n))

)
d(gx j,gy j)

+
n

∑
j=1

c j
d
(
gx j,F(yσ j(1), . . . ,yσ j(n))

)
d
(
gy j,F(xσ j(1), . . . ,xσ j(n))

)
d(gx j,gy j)

,

(2.14)

for which gxi �i gyi. If there exist x1
0, . . . .x

n
0 ∈ X such that

(2.15) g(xi
0)�i F(xσi(1)

0 , . . . ,xσi(n)
0 ), for all i ∈ Λn,
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and X has the sequential g-monotone property. Then F and g have, at least, one φ− coincidence

point.

Proof. Apply the same manner as in Theorem 2.1 we can easily construct sequences {x1
m}m≥0,

. . . ., {xn
m}m≥0 such that

gxi
m+1 = F(xσi(1)

m , . . . ,xσi(n)
m ), for all m≥ 0 and i ∈ Λn.

The mathematical induction for m≥ 0 tends to

(2.16) gxi
m �i gxi

m+1, for all i ∈ Λn.

Then we use ( 2.16) and the contraction condition (2.14) to assert that the sequences {gxi
m}m≥0

are Cauchy for all i ∈ Λn as follows

d(gxi
m,gxi

m+1) =d
(
F(xσi(1)

m−1 , . . . ,x
σi(n)
m−1 ),F(xσi(1)

m , . . . ,xσi(n)
m )

)
≤

n

∑
j=1

a jd(gxσi( j)
m−1 ,gxσi( j)

m )

+
n

∑
j=1

b j
d
(
gxσi( j)

m−1 ,F(x
σσi( j)(1)
m−1 , . . . ,x

σσi( j)(n)
m−1 )

)
d
(
gxσi( j)

m ,F(x
σσi( j)(1)
m , . . . ,x

σσi( j)(n)
m )

)
d(gxσi( j)

m−1 ,gxσi( j)
m )

+
n

∑
j=1

c j
d
(
gxσi( j)

m−1 ,F(x
σσi( j)(1)
m , . . . ,x

σσi( j)(n)
m )

)
d
(
gxσi( j)

m ,F(x
σσi( j)(1)
m−1 , . . . ,x

σσi( j)(n)
m−1 )

)
d(gxσi( j)

m−1 ,gxσi( j)
m )

≤
n

∑
j=1

a jd(gxσi( j)
m−1 ,gxσi( j)

m )+
n

∑
j=1

b j
d(gxσi( j)

m−1 ,gxσi( j)
m )d(gxσi( j)

m ,gxσi( j)
m+1 )

d(gxσi( j)
m−1 ,gxσi( j)

m )

+
n

∑
j=1

c j
d(gxσi( j)

m−1 ,gxσi( j)
m+1 )d(gxσi( j)

m ,gxσi( j)
m )

d(gxσi( j)
m−1 ,gxσi( j)

m )

≤
n

∑
j=1

a jd(gxσi( j)
m−1 ,gxσi( j)

m )+
n

∑
j=1

b jd(gxσi( j)
m ,gxσi( j)

m+1 )

≤
n

∑
j=1

a j max
1≤i≤n

d(gxi
m−1,gxi

m)+
n

∑
j=1

b j max
1≤i≤n

d(gxi
m,gxi

m+1).
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Define δm = max1≤i≤n d(gxi
m,gxi

m+1) and taking maximum above implies

δm ≤
n

∑
j=1

a jδm−1 +
n

∑
j=1

b jδm,

(1−
n

∑
j=1

b j)δm ≤
n

∑
j=1

a jδm−1,

δm ≤ λδm−1, λ =
∑

n
j=1 a j

(1−∑
n
j=1 b j)

< 1

⇒ d(gxi
m,gxi

m+1)≤ δm ≤ λ
m

δ0.

(2.17)

For a fixed i we use the triangle inequality and (2.17) to obtain:

d(gxi
m,gxi

m+p)≤ d(gxi
m,gxi

m+1)+d(gxi
m+1,gxi

m+2)+ · · ·+d(gxi
m+p−1,gxi

m+p)

≤ (λ m +λ
m+1 + · · ·+λ

m+p−1)δ0

≤ λ
m(1+λ + · · ·+λ

p−1)δ0

≤ λ
m 1−λ p

1−λ
δ0→ 0 as n→ ∞.

Therefore, {gxi
m}m≥0 are Cauchy sequences (for all i ∈ Λn) in g(X). By the completeness of

g(X), there exist {gx1, . . . ,gxn} ∈ g(X), such that

(2.18) gxi
m→ gxi, as n→ ∞ for all i ∈ Λn.
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Inequality (2.16), limit (2.18) and the sequential g- monotonicity of X yield gxi
m �i gxi.

Now consider

d
(
F(xσi(1), . . . ,xσi(n)),gxi)≤ d

(
F(xσi(1), . . . ,xσi(n)),F(xσi(1)

m , . . . ,xσi(n)
m )

)
+d(gxi

m+1,gxi)

≤
n

∑
j=1

a jd(gxσi( j)
m ,gxσi( j))

+
n

∑
j=1

b j
d
(
gxσi( j)

m ,F(x
σσi( j)(1)
m , . . . ,x

σσi( j)(n)
m )

)
d
(
gxσi( j),F(xσσi( j)(1), . . . ,xσσi( j)(n))

)
d(gxσi( j)

m ,gxσi( j))

+
n

∑
j=1

c j
d
(
gxσi( j)

m ,F(xσσi( j)(1), . . . ,xσσi( j)(n))
)
d
(
gxσi( j),F(x

σσi( j)(1)
m , . . . ,x

σσi( j)(n)
m )

)
d(gxσi( j)

m ,gxσi( j))

+d(gxi
m+1,gxi)

≤
n

∑
j=1

a jd(gxσi( j)
m ,gxσi( j))+

n

∑
j=1

b j
d(gxσi( j)

m ,gxσi( j)
m+1 )d

(
gxσi( j),F(xσσi( j)(1), . . . ,xσσi( j)(n))

)
d(gxσi( j)

m ,gxσi( j))

+
n

∑
j=1

c j
d
(
gxσi( j)

m ,F(xσσi( j)(1), . . . ,xσσi( j)(n))
)
d(gxσi( j),gxσi( j)

m+1 )

d(gxσi( j)
m ,gxσi( j))

+d(gxi
m+1,gxi)

→ 0 as m→ ∞.

Thus, F(xσi(1), . . . ,xσi(n)) = gxi and (x1, . . . ,xn) is a φ− coincidence point of F and g.

Now, we shall prove the existence and uniqueness of the common φ -fixed point.

Theorem 2.4. In addition to the the hypothesis of Theorem 2.3 suppose that for any non com-

parable elements (x1, . . . ,xn), (y1, . . . ,yn) ∈Φ there exists (u1, . . . ,un) ∈ Xn such that

(gu1,gu2, . . . ,gun)

is comparable, at the same time, to

(gx1,gx2, . . . ,gxn) and (gy1,gy2, . . . ,gyn).

Provided that F and g are weakly compatible. Then F and g have a unique common φ - fixed

point.
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Proof. According to Theorem 2.3 the set Φ is non-empty. Assume that (x1, . . . ,xn) and

(y1, . . . ,yn) are two non comparable φ - coincidence points of F and g, that is

gxi = F(xσi(1), . . . ,xσi(n)),

gyi = F(yσi(1), . . . ,yσi(n)
m ), for all i ∈ Λn.

By the preceding assumption there exists (u1, . . . ,un) such that (gu1,gu2, . . . ,gun) is compara-

ble, at the same time, to (gx1,gx2, . . . ,gxn) and (gy1,gy2, . . . ,gyn). Put ui
0 = ui ∀ i and apply the

same argument in Theorem 2.3, one can determine sequences {u1
m}m≥0, {u2

m}m≥0, . . . , {un
m}m≥0

such that gui
m+1 = F(uσi(1)

m , . . . ,uσi(n)
m ), ∀ m, i.

Further, set xi
0 = xi and yi

0 = yi, ∀ i. By the same way we can define the sequences {xi
m}m≥0 and

{yi
m}m≥0 ∀ i with gxi

m+1 = F(xσi(1)
m , . . . ,xσi(n)

m ) and gyi
m+1 = F(yσi(1)

m , . . . ,yσi(n)
m ) ∀ m, i. Then

gxi
m = gxi and

gyi
m = gyi for all m≥ 0 and i ∈ Λn.

Using the assumption of the theorem we have

gui �i gxi or

gui �i gxi.

Consider the first inequality, gui
1 �i gxi, then gui

m �i gxi. The second inequality is same, then,

gui
m is comparable to gxi and to gyi.

d(gui
m+1,gxi) =d(F(uσi(1)

m , . . . ,uσi(n)
m ),F(xσi(1), . . . ,xσi(n)))≤

n

∑
j=1

a jd(guσi( j)
m ,gxσi( j))

+
n

∑
j=1

b j
d(guσi( j)

m ,F(u
σσi( j)(1)
m , . . . ,u

σσi( j)(n)
m ))d(gxσi(1),F(xσσi( j)(1), . . . ,xσσi( j)(n)))

d(guσi( j)
m ,gxσi( j))

+
n

∑
j=1

c j
d(guσi( j)

m ,F(xσσi( j)(1), . . . ,xσσi( j)(n)))d(gxσi(1),F(u
σσi( j)(1)
m , . . . ,u

σσi( j)(n)
m ))

d(guσi( j)
m ,gxσi(1))

≤
n

∑
j=1

a j max
1≤i≤n

d(gui
m,gxi)+

n

∑
j=1

c j max
1≤i≤n

d(gxi,gui
m+1).
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Define δm = max1≤i≤n d(gui
m,gxi) and taking maximum above implies

δm+1 ≤
n

∑
j=1

a jδm +
n

∑
j=1

c jδm+1,

δm+1 ≤ λδm, λ =
∑

n
j=1 a j

1−∑
n
j=1 c j

< 1,

δm+1 ≤ ·· · ≤ λ
m

δ0→ 0 as m→ ∞

⇒ gui
m→ gxi for all i ∈ {1, . . . ,n}.

(2.19)

By a similar way we have

(2.20) gui
m→ gyi for all i ∈ {1, . . . ,n}.

By the uniqueness of the limit we get

gxi = gyi or F(xσi(1), . . . ,xσi(n)) = F(yσi(1), . . . ,yσi(n)).

Applying the condition of weak compatibility yields to the existence of common φ -fixed point

of F and g. Finally we can easily claim the uniqueness of this fixed point.

Let g be the identity mapping on X in Theorems 2.3 and 2.4.

Corollary 2.1. Let (X ,�,d) be a complete ordered metric space and φ = (σ1, . . . ,σn) be a

(n)-tuple of mappings from Λn into itself such that, σi ∈ ΩA,B if i ∈ A and σi ∈ ´ΩA,B if i ∈ B.

Let F : Xn → X be a mapping having the mixed monotone property. Assume that there exist

ai,bi,ci ∈ R, i ∈ Λn verifying ∑
n
i=1 ai +∑

n
i=1 bi +∑

n
i=1 ci < 1 and

d(F(x1, . . . ,xn),F(y1, . . . ,yn))≤
n

∑
j=1

a jd(x j,y j)

+
n

∑
j=1

b j
d(x j,F(xσ j(1), . . . ,xσ j(n)))d(y j,F(yσ j(1), . . . ,yσ j(n)))

d(x j,y j)

+
n

∑
j=1

c j
d(x j,F(yσ j(1), . . . ,yσ j(n)))d(y j,F(xσ j(1), . . . ,xσ j(n)))

d(x j,y j)
,

for which xi �i yi. If there exist x1
0, . . . .x

n
0 ∈ X such that

xi
0 �i F(xσi(1)

0 , . . . ,xσi(n)
0 ), for all i ∈ Λn,
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and X has the sequential monotone property. Then there exists (z1,z2, . . . ,zn) ∈ Xn such that

(2.21) zi = F(zσi(1), . . . ,zσi(n)), for all i ∈ Λn,

that is F has, at least, one φ− fixed point. Furthermore, let ∆ be the set of all points of Xn ver-

ifying ( 2.21)and suppose that for all (x1, . . . ,xn), (y1, . . . ,yn) ∈ ∆ there exists (u1, . . . ,un) ∈ Xn

such that (u1,u2, . . . ,un) is comparable, at the same time, to (x1,x2, . . . ,xn) and (y1,y2, . . . ,yn).

Then ∆ is reduced to a single point

Example 2.2. Let X = {(x,−x) : x ∈ R} ⊆ R2 with the Euclidean metric and the usual order

(x,y) ≤ (z, t)⇔ x ≤ z and y ≤ t, contains a partially ordered complete metric space, whose

different elements are not comparable. Define F : Xn→ X as

F((x1,−x1),(x2,−x2), . . . ,(xn,−xn)) = (x1,−x1)

Consider σ1,σ2, . . . ,σn : Λn→ Λn defined as in Example 2.1. It is easy to show that all hypoth-

esis of Corollary 2.1 are satisfied unless the condition which guaranties the uniqueness of φ -

fixed point, for any two different fixed points we cannot find another point in Xn that compara-

ble to them at the same time. So a greater number of fixed points of F can be found, because

any point ((x1,−x1),(x2,−x2), . . . ,(xn,−xn))∈ Xn can be interpreted as a φ - fixed point for the

mapping F as follows

(x1,−x1) = F((x1,−x1),(x2,−x2), . . . ,(xn,−xn))

(x2,−x2) = F((x2,−x2),(x3,−x3), . . . ,(xn,−xn),(x1,−x1))

...

(xi,−xi) = F((xi,−xi),(xi+1,−xi+1), . . . ,(xn,−xn),(x1,−x1), . . . ,(xi−1,−xi−1))

...

(xn,−xn) = F((xn,−xn),(xn−1,−xn−1), . . . ,(x1,−x1)).
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[7] L. Ćirić, M. Abbasb, B. Damjanović and R. Saadati, Common fuzzy fixed point theorems in ordered metric

spaces, Math. Comput. Modelling 53 (2011), 1737-1741.

[8] M. Eshaghi Gordji and M. Ramezani, N-fixed point theorems in partially ordered metric spaces, Preprint. 65

(2006), 1379-1393.

[9] P. K. Jhade and M. S. Khan, Some coupled coincidence and common coupled fixed point theorems in

complex- valued metric spaces, Ser. Math. Inform. 29 (2014), 385-395.

[10] E. Karapinar and N. V. Luong, Quadruple fixed point theorems for nonlinear contractions, Comput. Math.

Appl. 64 (2012), 1839-1848.

[11] E. Karapinar A. Roldán, C. Roldán and J. Martinez-Moreno, A note on ”N-fixed point theorems for nonlinear

contractions in partially ordered metric spaces”, Fixed Point Theory Appl. 2013 (2013), Article ID 310.
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[17] A. Roldán, J. Martínez- Moreno and C. Roldán, Multidimensional fixed point theorems in partially ordered

complete metric spaces, J. Math. Anal. Appl. 396 (2012), 536-545.

[18] F. Sabetghadam, H. P. Masiha and A. H. Sanatpour, Some coupled fixed point theorems in cone metric spaces,

Fixed Point Theory Appl. 2009 (2009), Article ID 125426.


